舍蝇(Musca domestica vicina)幼虫抗菌肽的提取及其生物活性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用针刺损伤及金黄色葡萄球菌感染诱导方法,首次从舍蝇(Musca domestica vicina)幼虫提取到抗菌肽。这些抗菌肽是通过加热、阳离子交换柱层析及Sephadex G-50葡聚糖凝胶柱层析等步骤初步分离纯化得到,经电泳检测可看到2条电泳带,其一分子量为4kD,另一为9.6kD。舍蝇幼虫抗菌肽能有效地抑制金黄色葡萄球菌生长,但是对大肠杆菌、绿脓杆菌和枯草芽孢杆菌均无抑制作用。此外,它们还能抑制人胃癌细胞MGC80-3和BGC-823,人乳腺癌细胞MCF-7及人肺癌细胞SPC-A-1的体外增殖,并且呈浓度依赖关系。当舍蝇幼虫抗菌肽浓度低于或为62.5μg/mL时,细胞死亡率无明显变化;但是当浓度提高至125μg/mL时,细胞死亡率均有很大提高,分别为41.18%,28.62%,40.41%和37.61%;而且舍蝇幼虫抗菌肽浓度最大(250μg/mL)时,细胞死亡率都超过67%。
     本课题还发现不经诱导的舍蝇幼虫也能产生抗菌肽,其中用麦麸饲养的舍蝇幼虫提取液的抑菌圈直径为8mm,而用猪粪饲养的抑菌圈直径为15mm,几乎是前者的2倍。
The preliminary studies on antimicrobial peptides
    isolated from Musca domestict, vicina
    
    Abstract
    In this research, two antimicrobial peptides were detected in the extraction of the Musca domestica vicina larvae when the larvae were injured with a needle and then infected by Staph vlococcus auerus. These peptides were isolated by a three steps protocol including heating, CM- cellulose cation-exchange chromatography, and Sephadex G-50 gel filtration. The molecular weight of these peptides are 4kD and 9.6kD respectively. They can kill Staphylococcus auerus effectively, but no effect on Bacillus sub tills, Escherchia coil and Pseudornonas aeruginosa. The pept ides also can inhibit the proliferation of stomach cancer cells MGC8O-3 and BGC-823, breast cancer cells MCF-7 and lung cancer cells SPC-A-l in vitro. When the concentrations lower than 62.5ug/mL, their inhibition rates are under 23%, but when the concentrations rise to 125ug/mL, all of the
    inhibition rates increase about 20%. When their
    
    concentrations are as high as 250ug/mL, the inhibition rates all higher than 67%. We also found the larvae of Afusca domestica vicina without inducing also can produce the antimicrobial peptides. The diameter of inhibition zone of the extraction of the larvae feeding by bran is 8mm, but that of the larvae feeding by pig dejection is 15mm.
引文
1. Baba K.,Okada M., Kawano T.,et al. Purification of Sarcotoxin III a new antibacterial protein of Sarcophaga peregrina. J Biochem. 1987,102:69-74
    2. Baquero F. ,Blazquez J. Evolution of antibiotic resistance. Tree. 1997, 12 (12) : 482-487
    3. Boman H. G. Peptide antibiotics and their role in innate immunity. Curr Biol. 1995,3:435-448
    4. Bulet P.,Hetru C. ,Dimarcq J.L. , et al. Antimicrobial peptides in insect: structure and function.Developmen and Comparative Immunology. 1999,23:329-344
    5. Bulet P.,Urge L.,Ohresser S.,et al. Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem. 1996,238:64-69
    6. Cociancich S.,Ghazi A.,Hetru C.,et al. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. Journal of Biological Chemistry. 1993,268:19239-19245
    7. Cole A.M.,Weis P.,Diamond G. , et al. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions fo winter flouder. J Biol Chem. 1997,272:12008-12013
    8. De Lucca A. J. , Bland J. M. , Jacks J. T. , et al. Fungicidal activity of cecropin A. Antimicrob Agents Chemother. 1997,41:481-483
    
    
    9. Diaz-Achirica P.,Vach J.,Guinea A. The plasma membrane of leishmania donovani promastigotes hybrid peptide. Biochemical Journal. 1998, 330(1) :453-460
    10. Dimarcq J. L. , Hoffmann D..Meister M. , et al. Characterization and transcriptional profile of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem. 1994,221:201-209
    11. Fehlbaum P. Bulet P.,Michaut L.,et al. Insect immunity:septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. Journal of Biological Chemistry. 1994,269:33159-33163
    12. Ferrandon D. , Jung A.C. , Criqui M.,et al. A drosomycin-GFP reporter transgene reveals a local immmune response in Drosophila that is not dependent on the Toll pathway. EMEO Journal. 1998,17:1217-1227
    13. Hara S. , Yamakawa M. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem. 1995, 270(50) :29923-29927
    14. Hultmark D. , Steiner H. , Rasmusson T.,et al. Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. European Journal of Biochemistry. 1980,106:7-16
    15. Jaynes J.M.,Nagapala P., Destefanobeltran L., et al. Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science. 1993, 89(1) :43-53
    
    
    16. Kanai A.,Natori S. Analysis of a gene cluster for Sarcotoxin II, a group of antibacterial proteins of Sarcophage peregrina. Mol Cell Biol. 1990, 10(12) :6114-6122
    17. Kylsten P. , Smarkovlis C.,Hultmark D. The cecropin locus in Drosophila:a compact gene cluster involved in the response to infection.EMBO J. 1990,9:217-224
    18. Lambert J. , Keppi E. ,Dimarcq J.L. et al.Insect immunity:isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bacterial peptides. Proc Nail Acad Sci USA.1989,86:262-266
    19. Lamberty M. , Ades S.,Joseph S.U.,et al. Insect immunity:isolation from the leptdopteran Heltothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 1999,274(140:9320-9326
    20. Lee S. R. , Kurata S. , Natori S. Molecular cloning of Cdna FOR sapecin B, an antibacterial protein of Sarcophaga, and its detection in larval brain.FEBS Letter. 1995,368(3) :485-487
    21. Lehane M.J. , Wu D. , Lehane S. M.Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci USA. 1997,94:11502-11507
    22. Lemaitre B., Reichhart J.M., Hoffman J. A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA. 1997,94:14614-14619
    
    
    23. Levashina E. A. , Ohresser S.,Bulet P.,et al. Metchnikowin, a novel immune-inducible probline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem. 1995,233:694-700
    24. Marchini D. , Giordano P. C.,Amons R. , et al. Purification and primary structure of ceratotoxin A and B,two antibacterial peptides from the female reproductive accessory glands of the medfly Ceratitis capitata (Insecta: Diptera).Insect Biochem Mol Biol. 1993, 23(5) : 591-598
    25. Marchini D., Marri L. , Rosetto M. , et al. Presence of antibacterial peptides on the laid egg chorion of the medfly Cretitis capitata. Biochemical and Biophysical Research Communications. 1997,240:657-663
    26. Matsuyama K.,Natori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem. 1988,263(32) : 17117-17121
    27. Mitsuhara I. , Nakajima Y.,Natori S.,et al. In vitro growth inhibition of human intestinal bacteria by Sarcotoxin IA, an insect bactericidal peptide. Biotechnology Letters. 2001,23(7) :569-573
    28. Ohshima M., Mitsuhara I, Okamoto M, et al. Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. Journal of Biochemistry. 1999, 125(3) :431-435
    29. Okada M.,Natori S. Primary structure of sarcotoxin I, an antibacterial protein induved in the hemolymph of
    
    Sarcophaga peregrina (flesh fly) larvae. J Biol Chem . 1985,260(12) :7174-7177
    30. Okada M. , Natori S. Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J. 1983,211:727-734
    31. Ourth D.D., Renis H. E. Antiviral melanization reaction of heliothis-virescens hemolymph against DNA and RNA viruses in-vitro. Comparative Biochemistry and Physiology. 1993, 105:719-723
    32. Ourth D. D.,Renis H. E. Antiviral response of heliothis-virescens larvae. American zoologist. 1991, 31 (5) :A90-A90
    33. Park C. B. , Kim H. S., Kim S. C., et al. Mechanism of action of the antimicrobial peptide buforin II :buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications. 1998,244(1) :253-257
    34. Possani L. D. ,Zurita M. , Delepierre M. , et al. From noxiustoxin to Shiva-3, a peptide toxic to the sporogonic development of Plasmodium berghei. Toxicon. 1998,36(11) : 1683-1692
    35. Reed W.A.,Elzer P. H.,Enright F. M. , et al. Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Trangenic Research. 1997,6 (5) :337-347
    36. Robert E. W. ,Hancock ,Scott M.G.The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA. 2000, 97(16) :8856-8861
    
    
    37. Shahabuddin M.,Fields I.,Bulet P.,et al. Plasmodium gallinaceum: Differential killing of some mosquito stages of the parasite by insect defensin. Experimental Parasitology. 1998,89(1):103-112
    38. Silverstro L.,Gupta K.,Weiser J.N.,et al. The concentration-dependent membrane activity of cecropin A. Biochemistry. 1997,36:11452-11460
    39. Wachinger M.,Kleinschmidts A.,Winder D.,et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. JournaJ of General Virology.1998,79(4):731-740
    40. Winder D.,Gunzburg W.H.,Erfle V.,et al. Expression of antimierobial peptides has an antitumor effect in human cells. Biochemical and Biophysical Research Communications. 1998,242(3): 608-612
    41. Yamada K.,Natori S. Purification, sequence and antibacterial activity of two novel sapecin homologuees from Sarcophaga embryonic cells: similarity of sapecin B to charybdotoxin. Biochem J. 1993,291:275-279
    42. Zasloff M. Antibacterial peptide protocols. In Methods in Molecular Biology. 1997,78:259-261
    43.陈留存,王金星.昆虫抗菌肽研究现状.生物工程进展.1999,19(5):55-60
    44.戴祝英,张双全,张锡然等.一些理化因素诱导蚕产生抗菌物质及其作用的研究.江苏省生物技术研讨会论文集.1989,21-30
    45.郭尧君编著.蛋白质电泳实验技术.科学出版社.1999,pp123-156
    46.郭玉梅,戴祝英,胡云龙.家蚕抗菌肽的一些性质及抗肿瘤活性.南京师大学报(自然科学版).1995,18(1):62-67
    
    
    47.华志华,汪晓玲,薛锐等.CecropinB转基因水稻及其后代抗白叶枯病研究初报.中国水稻科学.1999,13(2):114-116
    48.贾洪武,张双全,戴祝英.家蚕抗菌肽对癌细胞的杀伤作用及超微结构的观察.动物学研究.1997,18(2):325-331
    49.江希明,郑树,丁仁瑞主编.肿瘤生物学.浙江科学技术出版社.1990,pp23-27,315-318
    50.赖仞,叶文娟,冉永禄等.大蹼铃蟾皮肤分泌液中抗菌活性肽的分离纯化及其性质.动物学研究.1998,19(4):257-262
    51.刘进元,李忠,潘乃穟等.抗菌蛋白LCⅢ的分离纯化及其部分特性.生物工程学报.1992,8(3):266-270
    52.刘喜富,柳家英,阎武等.人体乳腺癌细胞系Bcap-37和MCF-7的细胞遗传学研究.遗传学报.1994,21(4):257-262
    53.名取俊二.初期防御Ⅰ関与体液杀菌因子:Ⅱ,机能.生体防御.1986,3:331-338
    54.南开大学,中山大学,北京大学,四川大学,复旦大学合编.昆虫学(上册).人民教育出版社.1980,pp273
    55.沈晓昆.蝇蛆养殖—解决动物蛋白饲料短缺的有效途径.饲料研究.1999,2:18-20
    56.王芳,张双全,戴祝英.抗菌肽CM_4组分对K562癌细胞染色质DNA断裂作用的SCGE研究.生物化学与生物物理进展.1998a,25(1):64-67
    57.王芳,张双全,杨伟平.抗菌肽CM_4组分对离体癌细胞的影响.南京师大学报(自然科学版).1998b,21(4):53-57
    58.王芳,张双全.抗菌肽抗癌作用机理的研究进展.自然科学进展.1999,9(2):97-102
    59.王远程,刘伟,杨峰等.家蝇血淋巴的提取及抗菌物质的诱导.微生物学报.1992,32(6):439-444
    60.王远程,左晓峰,孙东旭等.家蝇幼虫抗菌物质组成及其理化性质.生物学报.1997,37(2):148-153
    
    
    61.吴冠芸,潘华珍,吴翚.生物化学与分子生物学实验常用数据手册.科学出版社.1999,pp190-205
    62.许玉澄,张双全,戴祝英.家蚕抗菌肽的抗癌作用.动物学研究.1998,19(4):263-268
    63.杨景山主编.医学细胞化学与细胞生物学技术.北京医科大学及中国协和医科大学联合出版社(第一版).1990,pp118-120
    64.张龙翔,张庭芳,李令媛主编.生化实验方法和技术(第二版).高等教育出版社.1997,pp140-141
    65.张双全,贾洪武,戴祝英.抗菌肽CM4抗K562癌细胞的超微结构研究.生物化学与生物物理进展.1997,24(2):62-67
    66.张廷军.家蝇幼虫的综合开发利用.资源开发与市场.1999,15(1):40-41
    67.张卓然主编.实用细胞培养技术.人民卫生出版社.1999,pp19-20
    68.赵东红,戴祝英,周开亚.昆虫抗菌肽的功能、作用机理与分子生物学研究最新进展.生物工程进展.1999,19(5):14-18
    69.赵小凡,王金星,王绪英等.榨蚕抗菌蛋白的纯化及性质.山东大学学报(自然科学版).1999,34(3):339-343
    70.赵永芳编著.生物化学技术原理及应用.武汉大学出版社.1994,pp78-164
    71.周永富,饶军华,阳建春等.家蝇抗菌物质的诱导.生物学杂志.1997,14(77):23-26
    72.皱毅弢,祝沛平,赵晓丽.用一种改进的电泳方法测定抗冻蛋白的分子量.生物技术.1999,9(4):36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700