宁夏玉米生产的气候风险等级分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,气候变化对农业产生了以弊为主的影响,而已有的风险研究仅从气象灾害或产量进行分析,更少有对未来风险变化的定量评估。本文尝试结合旱涝灾害与产量变化,以宁夏地区玉米生产为例,进行风险辨识和评估,在此基础之上评估未来的风险变化状况,为生产实践、决策制定提供一定科学依据和参考。
     本研究基于1988~2009年(历史时期)宁夏各县区的实际玉米单产,提出历年平均减产率、歉年出现频率和变异系数3个指标评价玉米生产的脆弱性,同时以气象台站的降水资料分析玉米生育期内(4~9月)的旱灾和涝害,评价旱涝灾害,在此基础上计算风险指数,并进行风险评价和分区。用同样的方法,以1961~1990年(气候基准时段)和2011~2040年(2020s时段)A2和B2情景下模拟的格点气象数据和玉米单产为基础,评价脆弱性、旱涝灾害和风险指数,比较气候基准时段模拟的风险与实际状况的差异,以及与未来两种情景下的风险差异,定量评估2020s时段A2和B2情景下宁夏地区玉米生产的风险较气候基准时段的变化状况。主要结论如下:
     1.基于历史时期实际气象数据和玉米单产分析的旱涝灾害和减产状况与文献记载的结果基本一致,即本文提出的评价方法适用于宁夏地区。PRECIS模式系统模拟的降水日值经剔除小于等于0.5mm的数值后分析的旱涝灾害与实际情况相符程度显著提高。
     2.历史时期、气候基准时段和2020s时段A2、B2两种情景下宁夏玉米生产的脆弱性分析结果表明,在历史时期和气候基准时段,脆弱性均在南部山区最高,北部灌区最低;而2020s时段的两种情景下,平均脆弱性指数均以中部干旱带最高、北部灌区最低,表明未来玉米生产的脆弱性中心由南部山区移至中部干旱带。
     3.历史时期和气候基准时段,玉米生育期内的干旱均在北部灌区最严重,南部山区最轻,多发于4~5月;涝害中心则分别为南部山区和中部干旱带,且均以灌区为少涝害,多发于8~9月;旱涝灾害指数呈现与涝害相似的分布。2020s时段两种情景下的旱、涝灾害发生格点增多;干旱以北部灌区最重、南部山区最轻,并在全区有加重的趋势;涝害则呈相反的分布状况,无明显加重或减轻的趋势;旱涝灾害指数均呈山区高、灌区低的分布,且在灌区和干旱带呈减轻、山区加重的趋势,同时旱涝灾害的高值中心由气候基准时段的中部干旱带移至南部山区。
     4.宁夏地区玉米生产的气候风险评价结果显示,历史时期宁南山区和中部干旱带的玉米生产风险高、灌区低;气候基准时段和2020s时段两种情景下的高风险区均位于中部干旱带,北部灌区风险低。以气候基准时段的风险划分标准对未来两种情景下的风险进行分区显示,B2情景下的高风险范围远大于A2情景。
     5.未来风险指数与气候基准时段比较显示,在A2情景下其程度减轻且在更多的格点上呈下降,3个区域的平均风险程度降低;而在B2情景下其程度增加且在更多的格点上呈上升,干旱带和山区风险增大、灌区降低。表明2020s时段B2情景下的气候状况不利于宁夏地区的玉米生产,旱涝灾害增多,生产脆弱性增加,风险也增大;而A2排放情景则是有利于宁夏的玉米生产。平均状况下,未来增温的变化对中部干旱带的玉米生产影响大,而对北部灌区的影响不明显。
The impact of climate change on agriculture has been mainly adverse in recent years. There havebeen lots of climate change risk studies based on meteorological disasters and crop yield, but thequantitative assessment of climate change risk in the future is still insufficient. Considering droughtand waterlogging disasters and crop yield, taking maize in Ningxia province for example, this paperaims to identify and assess risk and its changes in the future so as to provide scientific evidence formaize production and policy decision in Ningxia.
     Three indicators of average yield reduction rate, lean year occurrence rate and coefficient ofvariance have been used to evaluate vulnerability of crop production based on the per unit area yieldof maize. At the same time, the data from observation stations were used into analyze drought andflooding happened during growth stages of maize. Based on the analysis, the climate change riskindex and risk zoning can be figured out. The same method is applied to assess risks in1961-1990(baseline) and2011-2040(2020s) based on grid data under A2and B2and the per unit area yield ofmaize. Its aim is to find out the difference of risk between baseline and actual situation, between twoscenarios of A2and B2and between baseline and two scenarios. The main conclusions are as follows:
     1. The result based on observation data and the per unit area yield of maize is consistent with thehistorical document, which proves the methods used in this paper is appropriate for Ningxia. Throughrejecting precipitation data which were less than or equal to0.5mm simulated from PRECIS model,the analysis of drought and waterlogging disasters and the actual situation are almost identical.
     2. The highest vulnerability of crop production in baseline appears in Ningxia southern mountainregion and the lowest vulnerability appears in Ningxia northern irrigation region. In contrast, thehighest one in2020s shows in Ningxia middle arid area and the lowest one still shows in Ningxianorthern irrigation region. The center of vulnerability of crop production in Ningxia moved fromsouthern mountain region to middle arid area.
     3. The worst meteorological droughts during baseline and2020s both happened in northernirrigation region during growth of maize. And the situation is better in southern mountain regionhappened in April and May. There were worse water loggings happened in southern mountain regionand middle arid area in August and September. The distribution of drought and waterlogging disastersindex is similar with it of flood. In condition, the number of grid happened drought and flood isincreasing under two scenarios. The worst drought will appear in northern irrigation region and themilder drought will show in southern mountain region. But the situation of flood shows the contrary.Drought and waterlogging disasters index is high in mountain areas and low in irrigation areas. What'smore, the drought will lighten in irrigation region and middle arid area and aggravate in mountainareas. The high value center will move from middle arid area in baseline to southern mountain regionin the future.
     4. The conclusion of climate change risk of maize production in Ningxia shows that the risk ishigh in southern mountain region and middle arid area in the past and low in northern irrigationregion. The high risk in both baseline and2020s under two scenarios is in middle arid area and thelow one appears in northern irrigation region. Based on the criteria for risk distinction in baselineunder two scenarios, the risk scale under B2is larger than it under A2.
     5. The risk index in the future compared with which in baseline showed that, under the A2scenario the extent of risk would be mitigated and the value of risk index would be reduced on moregrids, while average level of risk would be decreased in three regions. Under the B2scenario, theextent of risk would be enhanced and the value of risk index would be increased on more grids, whilelevel of risks would be decreased in irrigation area, but increased in arid zones and mountainous areas.Which means that the climatic conditions in the2020s period under the B2scenario is not conduciveto the maize production in Ningxia, drought and waterlogging disasters, vulnerability and risk wouldbe increased. But the climatic condition under the A2emission scenario is in favor of maizeproduction. At average conditions, changes of the future warming would influence much more tomaize production in the central arid zone, while there would be no significant effects on the northernirrigation area.
引文
1.白美兰,侯琼,郝润全.雨养农业区马铃薯产量的风险评估[J].干旱地区农业研究,2004,22(1):6~10.
    2.白美兰,侯琼.马铃薯产量的风险评估及分区研究[J].气象科技,2003,31(4):237~242.
    3.陈怀亮,邓伟,张雪芬,等.河南小麦生产农业气象灾害风险分析及分区[J].自然灾害学报,2006,15(1):135~143.
    4.陈家金,张春桂,王加义,等.福建省粮食产量气象灾害风险评估[J].中国农学通报,2009,25(10):277~281.
    5.陈楠,许吟隆,陈晓光,等.PRECIS模式对宁夏气候变化情景的模拟分析[J].第四纪研究,2007,27(3):332~338.
    6.陈楠,许吟隆,陈晓光,等.PRECIS模式对宁夏气候模拟能力的初步验证[J].气象科学,2008,28(1):94~99.
    7.陈晓光,Declan Conway,陈晓娟,等.1961~2005年宁夏极端降水事件变化趋势分析[J].气候变化研究进展,2008a,4(3):156~160.
    8.陈晓光,Declan Conway,郑广芬,等.1961~2004年宁夏极端气温变化趋势分析[J].气候变化研究进展,2008b,3(2):73~77.
    9.陈晓光,苏占胜,郑广芬,等.宁夏气候变化的事实分析[J].干旱区资源与环境,2005,19(6):43~47.
    10.陈晓艺,马晓群,孙秀邦.安徽省冬小麦发育期农业干旱发生风险分析[J].中国农业气象,2008,29(4):472~476.
    11.邓国,王昂生,周玉淑,等.中国粮食产量不同风险类型的地理分布[J].自然资源学报,2003,17(2):210~215.
    12.邓国,王昂生,周玉淑,等.中国省级粮食产量的风险分区研究[J].南京气象学院院报,2002,25(3):373~379.
    13.丁一汇,董文杰,何金海,等.亚洲季风及其与中国气候和环境变化的关系[M].见:秦大河、丁一汇、苏纪兰.中国气候与环境演变(上卷).2005北京:科学出版社.
    14.丁一汇,任国玉,赵宗慈,等.中国气候变化的检测及预估[J].沙漠与绿洲气象,2007.1(1):1~10.
    15.杜鹏,李世奎.农业气象灾害风险分析初探[J].地理学报,1998,55(3):201~203.
    16.杜瑞英,杨武德,许吟隆,等.气候变化对我国干旱/半干旱区小麦生产影响的模拟研究[J].生态科学,2006,25(1):34~37.
    17.方修琦,盛静芬.从黑龙江省水稻种植面积的时空变化看人类对气候变化影响的适应[J].自然资源学报,2000,15(3):213~217.
    18.葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策[J].江苏农业学报,2002,18(1):1~8.
    19.辜晓青.江西早稻稻瘟病气象风险分区研究[J].安徽农业科学,2008,36(28):12385~12386.
    20.谷晓平,于飞,杨泌,等.贵州省凝冻灾害风险评估模型[J].安徽农业科学,2009,37(14):6498~6500,6569.
    21.郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2000.
    22.郝振纯,王加虎,李丽,等.气候变化对黄河源区水资源的影响[J].冰川冻土,2006,28(1):1~7.
    23.胡亚南,柴绍忠,许吟隆,等.CERES~Maize模型在中国主要玉米种植区域的适用性[J].中国农业气象,2008,29(4):383~386.
    24.胡亚南.气候变化对中国玉米生产的影响及适应性研究.[硕士学位论文].北京:中国农业科学院,2008.
    25.黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,5:21~30.
    26.黄荣辉,周连童.我国重大气候灾害特征、形成机理和预测研究[J].自然灾害学报,2002,11(1):1~9.
    27.霍治国,姜艳.基于灌溉的北方冬小麦水分供需风险研究[J].农业工程学报,2006,22(11):79~84.
    28.姜会飞,霍治国,潘学标,等.中国小麦生产的区域比较气候风险研究[J].自然灾害学报,2006,15(3):58~65.
    29.居輝,熊伟,许吟隆,等.气候变化对我国小麦产量的影响[J].作物学报,2005,31(10):1340~1343.
    30.居輝,熊伟,许吟隆,等.气候变化对中国东北地区生态与环境的影响[J].中国农学通报,2007,23(4):345~349.
    31.居輝,熊伟,许吟隆.东北春麦对气候变化的响应预测[J].生态环境,2008,17(4):1595~1598.
    32.李强,黄菊霞,张小川,等.宁南山区玉米发展出路与对策[J].宁夏农林科技,2008,(1):56~57.
    33.李世奎.中国农业灾害风险评价与对策[M].北京:气象出版社,1999:122~124,176~180
    34.李新,许志斌,佘奎军,等.宁夏玉米产业的现状和发展[J].种子,2009,28(9):104~106.
    35.李艳,薛昌颖,杨晓光,等.基于APSIM模型的灌溉降低冬小麦产量风险研究[J].农业工程学报,2009,25(10):35~44.
    36.梁旭,冯建民,张智,等.宁夏干旱气候变化及其成因研究[J].干旱区资源与环境,2007,21(8):68~74.
    37.刘德祥,董安祥,陆登荣.中国西北地区近43年气候变化及其对农业生产的影响[J].干旱地区农业研究,2005,23(2):195~201.
    38.刘锦銮,杜尧东,毛慧琴.华南地区荔枝寒害风险分析与分区[J].自然灾害学报,2003,12(3):126~130.
    39.刘璐,郭兆夏,柴芊,等.陕西省苹果花期冻害风险评估[J].干旱地区农业研究,2009,27(5):251~255.
    40.刘荣花,王友贺,朱自玺,等.河南省冬小麦气候干旱风险评估[J].干旱地区农业研究,2007,25(6):1~4.
    41.刘荣花,朱自玺,方文松,等.华北平原冬小麦干旱灾损风险分区[J].生态学杂志,2006,25(9):1068~1072.
    42.刘伟昌,张雪芬,余卫东,等.水稻高温热害风险评估方法研究[J].气象与环境科学,2009,32(1):33~38.
    43.罗培.基于GIS的重庆市干旱灾害风险评估与分区[J].中国农业气象,2007,28(1):100~104.
    44.马国飞,张晓煜,段晓风,等.基于标准化降水指数分析宁夏山区干旱演变特征[J].西北农业学报,2010,19(10):101~106.
    45.马力文,李凤霞,梁旭.宁夏干旱及其对农业生产的影响[J].干旱地区农业研究,2001,19(4):102~109.
    46.马晓群,徐敏,张爱民,等.合肥市两系杂交水稻制种气候风险评估[J].安徽农业科学,2000,30(2):182~184.
    47.马占云,熊伟,林而达.基于GIS和作物模型对气候变化影响下的玉米秸秆产量区域模拟研究[J].安徽农业科学,2009,37(13):6053~6055,6058.
    48.马宗晋,高庆华,高文学,等.中国重大自然灾害及减灾对策(总论)[M].北京:地震出版社,1994,1~10.
    49.闵屾,钱永甫.我国近40年各类降水事件的变化趋势[J].中山大学学报(自然科学版),2008,47(3):105~111.
    50.潘华盛,徐南平,张桂华.气候变暖对黑龙江省农作物结构调整影响及未来50年农业情景对策[J].黑龙江气象,2004,1:13~15.
    51.蒲金涌,张存杰,赵红岩,等.干旱对陇东及东南地区粮食产量的影响评估[J].华北农学报,2008,23(增刊):163~166.
    52.任鲁川.区域自然灾害风险分析研究进展[J].地球科学进展,1999,14(3):242~246.
    53.沈建国,白美兰.内蒙古农牧交错带粮豆种植风险评估[J].自然灾害学报,2006,15(5):115~120.
    54.史培军.三论灾害研究的理论与实践[J].自然灾害学报,2000,11(3):2~10.
    55.孙良媛.经营环境,组织制度与农业风险[M].北京:中国经济出版社,2004,85~95.
    56.孙宁,冯利平.利用冬小麦作物生长模型对产量气候风险的评估[J].农业工程学报,2005,21(2):106~110.
    57.孙小明,赵昕奕.气候变化背景下我国北方农牧交错带生态风险评价[J].北京大学学报(自然科学版),2009,45(4):713~720.
    58.唐川,朱静.基于GIS的山洪灾害风险分区[J].地理学报,2005,1(60):87~94.
    59.唐国利,巢清尘.中国近49年沙尘暴变化趋势的分析[J].气象,2005,31(5):8~11.
    60.王芳栋,许吟隆,李涛.区域气候模式PRECIS对中国气候的长期数值模拟试验[J].中国农业气象,2010,31(3):327~332.
    61.王馥棠,李郁竹,王石立.农业产量气象模拟与模型引论[M].北京:科学出版社,1990:40~61.
    62.王绍武,叶瑾琳,龚道溢,等.近百年中国年气温序列的建立[J].应用气象学报,1998,9(4):392~401.
    63.王绍武,翟盘茂,蔡静宁,等.中国西部降水增加了吗?[J].气候变化通讯,2003,2(5):8~9.
    64.王素艳,霍治国,李世奎,等.干旱对北方冬小麦产量影响的风险评估[J].自然灾害学报,2003,12(3):118~125.
    65.温克刚.中国气象灾害大典宁夏卷[M].北京:气象出版社,2007.
    66.吴利红,毛裕定,苗长明,等.浙江省晚稻生产的农业气象灾害风险分布[J].中国农业气象,2007,28(2):217~220.
    67.吴文斌.2005~2035年全球农作物播种面积变化情景模拟研究[J].农业工程学报,2007,23(10):93~97.
    68.袭祝香,马树庆,王琪.东北区低温冷害风险评估及分区[J].自然灾害学报,2003,12(2):98~102.
    69.肖俊夫,刘战东,陈玉民.中国玉米需水量与需水规律研究[J].玉米科学,2008,16(4):21~25.
    70.信乃诠.中国农业气象学[M].北京:中国农业出版社,1999:564~582.
    71.熊伟,居輝,许吟隆,等.气候变化下我国小麦产量变化区域模拟研究[J].中国生态农业学报,2006,14(2):164~167.
    72.熊伟,林而达,杨婕,等.作物模型区域应用两种参数校准方法的比较[J].生态学报,2008,28(5):2140~2148.
    73.熊伟,林而达.CERES~Maize区域应用效果分析[J].中国农业气象,2009,30(1):3~7.
    74.熊伟,潘婕,林而达,等.未来不同气候变化情景下中国玉米产量的初步预测[J].地球科学进展,2008,23(10):1092~1101.
    75.熊伟,许吟隆,林而达,等.两种温室气体排放方案下我国水稻产量变化模拟[J].应用生态学报,2005,16(1):65~68.
    76.熊伟,许吟隆,林而达,等.区域气候模式与作物模型联接的影响评估模拟实验及不确定性分析[J].生态学杂志,2005,24(7):741~746.
    77.熊伟,许吟隆,林而达.气候变化导致的冬小麦产量波动及应对措施模拟[J].农业资源与环境科学,2005,21(5):380~385.
    78.熊伟,杨婕,林而达,等.未来不同气候变化情景下我国玉米产量的初步预测[J].地球科学进展,2008,23(10):1092~1100.
    79.熊伟.CERES~Wheat模型在中国小麦区的应用效果及误差来源[J].应用气象学报,2009,20(1):88~94.
    80.熊伟.用GIS和作物模型对作物生产进行区域模拟方法[J].中国农业气象,2004,25(2):28~32.
    81.熊伟.站点CERES~Rice模型区域应用效果和误差来源[J].生态学报,2009,29(4):2003~2010.
    82.许飚,马文礼,许强.宁夏引黄灌区不同灌溉定额下玉米耗水特征及其对产量的影响[J].农业科学研究,2007,28(4):7~11.
    83.许吟隆,Richard Jones.利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J].中国农业气象,2004,25(1):5~9.
    84.许吟隆,张勇,林一骅,等.利用PRECIS分析SRES B2情景下中国区域的气候变化响应[J].科学通报,2006,51(17):2068~2074.
    85.薛昌颖,霍治国,李世奎,等.华北北部冬小麦干旱和产量灾损的风险评估[J].自然灾害学报,2003,12(1):131~139.
    86.杨德光,沈秀瑛,赵天宏,等.玉米旱害生理研究进展[J].作物杂志,2001,(5):1~4.
    87.杨金虎,江志红,王鹏祥,等.中国年极端降水事件的时空分布特征[J].气候与环境研究,2008,13(1):75~83.
    88.杨勤,陈晓光,许吟隆,等.宁夏春小麦对气候变化情景的相应模拟[J].麦类作物学报,2009,29(3):491~496.
    89.杨勤,许吟隆,林而达,等.应用DSSAT模型预测宁夏春小麦产量演变趋势[J].干旱地区农业研究,2009,27(2):41~48.
    90.杨淑萍,赵光平,孙银川,等.2004~2005年宁夏特大干旱事件的诊断分析[J].中国沙漠,2006,26(6):948~952.
    91.杨修,孙芳,林而达,等.我国水稻对气候变化的敏感性和脆弱性[J].自然灾害学报,2004,13(5):85~89.
    92.杨修,孙芳,林而达,等.我国玉米对气候变化的敏感性和脆弱性研究[J].地球研究与开发,2005,24(4):54~57.
    93.姚凤梅,张佳华.1981~2000年水稻生长季相对极端高温事件及其气候风险的变化[J].自然灾害学报,2009,18(4):37~42.
    94.殷剑敏,缪启龙,李迎春,等.南丰蜜桔冻害的气候指标及风险评估[J].中国农业气象,2008,29(4):507~510.
    95.殷剑敏,魏丽,王怀清.江西省两系杂交稻制种基地气候风险分区的研究[J].南京气象学院学报,2001,24(3):415~422.
    96.殷剑敏,魏丽,王怀清.两系杂交稻制种基地气候风险评估的研究[J].应用气象学报,2001,12(4):469~477.
    97.于飞,谷晓平,罗宇翔,等.贵州农业气象灾害综合风险评价与分区[J].中国农业气象,2009,30(2):267~270.
    98.宇振荣,张银锁,马永良.夏玉米咸水灌溉的风险性及其对策分析[J].农业工程学报,2002,18(3):31~35.
    99.袁海燕,张晓煜,亢艳莉,等.宁夏灌区玉米气象产量与气象因子关系初探[J].宁夏农林科技,2007,(4):24~27.
    100.袁静,许吟隆.基于CERES模型的临沂小麦生产的适应措施研究[J].中国农业气象,2008,29(3):251~255.
    101.袁静.气候变化对中国小麦生产的影响及适应性研究.[硕士学位论文].北京:中国农业科学院,2008.
    102.翟盘茂,王志伟,邹旭恺.全国及主要流域极端气候事件变化.2007.见:任国玉.气候变化与中国水资源.北京:气象出版社.
    103.张文宗,赵春雷,康西言,等.河北省冬小麦旱灾风险评估和分区方法研究[J].干旱地区农业研究,2009,27(2):10~15.
    104.张星,陈惠,吴菊薪.福建省主要农业气象灾害风险研究[J].气象科学,2009,29(3):394~397.
    105.张星,张春桂,吴菊薪,等.福建农业气象灾害的产量灾损风险评估[J].自然灾害学报,2009,18(1):90~94.
    106.张雪芬,余卫东,王春乙,等. WOFOST模型在冬小麦晚霜冻害评估中的应用[J].自然灾害学报,2006,15(6):337~341.
    107.张养才,何维勋,李世奎.中国农业气象灾害概论[M].北京:气象出版社,1991,10~20.
    108.张颖娴,许吟隆.SRES A2、B2情景下宁夏地区日较差、夏季日数及霜冻日数变化的初步分析[J].中国农业气象,2009,30(4):471~476.
    109.张勇,许吟隆,董文杰,等. SRES B2情景下中国区域最高、最低气温及日较差变化分布特征初步分析[J].地球物理学报,2007,50(3):714~723.
    110.赵阿兴,马宗晋.自然灾害损失评估指标体系的研究[J].自然灾害学报,1993,2(3):5~11.
    111.郑广芬,陈晓光,赵光平,等.宁夏地表湿润状况及极端干湿事件演变规律[J].中国沙漠,2007,27(2):326~330.
    112.周京平,王卫丹.极端气候因素对中国农业经济影响初探[J].现代经济,2009,8(7):142~145.
    113.朱琳,王万瑞,任宗启,等.陕北仁用杏的花期霜冻气候风险分析及分区[J].中国农业气象,2003,24(2):49~51.
    114.邹用昌,杨修群,孙旭光,等.我国极端降水过程频数时空变化的季节差异[J].南京大学学报(自然科学版),2009,45(1):98~109.
    115. Adams, R., McCarl, B., Segerson, K., et al. The economic effects of climate change on USagriculture. In: Mendelsohn, R., Neumann, J.(Eds.). The Impact of Climate Change on theUnited States Economy. Cambridge University Press, Cambridge, UK.1999.343pp.AggarwalP.K., Mall R.K. Climate Change and Rice Yields in Diverse Agro-Environments of Indian. II.Effect of Uncertainties in Scenarios and Crop Models on Impact Assessment, Climate Change2002,52:331~343.
    116. Alexandrov V A, Hoogenboom G. Vulnerability and adaptation assessments of agricultural cropsunder climate change in the Southeastern USA. Theortical and Applied Climatology.2000,67(1-2):45~63.
    117. Bai Aijuan, Panmao Zhai, et al. On climatology and trends in wet spell of China. Theor ApplClimatol,2006, doi10.1007/s00704~006~0235~7.
    118. Barry Smit, Mark W. Skinner. Adaptation options in agriculture to climate change: a typology.Mitigation and Adaptation Strategies for Global Change.2002. Volume7, Number1, pp.85~114.
    119. Beniston M, Tol R S J. Europe. In: R. T. Watson, M. C. Zinyowera and R. H. Moss, Editors, TheRegional Impacts of Climate Change: an Assessment of Vulnerability. A Special Report of IPCCWorking Group II, Cambridge University Press, Cambridge,1998.
    120. BLAKIC C P, DAVIS T, WISNER B. At risk: natural hazard, people’s vulnerability and disaster[M]. London: Routledge,1994:56~78.
    121. Burton I, Huq S, Lim B, et al. From impacts assessment to adaptation priorities: the shaping ofadaptation policy. Climate Policy.2002,2(2):145~159.
    122. Burton I., S. Huq, B. Lim, et al. From impacts assessment to adaptation priorities: the shaping ofadaptation policy. Climate Policy,2002:145~159.
    123. Burton L, S. Huq, B. Lim, O. Pilifosova, and E. L. Schippe. From impacts assessment toadaptation priorities: the shaping of adaptation policy. Climate Policy,2002:145~159.
    124. Challinor A J, Ewert F, Arnold S, et al. Crops and climate change: progress, trends, andchallenges in simulating impacts and informing adaptation. Journal of Experimental Botany,2009,60(10):2775~2789.
    125. Choi G, Collins D, Ren G, et al. Changes in means and extreme, events of temperature andprecipitation in the Asian Pacific Network region,1955~2007[J]. International Journal ofClimatology,2009, Published online in Wiley InsterScience, doi:10.1002/joc.1979.
    126. Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused bythe heat and drought in2003. Nature,2005,437(7058):529~534.
    127. Conde C, Ferrer F, Orozco S. Climate change and climate variability impacts on rainfedagricultural activities and possible adaptation measures, a Mexican case study. Atmosfera,2006,19(3):181~194.
    128. Contini S, Servida A. Risk analysis in environmental impact studies. In: Colomha G, eds.Environmental Impact Assessment.1992:79~103.
    129. David A. King, Climate Change Science: Adapt, Mitigate, or Ignore? Science.2004, Vol.303,no.5655, pp.176~177.
    130. David B Lobell, Wolfram Schlenker, Justin Costa-Roberts. Climate Trends and Global CropProduction since1980, Science. DOI:10.1126/science.1204531, Published Online5May2011.
    131. Gobin, P. Campling. Logistic modeling to derive agricultural land use determinants: a case studyfrom southeastern Nigeria. Agriculture, Ecosystems and Environment,2002,(89):213~288.
    132. Goodman R M, Goodman H, Hauptli A, et al. Gene transfer in crop improvement. Science,1987,236:48~54.
    133. Greg Niehavs. The allocation of catastrophe risk [J]. Journal of Banking and Finance,2002,26:585~596.
    134. Hollinger S E, Ehler E J, Carlson R E. ENSO Midwestern United States corn and soybean yieldresponse to changing El Nino-southern oscillation conditions during the growing season. In:Rosenzweig C, Boote K J, Hollinger S, et al.(Eds.), Impacts of El Nino and Climate Variabilityon Agriculture. ASA Special Publication, American Society of Agronomy, Mdison, W I.,2001,63:33~56.
    135. Howden, S. M., A. J. Ash, E. W. R. Barlow, et al. An overview of the adaptive capacity of theAustralian agricultural sector to climate change-options, costs and benefits. Report to theAustralian Greenhouse Office, Canberra, Australia,2003,157.http://www.eedu.org.cn/Article/Biodiversity/pact/200608/9439.html.
    136. Hunt L A, Pararajasingham S, Jones J W, et al. GENCALC: Software to facilitate the use of cropmodels for analyzing field experiments. Agronomy Journal,1993,85:1090~1094.
    137. IPCC, Climate Change2007~Impacts, Adaptation, and Vulnerability. Contribution of WorkingGroup II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, UK and New York, Cambridge University Press.2007:750~752.
    138. IPCC.1990. Climate change: the IPCC scientific assessment. Houghton J. T. and Ephraums J. J(eds.). Cambridge University Press.
    139. IPCC.1996a. Climate change1995: economic and social dimensions of climate change.Cambridge: Cambridge University Press.
    140. IPCC.1996b. Climate change1995: the science of climate change. Contribution of workinggroup Ⅰ to the second assessment report of the intergovernmental panel on climate change.Houghton J. T. et al.(eds.). Cambridge University Press.
    141. IPCC.2001a. Climate Change2001. mitigation. Contribution of working group Ⅲ to the thirdassessment report of intergovernment panel on climate change. Cambridge: CambridgeUniversity Press.
    142. IPCC.2001b. Climate Change2001. The Scientific Basis. Contribution of working group Ⅰ tothe third assessment report of intergovernment panel on climate change. Cambridge, UK andNew York, USA: Cambridge University Press.
    143. IPCC.2001c. Climate Change2001. impact, adaptation and vulnerability, summary forpolicymakers. Contribution of working group Ⅱ to the third assessment report ofintergovernment panel on climate change. Cambridge, UK: Cambridge University Press.
    144. IPCC.2007a. Climate change2007: impacts, adaptation and vulnerability. Contribution ofworking group Ⅱ to the fourth assessment report of the intergovernmental panel on climatechange. Parry M L, Canziani O F, Palutikof J P, van der Linden P J and Hanson C E, Eds.Cambridge, UK: Cambridge University Press
    145. IPCC.2007b. Climate change2007: the physical sciences basis. Contribution of working groupⅠto the fourth assessment report of the intergovernmental panel on climate change. Solomon S,Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L (eds.).Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press
    146. IPCC.2007c. Climate Change2007: synthesis report. Contribution of working groups Ⅰ, Ⅱand Ⅲ to the fourth assessment report of the intergovernmental panel on climate change. CoreWriting Team, Pachauri R K and Reisinger A (eds.). Geneva, Switzerland: IPCC
    147. IPCC. Summary for Policymakers of Climate Change2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change [M]. Cambridge: Cambridge University Press,2007.
    148. Iwasa Y, Andreasen V, Levin S. Aggregation in model ecosystems. I. Perfect aggregation.Ecological Modelling,1987,37:287~302.
    149. Jagtap S S, Jones J. Adaptation and evaluation of the CROPGRO-soybean model to predictregional yield and production. Agriculture, Ecosystems and Environment,2002,93:73~85.
    150. Jones R.G., Noguer M. and Hassell D.C., et al. Generating high resolution climate changescenarios using PRECIS, Met Office Hadley Centre, Exeter, UK,2004:1~35.
    151. Kaplan S, Garrick BJ. On the quantitative definition of risk[J]. Risk Analysis,1981,1(1):1~9.
    152. KATES R W. Sustainability science [J]. Science,2001,292:641~642.
    153. King A W. Translating Models Across Scales in the Landscape. In: Turner M G, et al. eds.Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of LandscapeHeterogeneity. Springer-Verlag. New York.1991:479~517.
    154. Kurukulasuriya P., Mendelsohn R.. Crop selection: adapting to climate change in Africa. WorldBank Working Paper4307,2007.
    155. Lin E D, Xiong W, Ju H, et al. Climate change impacts on crop yield and quality with CO2fertilization in China. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360(1463):2149~2154.
    156. Luxmoore R J, King A W, Thar M L. Approaches to scaling up physiologicall based soil-plantmodels in space and time. Tree Physiology,1991,9:281~292.
    157. Mark Howden S, Jean-Fran ois Soussana, Francesco N. Tubiello et al. Adapting agriculture toclimate change. PNAS.2007. vol.104, no.50, pp.19691~19696.
    158. Mavromatis T, Bootes K J, Jones J W, et al. Developing genetic coefficients for crop simulationmodels with data from crop performance Trials. Crop Sciences,2001,41:40~51.
    159. McCarthy J, Canziani O, Leary N, et al. Climate Change2001: Impacts, Adaptation, andVulnerability[M]. Cambridge, UK: Cambridge University Press,2001:235~342.
    160. Mendelsohn, R., Nordhaus, W., Shaw, D. The impact of global warming on agriculture: aRicardian analysis. American Economic Review,1994,84:753~771.
    161. Met Office. The Hadly Centre regional climate modeling system: PRECIS-Update2002,Providing regional climate foe impacts studies,2002,16.
    162. MILETI D S. Natural hazards and disasters~disasters by design a reassessment of naturalhazards in the United States [M]. Washington D C: Joseph HenryPress,1999.
    163. Mirza MMQ. Climate change and extreme weather events: can developing countries adapt.Integrated assessment,2003,1:37~48.
    164. Monirul Qader Mirza. Climate change and extreme weather events: can developing countriesadapt? Climate Policy.2003, Volume3, Number3, pp.233~248.
    165. Olmsteada Alan L, Rhodeb Paul W. Adapting North American wheat production to climaticchallenges,1839–2009. PNAS.2011, vol.108, no.2, pp.480~485.
    166. Osborne T M, Lawrence D M, Challinor A J, et al. Development and assessment of a coupledcrop-climate model. Global Change Biology,2007,13(1):169~183.
    167. Parry M. L., Carter T. R., Knoijin N. T., et al. The Impact of Climate Variations on Agriculture,Kluwer, Dordrecht,1988.
    168. Rastetter E B, King A W, Cosby B J, et al. Aggregating fine-scale ecological knowledge to modelcoarser-scale attributes of ecosystems. Ecological Applications,1992,2:55~70.
    169. Reilly J, Tubiello F, McCarl B et al. Agriculture and Climate Change: New Results. ClimaticChange.2003. Volume57, Numbers1-2, pp.43~67.
    170. Ren G, Yaqing Zhou, Ziying Chu, et al. Urbanization effect on observed surface air temperaturetrend in North China[J]. J Climate,2008,21(6):1333~1348.
    171. Rosenzweig C, Strzepek K M, Major D C, et al. Water resources for agriculture in a changingclimate: international case studies. Global Environmental Change,2004,14(4):345~360.
    172. Rosenzweig C. Potential CO2induced climate effects on North American wheat producingregions. Climatic Change,1985,7(4):3672389.
    173. Seo S. N., Mendelsohn R.. An analysis of crop choice: Adapting to climate change in SouthAmerican farms. Ecological Economics,2008.
    174. Smit B., Burton I., Klein R. J. T., et al. An anatomy of adaptation to climate change andvariability. Climatic Change,2000,45:223~251.
    175. Smit. Adaptation to Climatic Variability and Change. Guelph: Environment Canada,1993:3~17.
    176. Smith J. B., N. Bhatti, G. Menzhulin, et al. Adapting to Climate Change: An InternationalPerspective. New York, NY, USA: Springer~Verlag,1996:475.
    177. Stakhiv, E. Z.. Evaluation of IPCC Adaptation Strategies. Fort Belvoir: Institute for WaterResources, United States Army Corps of Engineers,1993.
    178. Stéphane Hallegatte, Strategies to adapt to an uncertain climate change, Global EnvironmentalChange.2009,Volume19, Issue2, pp.240~247.
    179. Takashi Kurosaki. Crop Choice, Farm Income, and Political Relations in Myanmar,2005.
    180. Tao F, Zhang Z, Liu J, et al. Modelling the impacts of weather and climate variability on cropproductivity over a large area: a new super-ensemble-based probabilistic projection. Agriculturaland Forest Meteorology,2009,149(8):1266~1278.
    181. Tao FL, Yokozawa M, Liu JY, et al. Climate-crop yield relationships at provincial scales in Chinaand the impacts of recent climate trends. Climate Research,2008.38:83~94.
    182. The Government Office for Science, London. The Future of Food and Farming: ExecutiveSummary.2011.
    183. Theu J., Chavula G., Elias C (in press) Malawi: how climate change adaptation options fit withinthe FCCC national communication and national development plans. In: Smith JB, Bhatti N,Menzhulin G, et al. Adapting to climate change: assessments and issues. Springer Verlag, NewYork: The University of Chicago Press,1998.
    184. Uehara G, Tsuji G Y. Overview of IBSNAT. In: Gordon Y T, Hoogenboon G, Philip K. Thorntion,eds. System Approaches for Sustainable Agricultural Development. Wageningen, TheNetherlands: Kluwer Academic Publishers,1998:12~25.
    185. Wang J, Wang E L, Luo Q Y, et al. Modelling the sensitivity of wheat growth and water balanceto climate change in Southeast Australia. Climatic Change,2009,96(1-2):79~96.
    186. Warren, Rachel, Nigel Arnell, et al."Understanding the Regional Impacts of climate change,Research report prepared for the stern review on the economics of climate change." Researchworking paper No.90Tyndall Centre for climate change, Norwich,2006.
    187. Willmott C J. Some comments on the evaluation of model performance [J]. Bulletin of theAmerican Meteorological Society,1982,63:1310~1313.
    188. Wolf J. Modeling climate change impacts at the site scale on soybean. In: T. E. Downing, P. A.Harrison, R. E. Butterfield, et al. Climate Change, Climatic Variability and Agriculture in Europe,Environmental Change Unit, University of Oxford, UK,2000:103~116.
    189. Xiong W, Conway D, Lin ED. Future cereal production in China: The interaction of climatechange, water availability and socio-economic scenarios. Global Environmental Change,2009.19:34~44.
    190. Xiong W, Holman I, Lin ED, et al. Climate change, water availability and future cerealproduction in China. Agriculture, Ecosystems and Environment.2010.135:58~69.
    191. Xiong W, Lin E D, Ju H, et al. Climate change and critical thresholds in China’s food security.Climate Change,2007,81:205~221.
    192. Zhai P M, Pan X H. Trends in temperature extremes during1951~1999in China[J]. GeophysRes Lett,2003,30, doi:10.1029/2003Gl018004.
    193. Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of dailyprecipitation extremes over China[J]. Climate,2005,18:1096~1108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700