大增益区高功率激光谐振腔的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光谐振腔是激光系统的核心部件,合理的谐振腔设计可以提高输出功率和改善光束质量。为了获得高功率和高光束质量的激光输出,论文对大增益区激光谐振腔进行了理论和实验研究。论文的主要内容包括:
     (1)建立了大菲涅尔系数激光谐振腔模式的数值计算模型,分析了不同有限元离散方法对模式计算精度和效率的影响,提出了一种等间距等面积的有限元离散方法。同时,提出了大菲涅尔系数激光谐振腔横模竞争占优模式判别方法,即光腔传输矩阵特征值γ的绝对值与激光光斑有效面积系数η0.05的乘积为模式鉴别因子σ,模式鉴别因子σ大的模式竞争占优势,并在多种激光谐振腔实验中验证了该方法的正确性。通过一个特定的光学聚焦系统,利用柯林斯公式建立了计算输出光束质量参数(包括聚焦光斑半径、光束远场发散角、M2因子等)的数值模型。
     (2)建立了一种基于二维衍射积分方程的非圆形光阑激光谐振腔的理论模型,方形光阑激光谐振腔的模式计算结果表明,除了存在分离变量方法获得规则分布模式外,还存在分离变量方法不能得到的旋转对称分布模式、十字架形分布模式和对角线对称分布模式。理论和实验研究了方形光阑、矩形光阑和三角形光阑激光谐振腔的光束特性,分别获得了TEM99模方形光斑、TEM0-11模矩形光斑和六边形光斑。对28mm×28mm方形光阑和直径为28mm圆形光阑进行了比较实验,在不增加发散角的情况下,方形光阑的激光输出功率高,在45#钢的激光相变淬火中获得了更加均匀的相变硬化区。
     (3)提出了一类全新的环形凹面镜激光谐振腔,系统地研究了不同光阑半径、不同曲率半径对输出光束的影响,并与平凹稳定腔进行比较。对于腔长为3m,曲率半径为15m的环形凹面镜激光谐振腔,当光阑半径为16mm时,菲涅尔系数高达8左右,获得了高光束质量的环形分布光束,其M2因子为1.1613,光束远场发散角(全角)为0.75mrad。环形凹面镜曲率半径变化对输出光束的光斑尺寸、远场发散角、聚焦特性,以及M2因子等影响不大。而当平凹稳定腔的反射镜曲率半径由10m变化到50m时,输出光束模式由TEM04模变化为TEM01模。
     (4)在2kW横流CO2激光器上进行了的相同光阑尺寸的环形凹面镜激光谐振腔、平凹稳定腔和平行平面腔的对比实验,在5A的放电电流激励下,分别获得了1820W的环形分布光束、1860W的TEM06模光斑和1000W的近似TEM03模光斑。环形分布光束以1m/min的扫描速度进行不锈钢的焊接,焊接熔深超过2.4mm。而平凹稳定腔和平行平面腔的输出光束不能进行深穿透焊接。
     (5)理论和实验研究了高功率横流CO2激光器折叠腔低阶模输出光束特性,提出了外桥内腔式折叠腔的动态补偿调整方法,解决了光腔失调问题,开发了高稳定性的N型三折激光谐振腔,成功应用于汽车安全气囊气体发生器三工位激光焊接系统中。
Laser resonator is the core component of laser sysytem, and optimal design of laser resonator can improve laser power and beam quality. In this dissertation, in order to get laser beam with high power and high beam quality, theoretical and experimental studies on laser resonators with large gain zone are presented. The main contents are classified as follows.
     (1) The numerical model of high power laser resonator with big Fresnel Number is founded. The calculation precision and efficiency of different discrete finite element methods are analyzed, and a new discrete finite element method with characteristics of the same space and the same area to improve calculation efficiency is provided. A distinguishing method of dominant mode for transverse mode competition of laser resonator with big Fresnel Number is put forward, in which the mode distinguishing factorσis defined as the product of of absolute value of eigenvalueγof resonator transit matrix and the efficient area coefficientη0.05 of laser spot, the mode of(which have) the biggestσis dominant, the validity of which is tested in several experiments of laser resonators. By means of a optics focus system and Collins formula, model to calculate the beam quality parameter, including focus beam radius, far-field divergence angle, M2 factor etc, is established, which is benefit to evaluating beam quality.
     (2) Based on two- dimensional diffraction integral equation, the theoretical model of laser resonator with non-circle aperture is founded. The results of laser resonator with a square aperture show that there are some regular distribution mode, rotary symmetry distribution mode, cross distribution mode and diagonal symmetry distribution mode. The rotary symmetry distribution mode, cross distribution mode and diagonal symmetry distribution mode can not be abtained from Separation Variable Method. The experimentals on beam characteristics of laser resonators with square, rectangle and triangle aperture are studied. TEM99 mode square spot and TEM0-11 mode rectangle spot and hexagon spot are achieved respectively. The output beam characteristics of 28mm×28mm square aperture and circle aperture with diameter 28mm are compared, when a square aperture is used, laser output power is higher than circle aperture is used, but the divergence angle is same. The laser phase transformation hardening case on 45# steel caused by the square aperture beam is more uniform than circle aperture beam.
     (3) A new type of toric concave mirror laser resonator is presented. The effects of different aperture size and curvature radius on output beam property is discussed systematically. For a resonator with length of 3m, curvature radius of 15m, and aperture radius of 16mm, its Fresnel Number is about 8, and annular distribution mode with M2 factor of 1.1613 and far-field divergence angle (full Angle) of 0.75mrad is obtained. The change of curvature radius has no obvious effect on spot size of output beam, far-field divergence angle, focus spot size and M2 factor etc, whereas, when the curvature radius of concave mirror of plane-concave stable resonator is from 10m to 50m, the output beam mode of plane-concave stable resonator is from TEM04 to TEM01.
     (4) The experiments of toric concave mirror laser resonator, plane-concave stable resonator and parallel plane resonator with the same aperture size are done on HUST2000 high power transverse flow CO2 laser. Laser beam of 1820W with annular distribution, laser beam of 1860W with TEM06 distribution and laser beam of 1000W with approximate TEM03 distribution are got, respectively at discharge current of 5A. Scanning welding test on 316L stainless steel at 1m/imn velocity by annular distribution beam, the welding depth is more than 2.4mm, whereas the output beam of plane-concave stable resonator and parallel plane resonator can not be used for deep penetration laser welding.
     (5) Theoretical and experimental studies on property of lower-order mode laser beam of folded resonator are done. A dynamic adjustment method for folded resonator with structure of outside bridge and inside cavity is presented, so the problem of resonator malajustment is solved. A N-type three-folded resonator on transverse flow CO2 laser for industry is developed, which is applied to the laser welding system of gas generator body of automobile airbag.
引文
[1]潘承志. CO2激光器技术的最新进展.激光集锦, 1999, 9(1): 26~32
    [2]唐霞辉.激光焊接金刚石工具.武汉:华中科技大学出版社, 2004. 11~56
    [3] R. Nowack, H. Opower, U. Schaefer et al. High-power CO2 waveguide laser of the 1-kW category. Proc. of SPIE, 1990, 1276:18~28
    [4] A.D. Colley, H.J. Baker, D.R. Hall. Planar waveguide, 1 kW cw carbon dioxide laser excited by a single transverse rf discharge. Appl. Phys. Lett., 1992, 61(2):36~138
    [5] E.F. Yelden, H.J.J. Seguin, C.E. Capjack et al. Phase locking phenomenon in radial multislot CO2 laser array. J. Opt. Soc. Am. B, 1993, 10 (8):1475~1482
    [6] A. Lapuccl, G. Cangioli. Phase-locked operation of a compact three-slab-sections radiofrequency discharge. IEEE J.Quantum Electronics,1993,29(12):2962~2971
    [7] D. Whrlichmann, U. Habich, H.D. Plum et al. Annular resonators for diffusion cooled CO2-laser. CLEO'94, Amsterdam, Netherlands, 1994. 400~401
    [8]辛建国,方高瞻,彭雪云等.射频激励扩散型冷却层叠式板条波导千瓦CO2激光器光学学报, 1996, 16(6): 877~880
    [9]吕百达.强激光的传输与控制.北京:国防工业出版社, 1999. 64~411
    [10] A.E. Siegman. Laser beams and resonators: The 1960s. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6):1380~1388
    [11] A.E. Siegman. Laser beams and resonators: Beyond the 1960s. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6):1389~1399
    [12] A.M.Zabelin, A.V.Korotchenko. CO2 laser resonator: Some new aspects in the design. Proc. of SPIE, 1999, 3611:317~322
    [13] Ishaaya, Amiel A. Eckhouse, Vardit. Shimshi, Liran. et al. Improving the output beam quality of multimode laser resonators. Optics Express, 2005, 13(7) :2722~2730
    [14] Li Yude, Liu Jinglun, Chen Mei et al. Axisymmetric-fold combination laser resonator. Optical Engineering, 2005, 44(6):1~7
    [15] Skettrup Torben. Rectangular laser resonators with astigmatic compensation. Journal of Optics A: Pure and Applied Optics, 2007, 7(11): 645~654
    [16] Buttner, R.Kowarschik, U.D.Zeitner. Folded diffractive laser resonators with user-defined fundamental mode. Applied Physics B: Lasers and Optics, 2005, 81(5): 601~606
    [17] Feng Yan, Ueda Ken-Ichi. Laterally periodic resonator for large-area gain lasers. Optics Express, 2003, 11(6):632:638
    [18] L.Wei, J.W.Y.Lit. Compound ring resonator with an external reflector for lasers. Optics Communications, 2001, 193(1):105~112
    [19] G.L.Bourdet, M.Merian. Theoretical investigations of a slab CO2 laser resonator with graded-phase mirror. Optics Communications, 1998, 152(1): 49~54
    [20]程祖海. 2kW CO2激光器孔栏限模谐振腔的研究.光电工程, 1992, 19(2): 39~43
    [21]陈培锋,丘军林.高频激励CO2激光器1.5kW低阶模多折腔研究.激光技术, 1997, 21(4): 203~205
    [22]雒江涛,程兆谷,杨宝春等. 5 kW横流CO2激光器输出偏振特性研究.光学学报, 1995, 15(8): 987~990
    [23]赵治国,魏德森,张若川等.大功率横流CO2激光器折叠腔的研究.河北工业大学成人教育学院学报, 1999, 1(1): 40~43
    [24]李晓平,周风晴,卢宏等.约束放电激励型高功率CO2激光器折叠腔研究.华中科理工大学学报, 1995, 23(8): 60~64
    [25]瑜煌,谢致薇. ML-108大功率CO2激光加工系统结构性能及维护.中山大学学报论丛, 1999, 3(3): 91~95
    [26]金玉奇,赵彤,徐文刚等.氧碘化学激光器束转动90°环形非稳腔空心光束输出研究.强激光与粒子束, 1999, 11(5):513~516
    [27] K. Nikumb Suwas, H.J.J.Seguin. Truncated cone as a pseudoconjugator in a high-power carbon dioxide laser. Review of Scientific Instruments, 1993, 64(9): 2488~2492
    [28] Shih Chun-Ching. Modeling of rear cone misalignment in the annular resonator. Proc. of SPIE, 1994, 2117: 128~135
    [29]魏青,吴铁强,魏在福等. UR90腔相干并束输出的试验研究.中国激光, 2000, 27(7): 593~596
    [30]刘文广,陆启生,刘泽金.光束变换环形孔径谐振腔的失调特性分析.中国激光, 2005, 32(6): 803~809
    [31] Zhou Guosheng. J.Alfrey Anthony, Lee W.Casperson. Modes of a laser resonator with a retroreflecting corner cube mirror. Applied Optics, 1982, 21(9):1670~1674
    [32] Liu Jian, R.M.A.Azzam. Polarization properties of corner-cube retroreflectors: theory and experiment Applied Optics, 1997, 36(7):1553~1556
    [33] J.Y.Liou, C. J.Chen, M.Y.Hwang. Misalignment characteristics of resonators formed by 90o cone and mirror. Applied Optics, 1980, 19(15): 2569~2573
    [34] V.S.Srikanth. Corner cube prism Resonator with polarized output: New configuration. Proc. of SPIE, 2005, 5708: 303~310
    [35]王小兵,程勇,王古常等.定向棱镜腔改善重频DPL光束质量的研究.量子电子学报, 2005, 22(5):186~191
    [36]邱文法,陈军,洪治等.角隅谐振腔SBS Q开关NdYAG激光器.应用激光, 1998, 18(4):158~160
    [37]叶一东,高学燕,易亨瑜等.角锥棱镜激光谐振腔的基本特性.强激光与粒子束, 2004, 16(8):972~976
    [38]石岩,金挺,李松等.定向棱镜激光腔模式模拟研究.红外与激光工程,2005, 34(5):521~539
    [39]胡东霞,张小民,景峰等.用角锥棱镜阵列抑制低波前畸变.强激光与粒子束, 2003, 115(11):1057~1060
    [40] Hongqi Li, Zuhai Cheng. Output characteristics of right angle cone mirror cavity laser. Chinese Optics Letters, 2005, 3(11): 650~652
    [41]武建强,唐霞辉,秦应雄等.高功率横流CO2激光器锥面反射镜谐振腔的研究.中国激光, 2007, 34(5):628~632
    [42]周炳琨,高以智,陈倜嵘.激光原理. (第4版).北京:国防工业出版社, 2000. 24 ~ 97
    [43]胡进.激光谐振腔模式分析——基于有限元的数值矩阵方法: [硕士学位论文].武汉:华中科技大学图书馆, 2003
    [44] G.D.Boyd, J.P.Gordon. Confocal Multimode Resonator for Millimeter ThroughOptical Wavelength Masers. Bell System Technical Journal,1961, 40(2): 489~508
    [45] G.D.Boyd, H.Kogelnik. Generalized confocal resonator theory. Bell System Technical Journal, 1962, 41(7):1347~1369
    [46] A.G.Fox, T.Li. Resonant modes in maser interferometer. Bell System Technical Journal, 1961,40(2):453~488
    [47]吕百达,冯国英,蔡邦维.板条激光器用光腔的模式计算:快速傅立叶变换法.激光技术,1993,17(6): 335~339
    [48]杜燕贻.无源虚共焦非稳腔光束特性模拟.强激光与粒子束, 2000, 12(2): 164~168
    [49] E.A.Sziklas, A.E.Siegman. Mode calculations in unstable resonators with flowing saturable gain 2: Fast Fourier transform method. Appl Opt., 1975, 14(8):1874~1889
    [50]杜燕贻.用增益介质多层分布法模拟非稳腔光束特性.强激光与粒子束, 2000, 12(4): 433~436
    [51]吕百达,张彬,孔繁龙.广义光束和广义ABCD定律.红外与激光工程, 1996, 25(6): 19~24
    [52] Zhongyong Liu, Xiuying Wu, Dianyuan Fan. Collins formula in frequency-domain and fractional Fourier transforms. Optics Comm., 1998,155(1):7~11
    [53] S.F.Helefert, R.Pregla. A finite difference beam progation algorithm based on generalized transmission line equations. Opt. Quantum Electron., 2000, 32(6): 681~690
    [54] P.Lǔsse, K.Ramm, H.G.Unger, J.Schǔle. Comparison of vectorial and new semivectorial- finite difference approach for optical waveguides. Opt. Quantum Electron., 1997, 29(2):115~120
    [55] R.Stoffer, H.J.W.M.Hoekstra. Efficient interface conditions based on 5-point finite difference operator. 1998, 30(5):375~383
    [56] C.Vassallo. MODE SOLVERS 1993-1995 Optical mode solvers. Opt. Quantum Electron., 1997, 29(2):95~114
    [57]陈维友,刘国军.通用二维波导模式数值方法及其应用.半导体光电, 1998, 19(2): 93~96
    [58] S.J.Polychronopoulos, G.B.Athanasoulias, N.K.Uzunoglu. Advanced mode solver using an integral equation technique and entire domain plane wave basis functions. Opt. Quantum Electron., 1997, 29(2):127~137
    [59] S.Selleri, L.Vincetti, A.Cucinotta, M.Zoboli. Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quantum Electron., 2001, 33(4): 359~371
    [60] A.B.Manenkov, A.G.Rozhnev. Optical dielectric waveguide analysis, based on the modified finite element and integral equation methods. Opt. Quantum Electron., 1998, 30(1): 61~70
    [61] Cheng Yuanying, Wang Youqing. Eigenvector method for optical field simulation. Optics Comm., 2004, 234(1):1~6
    [62]程愿应,王又青,胡进等.一种新颖的用于光腔模式及光束传输模拟的特征向量法.物理学报, 2004, 53(8): 2576~2582
    [63] Jiang Chao, Bo Li, Yuanying Cheng et al. Simulation of optical field in laser resonators cavity by eigenvector method. Optics & Laser Technology, 2007, 39(3):490~499
    [64] W.Konig. Process monitoring of high power CO2 lasers in manufacturing. Proc. 2nd int. Conf. laser in manufacturing, 1985. 129~140
    [65] G.C.Lim, W.M.Steen. Measurement of the temporal and spatial power distribution of high-power CO2 laser beam. Optics and Laser Technology, 1982, 14(3): 149~153
    [66] Culoms. High power laser beam diagnostics: An Application to the ETCA 25kW CO2 Laser. Proc. of SPIE, 1988, 1024: 20~25
    [67] G.C.Lim, W.M.Steen. Instrument for instantaneous in situ analysis of the mode structure of high power laser beam. J.Phys.E.sei.instrum, 1984, 17(11): 999~1007
    [68] Thomas J. Sadowski. Laser beam diagnostics: a conference overview. Proc. of SPIE, 1991, 1414: 136~140
    [69] V.M.Weerasinghe, W.M.Steen. In-process monitoring of laser process. ICALEO'85, San Francisco, CA, USA, 1985. 107~112
    [70] David R.Whitehouse, Carl J.Nilsen. Plastic burn analysis(PBA) for CO2 laser beam diagnostics. ICALEO'90, 1990. 13~27
    [71] Prometec company. Handbook of Laserscope UFF100. Achen, Germany: prometec company, 1990. 1~10
    [72]闫毓禾,钟敏霖.高功率激光加工及应用.天津:天津科学技术出版社, 1994. 120~121
    [73]侯冬兰.高功率气体激光器光束整形: [硕士学位论文].武汉:华中科技大学图书馆, 2003
    [74] S.A.Collins. Lens-System Diffraction Integral Written Interms of Matrix Optics. Journal of The Optical Society of America, 1970, 60(9): 1168~1170
    [75] J.Mazumder, P. S. Mohanty, A.Kar. Mathematical modelling of laser materials processing. Int. J. of Materials and Product Technology, 1996, 11(3): 193~194
    [76] L.Han, W.L.Frank, S.Musti. Thermal behavior and geometry model of melt pool in laser material process. J. Heat Transfer, 2005, 127(9): 1005~1014
    [77] A.J. Pinkerton, L. Li. An experimental and numerical study of the influence of diode laser beam shape on thin wall direct metal deposition. J.Laser Appl., 2005, 17(1): 47~56
    [78] Z. Liu, N. Pirch, A. Gasser et al. Effect of beam width on melt characteristics in large-area laser surface alloying. J.Laser Appl., 2001, 13(6): 231~238
    [79] Y.Xi-Chen. The role of beam shape in convection and heat transfer in laser melted pool. ICALEO. Boston: MA, 1990. 155~160
    [80] D.Triantafyllidis, L. Li, F.H.Stott. Investigation of the effects on non-conventional beam geometries in laser surface treatment of ceramics: theoretical analysis. J.Laser Appl., 2004, 18(2): 161~168
    [81] Endo Masamori. Numerical simulation of an optical resonator for generation of a doughnut-like laser beam. Optics Express, 2004, 12(9): 1959~1965
    [82] Chu Shu-Chun. A design of optical resonator for donut mode generation. Proc. of SPIE , 2007, 6663: 1~11
    [83] Cherezova T Yu. Doughnut-like laser beam output formation by intracavity flexible controlled mirror. Optics Express, 1998, 3(5): 180~189
    [84] M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux et al. Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror. Opt. Lett., 2007, 32(13):1824~1826
    [85] Y. Takenaka, J. Nishimae, M. Tanaka et al. High-power CO2 laser with a Gauss-core resonator for high-speed cutting of thin metal sheets. Opt. Lett., 1997, 22(1): 37~39
    [86] P. Sona, P. Muys, G. Sherman et al. High-power fast-axial-flow CO2 laser with a variable-reflectivity output coupler. Opt. Lett., 1990, 15(24), 1452~1454
    [87] S. Balestri, P. Burlamacchi, V. Greco et al. Folded CO2 laser resonators with controlled beam quality. Optics Communications, 1993, 104(1): 91~96
    [88] N.A. Generalov, V.S. Moskalev, N.G. Solov'yov et al. Gain saturation effects and beam symmetrization in fast-transverse-flow industrial lasers with folded Resonators. Proc. of SPIE, 2003, 4969: 288~295
    [89] Ling Dongxiong, Li Junchang, Guan Yihong. Simulation of mode fields in a seven-folded resonator by the transfer matrix method. Optical Engineering, 2006, 45(3): 1~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700