大流量液压源恒温恒压控制及油液弹性模量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压传动与控制系统具有抗负载的刚度大、执行器的功率-重量比大的突出优点,已广泛地应用在各个领域中。随着对液压系统的功率和响应时间的要求不断提高,如何提高液压系统的性能一直是一个学科研究的热点问题。液压控制系统的频宽主要受液压动力机构的限制,即为液压固有频率ω_h和液压阻尼比ξ_h所限,而系统的稳定性也需要用足够大的ω_h和ξ_h值来保证。油液的弹性模量决定着液压固有频率,油液的粘度直接影响液压阻尼比。而油液的弹性模量是一个很难确定的量,油液的粘度随温度变化非常明显,一直是一个理论分析与计算的软参数。本文以对接机构综合试验台运动模拟器液压控制系统为选题,着重对油液弹性模量的在线测量和大功率液压系统的油液温度控制进行了研究。
     油液弹性模量的在线测量中,定义法是一种最直接最可靠的方法。论文从提高定义法的测量精度入手,提出了从测试腔直接提取测量信息的方法,以克服摩擦力的干扰,针对油液弹性模量的影响因素多、测量值变化大不稳定的特点,系统而全面的分析了测试腔形变、泄漏、压缩升温等的影响并采取措施减少其对测量值的干扰,测量精度达到3%。利用该测量装置首次实验研究了系统进气前后和系统抽真空前后油液弹性模量变化,间接反映出油液含气量的变化。针对油温控制纯滞后、参数时变的特点,提出了一套油温控制的方法,利用三通比例水阀分水原理控制通过回油板式换热器的冷却水流量并结合参数自整定模糊PID控制算法精确控制油液温度,仿真和实验结果表明系统油温稳定在45±1℃范围内。对大通径插装阎控制供油压力的稳态特性和动态特性进行的仿真和实验研究,得到了参数变化对性能指标的影响规律,为提高大流量液压源供油压力的性能指标提供了参考依据。
     论文主要研究内容如下:
     第一章,介绍了空间交会对接及其仿真技术国内外研究发展概况和大型装备液压系统集成技术国内外发展现状。阐述了油液弹性模量测量和油液温度控制的研究现状。提出了本课题的研究内容以及完成论文所要进行的研究工作。
     第二章,简要介绍了对接机构综合试验台的结构及组成。设计了运动模拟器液压系统,包括动力机构和液压源两大部分的组成、原理和主要参数等。针对液压源设计中的几个关键技术,油温控制、抽真空除气、油液弹性模量测量和供油压力调节,给出了解决方案并对其原理进行了阐述。
     第三章,在建立油液弹性模量的理论模型基础上,对影响油液弹性模量的因素进行了分析。详细分析了油液弹性模量测量装置的精度问题。对掺混气体对油液弹性模量的影响、混气油液弹性模量随压力的变化以及油温对油液弹性模量的影响进行了实验研究。并对测量系统压力波动、测量压力以及泄漏量和气泡溶解度对测量结果的影响进行了实验分析。
     第四章,在建立温度被控对象的数学模型的基础上,分析了油液温度控制的难点,提出了基于参数自整定模糊PID的油液温度控制策略,并进行了参数自整定模糊PID控制器的设计以及油液温度控制的仿真分析。在对接机构综合试验台运动模拟器液压源设备上进行了油液温度控制实验。仿真和实验结果显示,采用参数自整定模糊PID控制算法对液压系统油液温度进行控制,油温稳定在45±1℃范围内。
     第五章,利用AMESim建立了压力控制插装阀的仿真模型。通过分析选择了几个与压力控制稳态特性相关的参数进行仿真研究。并对主阀芯弹簧、主阀前腔容积、导阀弹簧和阻尼对压力动态特性的影响进行了仿真分析。在对接机构综合试验台运动模拟器液压源设备上进行了压力控制实验。
     第六章,概括了全文的主要研究工作和成果,并展望了今后需进一步研究的工作和方向。
Hydraulic transmission and control system has been widely used in various fields for its great load stiffness and high power-to-weight ratio.With the development of higher power and faster response of hydraulic system,the improvement of system performance is always on the agenda of research community.In all performance parameters,the frequency width and the stability of the hydraulic system are two essential characteristics.They are both limited by hydraulic natural frequencyω_h and damping ratioξ_h.The hydraulic natural frequencyω_h is determined mainly by bulk modulus of oil,and the damping ratioξ_h is mostly affected by viscosity of oil.The bulk modulus and the viscosity of oil are difficult to determine,as they are varying with the temperature and pressure obviously.With the increase of hydraulic natural frequencyω_h,the bulk modulus of oil should be improved and tested.In order to get a steady damping ratioξ_h the temperature of oil must be kept constantly.The techniques of oil bulk modulus monitoring on-line and oil temperature precision control are studied in detail in this thesis.For instance,the researches have been done on the motion simulator for a docking mechanism comprehensive test-rig which has an electro-hydraulic servo system required high flow and high performance.
     There are several ways for oil bulk modulus to be monitored on-line,among them the method of definition is most direct and reliable.To improve the test accuracy,an installation was invented and discussed according to the definition of oil bulk modulus,in which information of pressure and displacement was directly extracted from test chamber.The effects of test chamber deformation,leakage and temperature on measurement accuracy were analyzed in this thesis.The measurement accuracy reached as high as 3%because the approaches were effective.Using this measurement device,experiments were carried out on bulk modulus of hydraulic oil and a set of values of oil bulk modulus with different air contents were made for the first time.On account of characters of time delay and time-varying parameters in oil temperature control,a set of control method was proposed. The proportional water valve was used to control the flow rate of cooling water and the parameter self-tuning fuzzy PID control algorithm was used to control the opening of the valve.The simulation and experiment results indicated oil temperature maintaining in 45±1℃.The study of steady-state and dynamic properties of large-bore pressure control cartridge valve identified the rules of performance changing with structure parameters.The result provides reference to improvement of pressure performance in high flow hydraulic systems.
     The main contents of each chapter are summarized as follows:
     In chapter 1,the history and current research status of the rendezvous and docking technology and the simulator test rig are reviewed based on a lot of publications and conference papers.The research statuses of oil bulk modulus measuring and oil temperature control are also presented.Accordingly,the research and the goal of the project are brought forward.
     In chapter 2,the construction and composition of docking mechanism comprehensive test-rig is briefly introduced.The hydraulic system of motion simulator is designed, including composition,principle and main parameters of power mechanism and hydraulic resource.Several key technologies in hydraulic resource design,such as oil temperature control,vacuum degassing,oil bulk modulus measuring and oil supply pressure adjustment, are stated and the principles are explained.
     In chapter 3,based on the theoretical model of oil bulk modulus,the influence factors are considered.The accuracy of oil bulk modulus measurement device is analyzed in detail. Experiment researches on the effects of entrained air on oil bulk modulus,the changes of oil bulk modulus with pressure and the effects of temperature on oil bulk modulus are made. The effects of pressure fluctuation in test system,leakage and air solubility on measurement results are analyzed with experiments.
     In chapter 4,based on the mathematical model of temperature control object,the difficulties of oil temperature control are analyzed.A kind of oil temperature control strategy based on parameter self-tuning fuzzy PID control method is put forward.The parameter self-tuning fuzzy PID controller is designed.Oil temperature control experiment is made on facilities of hydraulic resource of motion simulator.The simulation and experiment results show oil temperature maintaining in 45±1℃.
     In chapter 5,the simulation model of pressure control cartridge valve is established with AMESim.The relevant parameters with steady characteristics are analyzed.The effects of spring in main spool,volume ahead main spool,spring in pilot valve and damping on dynamic characteristics are observed.Pressure control experiment is made on facilities of hydraulic resource of motion simulator.
     In chapter 6,some conclusions are given and some new views are put forward in the future.
引文
[1]唐国金.空间交会对接任务规划[M].北京:科学出版社,2008.
    [2]朱仁璋.航天器交会对接技术[M].北京:国防工业出版社,2007.
    [3]林来兴.空间交会对接技术[M].北京:国防工业出版社,1995.
    [4]娄汉文,曲广吉,刘济生.空间对接机构[M].北京:航空工业出版社,1992.
    [5]张崇峰.空间对接机构综述[J].世界科学,2003(1):26-27.
    [6]王萍.美国载人航天器交会对接综述[J].中国航天,1997(2):30-33.
    [7]彭成荣,曲广吉,马宗诚,等.俄罗斯大型航天器动力学及其试验技术[J].航天器工程,1992(3):1-7.
    [8]林平.日本工程试验卫星7的空间自动交会对接试验[J].中国航天,1997(1):29-32.
    [9]娄汉文,张柏楠,刘宇.空间对接机构的试验技术[J].航天器工程,1994(3):23-31.
    [lO]林来兴,张新邦.飞行仿真技术新的发展及其在航天领域中应用[J].计算机仿真,1996(1):13-20.
    [11]C.Lange,E.Martin.Towards Docking Emulation using Hardware-in-Loop Simulation with Parallel Platform[A].Proceedings of the Workshop on Fundamental Issures and Future Research Directions for Parallel Mechanisms and Manipulators,Quebec City,Canada.2002,10:1-4.
    [12]Lee S H,Yi B J,Kim S H,et al.Analysis on Impact Propagation of Docking Platform for Spacecraft[A].Proceedings of the IEEE International Conference on Robotics and Automation.Seoul,Korea.2001:413-420.
    [13]Claudinon B,Lievre J,Matra et al.Test Facility for Rendezvous Docking.36~(th) Congress of the International Astronautical Federation,Stockholm,1985.
    [14]张崇峰.空间对接六自由度半物理仿真的研究[J].航天控制,1999(1):70-74.
    [15]曲艳丽,赵明扬,张崇峰.空间对接机构6自由度半物理仿真试验台运动特性分析[J].空间科学学报,2002(10)-94-99.
    [l6]Huang Q T,Jiang H Z,Zhang S Y,el al.Spacecraft Docking Simulation using HIL Simulator with Stewart Platform[J].Joumal of Chinese Mechanical Engineering,2005,18(3):4l5-4l8.
    [17]延皓,叶正茂,丛大成,等.空间对接半物理仿真原型实验系统研究[A].第四届全国流体传动及控制学术会议论文集,2006:l52-157.
    [18]常同立,丛大成,叶正茂,等.空间对接地面半物理仿真台系统仿真研究[J].航空学报,2007(7):975-980.
    [19]田浩,赵阳,张大伟.对接机构综合试验台运动模拟器建模分析[J].宇航学报,2007(7):996一1001.
    [20]郭坤相.对接试验台运动模拟器控制系统设计与分析[D].[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [21]金福伟.对接机构综合试验台系统分析与实验研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [22]杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究[D]:[博士学位论文].哈尔滨: 哈尔滨工业大学,2002.
    [23]袁立鹏.并联运动模拟平台及其液压伺服系统的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2005.
    [24]魏立新.6-DOF并联机器人动力学建模及其控制策略研究[D]:[硕士学位论文].秦皇岛:燕山大学,2002.
    [25]Y.X.Su,B.Y.Duan and C.H.Zhang,et al.Disturbance-Rejection High-precision Motion Control of a Stewart Platform[A].IEEE Transactions on Control Systems Technology.Institute of Electrical and Electronics Engineers Inc.,2004,12(3):364-374.
    [26]Chih Chin Hsu,I Kong Fong.Motion Control of a Hydraulic Stewart Platform with Computed Force Feedback[A].J Chin Inst Eng Trans Chin Inst Eng Ser A.2001,24(6):709-721.
    [27]M.R.Sirouspour,S.E.Salcudean.Nonlinear Control of a Hydraulic Parallel Manipulator[A].2001IEEE International Conference on Robotics and Automation,Seoul.Institute of Electrical and Electronics Engineers Inc.,2001:3760-3765.
    [28]Y.Oh Paul.Improved Model Reference Adaptive Control Using the Euler Operator[A].Proceedings of IEEE International Conference on Robotics and Automation,Albuquerque,NM,USA.IEEE,Piscataway,NJ,USA,1997,4:1626-1631.
    [29]K.I.Mann George,W.Surgenor Brian.Model-Free Intelligent Control of a 6-DOF Stewart-Gough Based Parallel Manipulator[A].Proceedings of the 2002 IEEE International Conference on Control Applications,Glasgow,United Kingdom.Insitute of Electrical and Electronics Engineers Inc.,2002,1:495-500.
    [30]Zakarya Zyada,Yasuhisa Hasegawa and Toshio Fukuda.Force Control with Fuzzy Compensation of Gfavity and Actuators' Friction Forces of a Hydraulic Parallel Link Manipulator[A].2002 IEEE International Conference on Systems,Man and Cybernetics,Yasmine Hammamet,Tunisia.Institute of Electrical and Electronics Engineers Inc.,2002,2:202-207.
    [31]Denis Garagic,Krishnaswamy Srinivasan.Contouring Control of Stewart Platform Based Machin Tools[A].Proceedings of the American Control Conference,Boston,MA,United States.Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331,United States.2004,4:3831-3833.
    [32]Jiangqin Mao,Chao Li and Huibin Xu,et al.On Control of Six Freedom Magnetostrictive Smart Structure[A].PRICM 5:The Fifth Pacific Rim International Conference on Advanced Materials and Processing,Beijing,China.Trans Tech Publications Ltd,Zurich-Ueticon,CH-8707,Switzerland,2005,475-479:2111-2114.
    [33]李洪人.液压控制系统[M].北京:国防工业出版社,1981.
    [34]张琦,王淑敏,雷奕.飞行模拟座舱的电液伺服驱动机构[J].机械科学与技术,1996,15(4):513-515
    [35]张日华.六自由度飞行模拟器的单通道电液位置伺服系统的研究[D]:[博士学位论文].哈尔滨: 哈尔滨工业大学,1997.
    [36]任好玲.非对称阀控制非对称缸位置伺服系统理论分析及试验研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [37]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [38]黄人豪.重大工程及装备中大型液压系统的基本配置及技术特征[J].液压气动与密封,2000(1):39-41.
    [39]黄人豪.中国大型工程和装备液压系统总成技术的发展和创新[J].流体传动与控制,2006(7):7-14
    [40]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [41]李俊义,黄逊伟,孟昭林.大型液压泵站的油温自动控制装置[J].液压与气动,1999(3):9-10.
    [42]李永林,沈燕良,石敏超.大功率液压系统冷却装置设计[J].机床与液压,2007(12):121-123.
    [43]林荣川,王敏.大功率液压系统油温自动控制装置[J].九江职业技术学院学报,2005(1):21-22.
    [44]徐峰,赵学军,田庚.一种简单实用的液压油温控制系统的设计与实现[J].液压与气动,2004(3):58-60.
    [45]孙薇,何洪,周恩涛.基于MNN神经网络的液压系统油温的PWM自学习控制[J].中国机械工程,1998(7):44-47.
    [46]周士昌,何洪,周恩涛.液压系统油温的数字比例式冷却系统及自学习模糊控制[J].液压与气动,1995(1):24-27.
    [47]何洪,周恩涛,孙薇,等.液压系统油温的神经网络高精度控制[J].东北大学学报,1997(3):325-328.
    [48]Akira Ochiai,Kazuo Nagashima,Chikara Watanabe,et al.Method and System for Temperature Control of Hydraulic Oil[P].United States Patent:5971068,Oct.26,1999.
    [49]顾峰.一种新颖的液压系统温度控制装置[J].液压与气动,1997(4):19-20.
    [50]周雄健,王占林,王涛涛,等.高温液压试验台油温的SMITH模糊控制[J].机床与液压,2003(5):262-264.
    [51]张国清,陈淑坤.简单实用的温控电路[J].仪器与未来,1992(1):22.
    [52]章正宇.新型大电流高精度双向开关温控系统设计[J].激光与红外,1999(6):353·355.
    [53]郭柄坤.简单的恒温箱温控电路[J].仪器与未来,1991(7):22.
    [54]鲍可进.PID参数自整定的温度控制[J].苏州理工大学学报,1995(6):74.
    [55]胡泽新,周金荣,黄道.多变量非线性自整定PID控制器[J].控制理论与应用,1996(2):268-271.
    [56]Diaz,Gerardo Cristian.Simulation and Control of Heat Exchangers using Artificial Neural Networks[D].University of NOTREDAME,2000.
    [57]王文杰.模糊控制理论在温度控制中的应用[J].西北纺织工学院学报,1995(2):151-155.
    [58]Wray,Michelle Lynn.A Fuzzy Logic Controller for Temperature Control of a Six-zone Tube Furnace[D].University of LOUISVILLE,2001.
    [59]吕剑虹,陈来九.模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报, 1995(1):16-22.
    [60]刘飞,须文波.单片机FUSSY-PID双模温控仪[J].电子与自动化,1996(4):10-13.
    [6l]胡社教,徐晓冰,杨柳.温度控制仪表的模糊PID控制[J].合肥工业大学学报,1998(5):155-158.
    [62]Honda,Hiroyuki,Kobayashi,Takeshi.Fuzzy Control of Bioprocess[A].Journal of Bioscience and Bioengineering,2000,401-408:1389-1723.
    [63]王耀南.神经网络自适应模糊控制在温度控制系统中的应用[J].信息与控制,1996(4):245-251.
    [64]向文圆,蔡宁生.基于BP神经网络的蒸汽温度控制[J].自动化仪表,2000(12):4-6.
    [65]Roger Jang J S,ANFIS.Adaptive Network-based Fussy Inference System[J].IEEE Tran.Systems,Man and Cybematics,1993,23(3):665-685.
    [66]余勇,万德钧.一种用于机电设备的高精度温控系统[J].制造业自动化,1999(5):44-46.
    [67]郑明方.管式裂解炉温度神经网络优化控制[J].江苏石油化工学院学报,1999(3):40-43.
    [68]吴为民,王仁丽.温度控制系统的发展概况[J].工业炉,2002(2):18-20.
    [69]李小亭,韩冰,李正坤.关于精密控温方法的比较研究[J].河北大学学报,2004(1):107-111.
    [70]杨启伟,陈以.常用温度控制法的对比[J].兵工自动化,2005(6):86-88.
    [71]冯晓露.智能控制在电厂主蒸汽温度控制系统中的应用研究[D]:[博士学位论文].杭州:浙江大学,2006.
    [72]郭俊,刘畅,姚峰林,等.基于PLC温控系统的PID控制器的实现[J].机械工程与自动化,2005(3):31-33.
    [73]张辉,周庆,张浩.基于PLC的温控系统的设计与实现[J].微计算机信息,2002(1):12-13.
    [74]黄菊生,胡争先,唐唤清.基于PLC和PC的温控系统设计与开发[J].自动化仪表,2005(4):48-50.
    [75]杨六顺.基于PLC的通用高精度恒温控制系统设计[J].铸造技术,2006(3):224-226.
    [76]黄柱深,黄超麟.基于PLC的高精度温度控制系统[J].机电工程技术,2006(2):65-66.
    [77]张雪平,王志斌.基于模糊控制的PLC在温度控制中的应用[J].电气传动,2005(8):54-55.
    [78]戴焰明,周哲民.基于参数模糊自整定PID温度控制系统[J].自动化与仪表,2007(3):65-68.
    [79]李洪亮.基于模糊自适应PID的电阻炉温度控制系统[J].吉林化工学院学报,2007(1):66-67.
    [80]訾斌,段宝岩,黄进.基于模糊控制器的LNB温度控制系统[J].计算机工程,2007(1):230-232.
    [81]翟少磊.基于状态反馈的主蒸汽温度控制系统的设计[J].安徽电气工程职业技术学院学报,2007(3):71-74.
    [82]黄峰,汪乐峰,周冰.参数自整定PID温控系统的控制算法与仿真研究[J].光电工程,2002(12):96-98.
    [83]韩如成,李宵峰,王亚慧.大时滞系统模糊自整定Smith预估补偿控制方案的研究[J].钢铁,1999(4):52-55.
    [84]郑磊.基于DSP的PID温度控制系统[J].舰船电子工程,2007(2):188-190.
    [85]Un-Chul Moon Kwang Y.Lee.Temperauture Control of Glass Melting Furnace with Fuzzy Logic and Conventional PI Control.Proceedings of the American Control Conference Chicago,Iiliois.2000,(7): 2720-2724.
    [86]李英顺,伦淑娴.模糊PID温度测控仪[J].仪表技术与传感器,2003(1):20-22.
    [87]杜静,王振民.模糊PID在电阻炉温度控制系统中的应用[J].机械管理开发,2005(4):47-48.
    [88]潘健,陈刚,刘斌.模糊PID在工业电阻炉温度控制系统中的应用[J].自动化技术与应用,2007(3):62-64.
    [89]李磊,白瑞祥.模糊PID在热水锅炉温度控制系统中的应用[J].工业控制计算机,2007(2):41-42.
    [90]曲富林,李博.模糊控制器在温度控制中的应用[J].东北电力学院学报,1996(3):85-88.
    [91]周奕辛,于艳春.模糊控制在温度控制系统中的研究和应用[J].仪器仪表用户,2007(2):8-9.
    [92]刘秀红.模糊自整定PID控制在电阻炉温度控制中的应用[J].计量技术,2007(2):25-28.
    [93]秦淑香,张吉利,郭明良.神经网络PID控制在温度控制中的应用[J].煤矿机械,2007(6):166-168.
    [94]陈玮,罗俊奇,翟敏焕.神经网络在PLC温度控制系统的应用[J].微计算机信息,2007(4):92-94.
    [95]陈镒堃.提高温度控制系统精度的方法[J].福州大学学报,1993(6):43-48.
    [96]沈利清,沈国伟.温度控制的智能化方法[J].仪器仪表用户,2007(2):102-103.
    [97]C.C.Lee.Fuzzy Logic in Control Systems:Fuzzy Logic Controller-Part Ⅰ & Part Ⅱ.IEEE Trans.Syst.,Man,Cybern.,1990,20(2):404-435.
    [98]吴江涛,刘志刚,陈圣坤.一种适用于连续温度控制的准二维Fuzzy-PID控制方法[J].化工自动化及仪表,2004(4):38-40.
    [99]张永立.预测模糊白整定PID集成控制系统在温度控制中的应用研究[J].河北科技大学学报,2006(3):242-245.
    [100]廖明,罗利文.智能多点模糊PID温度控制系统[J].微计算机信息,2007(4):18-19.
    [101]H.E.梅里特.液压控制系统[M].北京:科学出版社,1976.
    [102]竹中利夫,浦田瑛三.液压流体力学[M].北京:科学出版社,1980.
    [103]A.T.J.Hayward.Compressibility Equations for Liquids:a Comparative Study[J].British Journal of Applied Physics,1967(7):965-977.
    [104]A.T.J.Hayward.How to Measure the Isothermal Compressibility of Liquids Accurately[J].J.Phys.D:Appl.Phys.,1971(7):938-949.
    [105]A.T.J.Hayward.Precise Determination of the Isothermal Compressibility of Mercury at 20℃ and 192 bar[J].J.Phys.D:Appl.Phys.,1971(7):951-955.
    [106]李松年,史维祥,葛思华,等.油液弹性模量测量仪[P].中国专利:85202795,1986-07-30.
    [107]李松年,葛思华,史维祥.油液体积弹性模量βe的在线测量技术[J].机械工程学报,1989(9):88-93.
    [108]范素玲.油液体积弹性模量的实验研究[D].[硕士学位论文].杭州:浙江大学,1989.
    [109]陆元章.液压系统的建模与分析[M].上海:上海交通大学出版社,1989.
    [110]余经洪,陈兆能,陆元章.油液综合体积弹性模量压力模型的研究[J].液压与气动,1991(1):2-6
    [111]Baek-Hyun Cho,Hyoun-Woo Lee,Jong-Sun Oh.Estimation Technique of Air Content in Automatic Transmission Fluid by Measuring Effective Bulk Modulus[J].International Journal of Automotive Technology,2002(2):57-61.
    [112]Karjalainen,J-P.,et al.The Dynamics of Hydraulic Fluids-Significance,Differences and Measuring[A].PTMC 2005.University of Bath,UK.:437-450.v113]Karjalainen,J-P.,et al.High-pressure Properties of Hydraulic Fluids-Measuring and Differences[A].PTMC 2006.University of Bath,UK.:67-79.
    [114]Karjalainen,J-P.,et al.Fluid Dynamics-Comparison and Discussion on System-Related Differences[A].SICFP 2007.Tampere University of Technology,Finland.:371-381.
    [115]Prkob Surawattanawan.An Approach for the Identification of Hydraulic Oil Bulk Modulus Utilizing Wave Propagation Effec and FFT[A].17~(th) Conference on Mechanical Engineering Network of Thailan,2003.
    [116]Johnson,D.,Edge,K.Measurement of the Wavespeed and Bulk Modulus in Hydraulic Lines[A].Proc.I.Mech.E.,Part 1,205.
    [117]Standard Test Method for Determination of Isothermal Secant and Tangent Bulk Modulus.USA:ASTM-D6793-02.2002.
    [118]Kajaste,J.,et al.Experimental Validation of Different Models for Effective Bulk Modulus of Hydraulic Fluid[A].Proc.9~(th) SICFP,Link(o|¨)ping,Sweden.2005.
    [119]ANSI.NFPA T2.13.7 R1,Hydraulic Fluid Power-Petroleum Fluids-Prediction of Bulk Moduli[S].National Fluid Power Association,1997.
    [120]J.Kajaste,H.Kauranne,A.Ellman,et al.Computational Models for Effective Bulk Modulus of Hydraulic Fluid[A].2~(nd) International Conference on Computational Methods in Fluid Power Technology FPNI'06.Aalborg University,Denmark.2006.
    [121]Manring,N.D.The Effective Fluid Bulk Modulus within a Hydrostatic Transmission[J].Transactions of ASME,J.Dyn.Syst.Meas.Control 119:462-466.
    [122]Herman F.George,Allan Barber.What is Bulk Modulus and When is it Important[J].Hydraulics and Pneumatics.2007(7):34-39.
    [123]檀润华,周建伟,马国清,等.油液容积弹性模量对减振器性能影响研究[J].河北工业大学学报,2001(1):1-4.
    [124]ALl VOLKAN AKKAYA.Effect of Bulk Modulus on performance of a Hydrostatic Transmission Control System[J].Sādhanā,2006(10):543-556.
    [125]Yu J,Chen Z,Lu Y.The Variation of Oil Effective Bulk Modulus with Pressure in Hydraulic Systems[J].Trans.ASME:J.Dyn.Syst.Meas.Control 116:146-150.
    [126]刘金国.油液等效体积弹性模量βe的实验研究[J].液压与气动,1993(1):33-34.
    [127]王寅观,邵良华.氨水体积弹性模量的超声检测研究[J].声学学报,1996(4):625-631.
    [128]王庆国,苏东海.二通插装阀控制技术[M].北京:机械工业出版社,2001.
    [129]N.D.Vaughan,D.N.Johnston,and K.A.Edge.Numerical Simulation of Fluid Flow in Poppet Valve. Proc.Instn.of Mech.Engrs.,Part.c Journal of Mech.Eng.,1992,206(c2):119-129.
    [130]黄人豪.二通插装阀的结构原理和功能分析[J].流体传动与控制,2004(4):51-53.
    [131]黄人豪.二通插装阀的结构原理和功能分析(续)[J].流体传动与控制,2004(5):44-46.
    [132]王欣,苗全才.二通插装阀动态特性优化设计[J].机床与液压,2006(3):142-144.
    [133]邓克,叶小华,王刚.二通插装阀启闭动态试验及特性分析[J].机械工程师,2006(7):71-72.
    [134]张力钧,黄人豪,胡伟民,等.二通插装阀统一建模方法的研究[J].液压气动与密封,2003(3):1-4.
    [135]杨国来,冀宏,傅新.二通插装阀压力失调分析[J].液压与气动,2002(7):42-44.
    [136]陈就.插装阀的复合控制机能及其在大型液压机上的应用[J].机床与液压,2003(2):213-215.
    [137]邓克,刘丽萍,王璐.插装阀静动态特性试验及研究[J].机械工程与自动化,2006(5):53-54.
    [138]庞积伟.插装阀数学模型的建立及其动态仿真研究[J].机电工程技术,2001(6):14-17.
    [139]陈群.插装阀阻尼孔对快速液压机性能的影响及调整[J].中国机电工业,2001(17):54-55.
    [140]韩文,赵丽霞.全自动液压压砖机中插装阀的静动态特性分析[J].机床与液压,2007(2):134-135.
    [141]冀宏,傅新,杨华勇,等.压力控制元件的最大可控压力研究[J].中国机械工程,2003(14):1227-1229.
    [142]董敏,赵静一,吴晓明.二通插装阀系统动态特性的仿真与研究[J].液压气动与密封,2001(1):34-37.
    [143]董敏.二通插装阀系统动态特性的仿真与研究[D]:[硕士学位论文].秦皇岛:燕山大学,2000.
    [144]王京.中国载人航天展望[N].北京晚报,2005-10-10.
    [145]绪方胜彦.现代控制工程[M].北京:科学出版社,1978.
    [146]沙道航,杨华勇.液压系统油温鲁棒变结构控制[J].机床与液压,1998(1):9-10.
    [147]周士昌.液压系统温升的过渡过程及一种设计散热器的新方法[J].机床与液压,1981(5):17-21.
    [148]谢三保,焦宗夏.飞机液压系统温度仿真计算与分析[J].机床与液压,2005(5):67-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700