香蕉秆纤维素降解菌筛选及酒精制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是一种廉价的可再生资源,由其发酵所产生的生物燃料乙醇对能源工业以及环境可持续发展具有重大意义。本文针对南方农作物香蕉大宗副产物香蕉秆的资源优势及香蕉秆的综合利用现状,根据微生物学及发酵工程理论,采用微生物方法,利用香蕉秆生产酒精,为香蕉秆的综合利用开辟一条新的途径,本文主要研究内容和研究结果如下:
     从自然环境中采集样品进行分离纯化得到4株疑似目的菌株。分别采用羧甲基纤维素钠相对活性法、滤纸条崩解试验,从中选出2株分解纤维素能力较强的菌株(LⅡ和LB)进行鉴定试验。经初步鉴定,菌株LⅡ与Stenotrophomonas maltophilia的16S rDNA序列有99.8%的同源性;用18S rDNA对LB进行序列分析,结果表明菌株LB与Eupenicilliumjavanicum的18S rDNA序列有99.3%的同源性。初步得出LⅡ是嗜麦芽寡养单胞菌,LB是爪哇正青霉。
     本论文研究了香蕉秆预处理工艺及水解工艺。纤维素原料在水解前经过预处理可破坏纤维素结晶结构,从而增大其接近表面,提高水解效率。采用氢氧化钠对香蕉秆进行预处理,考察了氢氧化钠溶液浓度、温度、固液比、时间等因素对预处理的影响,优化预处理工艺条件。实验最后确定在25℃条件下,按1:12的固液比(香蕉秆:氢氧化钠溶液),加入质量浓度3%的氢氧化钠溶液,处理3小时,可获得较佳的预处理效果。水解工艺分别考查了氢氧化钠预处理、菌液用量、时间及PH的影响,通过四因素三水平的正交实验,最终确定各个因素对LⅡ各个指标的影响顺序为:预处理>菌用量>PH>水解时间,最佳条件组合为3%浓度氢氧化钠、3mL活化12小时的菌液、PH 8.0、水解4天;各个因素对LB各个指标的影响顺序为预处理>PH>菌用量>水解时间,最佳组合为3%浓度氢氧化钠、PH 7.0、2mL活化12小时的菌液、水解4天。
     利用筛选所获得的细菌LⅡ、霉菌LB与酵母混合发酵制备酒精,初步确定香蕉秆生产酒精的发酵工艺。确立了由细菌LⅡ、霉菌LB及酵母组成的微生物混合协同发酵体系;发酵重量组分技术配比约为:香蕉秆:微生物菌液:酵母=1:0.1~0.5:0.01~0.05,发酵时间为15~20天。
Celluloses biomass is a low-cost renewable resource, it can be potentially fermented into ethanol by microbial technology, which is significant to the sustainable development on energy industry and the environment. According to the abundant and potential by-products of banana stalk in south and their full-utilization, and microbial fermentation, the technology of producing of alcohol from banana stalk by microorganism method was studied. It breaks a new way to make the full use of banana stalk. And the main work and its results are as follows:
     4 species of strains are separated from the natural environment. Carbo-xymethyl cellulose sodium agar plate recognition and filter papers collapsing testing are carried out. Two specie of filamentous fungus which can decompose cellulose on a relatively-high scale was screened and identified. The results are as follows: the sequence of the strain LⅡhas 99.8% homology with the 16S rDNA of Stenotrophomonas maltophilia,and the sequence of the strain LB has 99.3% homology with the 18S rDNA of Eupenicillium javanicum.
     The pretreatment craft and hydrolysis craft of banana stalk are studied. Before enzymatic hydrolysis, by lignocelluloses may destroy crystal conFig.uration of cellulose, for aggrandizing approachability surface, improving efficiency of hydrolysis. The sodium hydroxide is utilized to carry on the pretreatment to the banana stalk, and the influentialfactors of pretreatment were studied including sodium hydroxide concentration, temperature, the ratio of solid to liquid and reaction time. And the pretreatment technological conditions are optimized. The results showed that: the best pretreatment effect could be abained at 25℃、3% sodium hydroxide、3h. The influential factors of hydrolysis craft were studied including sodium hydroxide pretreatment, amount of bacterial solution, hydrolysis time and hydrolysis PH. The orthogonal experiment of four factors and three levels finally confirmed that the effect sequence of each factor on each index of LⅡis pretreatment>bacteria amount>pH>hydrolysis time, the best condition combination is 3% NaOH, 3mL bacteria liquid of activating 12h, pH 8.0, hydrolysis 4d; the effect sequence of each factor on each index of LB is pretreatment>bacteria amount>pH>hydrolysis, the best condition combination is 3% NaOH, 2mL bacteria liquid of activating 12h, pH 7.0, hydrolysis 4d.
     Use the bacteria LⅡand mould LB by screened to blend with yeast in order to ferment banana stalk to prepare alcohol, preliminary determined the ferment technique of banana stalk prepare for alcohol. Established the microorganism cooperative ferment system is composedof bacteria LⅡ, mould LB and yeast. The technical proportion of ferment weight composition is about: banana stalk: microorganism liquid: yeast=1 : 0.1~0.5: 0.01~0.05, ferment time is 15~20d.
引文
[1]张瑞芹.生物质衍生的燃料和化学物质[M].郑州:郑州大学出版社,2004,第一版.
    [2]Anuradda Ganesh,Rangan Banerjee.Biomass pyrolysis for power generation a potential technology[J].Renewable Energy,2001,(22):9-14.
    [3]J.F.K.Akinbami,M.O.Ilori,T.O.Oyebisi etal.Biogas energy use in Nigeria:current stares,future prospects and policy implications[J].Renewable and Sustainable Energy Reviews,2001,(5):97-112.
    [4]P.J.Turyareeba.Renewable energy:its contribution to improved standards of living and modernization of agriculture in Uganda[J].Renewable Energy,2001,(24):453-457.
    [5]Ali Al-Mohamad.Renewable energy resources in Syria[J].Renewable Energy,2001,(24):365-371.
    [6]袁振宏,吴创之,马隆龙等.生物质能利用原理与技术[M].北京:化学工业出版社,2005,第一版.
    [7]李瑞阳.21世纪的重要能源——生物质能[J].世界科学,1999,(10):25-27.
    [8]毛玉如,方梦祥,骆仲泱等.生物质能流化床转化利用技术实践[J].锅炉技术,2003,34(2):72-75.
    [9]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003,第一版.
    [10]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展.酿酒.2005,32(2),13-16.
    [11]廖双泉,马凤国,邵自强等.蒸汽爆破处理再椰壳纤维组分分离中的应用.热带作物学报,2002,10(2),37-42.
    [12]Brigham,J.S.,Adney,W.S.,and Himmel,M.E..Hemicelluloses:diversity and applications.Handbook on bioethanol:Production and utilization.Yayloror and Francis,Washington,DC,1996,119-142.
    [13]刘学苏,李广学.木质素的应用进展[J].广州化工,2005(33):9-11.
    [14]高洁.纤维素科学[M].北京:科学出版社,1996,57-69.
    [15]Jeffrey G A,Saeuga W.Hydrogen Binding in Biological Structure Second Printing[J].Berlin:Springen-Veulag,1994,125-138.
    [16]Jeewon Lee.Biological conversion of lignocellulosic biomass to ethanol.Journal of Biotechnology 1997,56,1-24.
    [17]Kyoung,Heon Kim,JuanHong.Supercritical CO_2 pretreatment of lingocellulose enhances enzymatic cellulose hydrolysis.Bioresource Technology.2001,77,139-144.
    [18]Sun,Y,and Cheng.J.J..Dilute acid pretreatment of rye straw and bermudagrass for ethanol production.Bioresource Technology,2005,96,1599-1606.
    [19]Isao Hasegawa,Kazuhide Tabata,Osamu Okuma,etal.New Pretreatment Methods Combining a Hot Water Treatment and Water/Aeetone Extraction for Thennochemieal Conversion of Biomass.Energy & Fuels,2004,18,755-760.
    [20]文新亚,李燕松,张志鹏等.酶解木质纤维素的预处理技术研究进展[J].酿酒科技,2006(8):97-100.
    [21]李松晔,刘晓非,庄旭品等.棉浆粕纤维素的超声波处理[J].应用化学,2003(11):1030-1034.
    [22]唐爱民,梁文芷.超声波活化处理提高纤维素选择性氧化反应性能的研究.声学技术,2000(3):121-124.
    [23]Van Walsum,GP,Allen S.G and Spencer,M.J..Conversion of lignocellulosics pretreated with hot compressed liquid water to ethanol.Applied Biochemistry and Biotechnology,1996,57/58,157-170.
    [24]Palmqvist E,Hahn Hagerdal B.Fermentation of lignocellulosics hydrolysates:Inhibitors and menchanisms of inhibition[J].Bioresource Technology,2000,74(1):25-33.
    [25]Laser,M.,Sehulman,D.,and Allen,S.G.A comparsion of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol.Bioresource Technoloy,2002,81,33-44.
    [26]Grous,W.R.,Converse,A.O.,and Grdthlein,H.E..Effect of steam explosion pretreatment on pore size and enzylmatic hydrolysis of poplar.Enzyme and Microbial Technology,1985,8,274-280.
    [27]Torget,R.,Walter,P.,and Himmel,M..Dilute acid pretreatment of corn residues and short-rotation woody crops.Applied Biochemistry and Biotechnology,1991,28/29,75-86.
    [28]Liu C.,and Wyman,C.E..Partial flow of compressed hot water through corn stover to enhance.Hemicellulose sugar recovery and enzymatic digestibility of cellulose.Bioresource Technology,2005,96,1978-1985.
    [29]Lloyd,TA.,and Wyman,C.E..Combined sugar yields for dilute sulfurie acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids.Bioresource Technology,2005,96,1967-1977.
    [30]Mosier,N.,Wyman,C.E.,and Dale,B.E..Features of promising technologies for pretreatment of lignocellulosic biomass.Bioresource Technology,2005,96,673-686.
    [31]Ojumu T V,Ogtmkunle O A.Production of glucose from lingocellulosic under extremely low acid and high temperature in batch process auto-hydrolysis approach[J].Journal of Applied Sciences,2005,5(1):15-17.
    [32]Saha Badal C,Iten Loen B,Cotta Michacl A,etal.Dilute acid pretreatment,enzymatic saccharification of wheat straw to ethanol[J].Process Biochemistry, 2005,40(12):3693-3700.
    [33]Mosier,N.,Hendriekson,R.,and Ho,N..Optimization of PH controlled liquid hot water pretreatment of corn stover.Bioresouree Technology,2005,96,1986-1993.
    [34]Wooley,R.J.,Ruth,M.,and Glassner,D..Proeess design and costing of bioethanol technology:a tool for determining the status and direction of research and development.Bioetchnology Progress,1999,15,794-803.
    [35]Chang,VS.,and Holtzapple,M.T..Fundamental factors affecting biomass enzymatic re.activity.Applied Biochemistry and Biotechnology,2000,84,5-37.
    [36]Kim,TH.,and Lee,YY..Pretreatment and fractionation of corn stover by ammonia recycle percolation proeess.Bioresource Technology,2005,96,2007-2013.
    [37]Teylnouri,F,Laureano-Perez,L.,and Alizadeh,H..Optimization of the ammonia fiber explosion(AFEX)treatment parameters for enzymatic hydrolysis of corn stover.Bioresource Technology,2005,96,2014-2018.
    [38]Kim,S.,and Holtzapple,M.T..Lime pretreatment and enzymatic hydrolysis of corn stover.Bioresource Technology,2005,96,1994-2006.
    [39]RunCang sun,J.M.Fang,J.Tomkinson.Delignification of rye straw using hydiogen peroxide.Industrial Crops and Products,2000,12,71-83.
    [40]RunCang Sun,Jeremy Tomkinson,ShiQing Wang,etal.Characterization of lignins from wheat straw by alkaline peroxide treatment.Polymer Degradation and Stability,2000,67,101-109.
    [41]Badal C.Saha,Michael A.Cotta.Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw.Biotechnol Prog,2006,22,449-453.
    [42]Remedios Yanez,Jose Luis Alonso,Junan Carlos Parajo.Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal proeessing of rice husks.Proeess Biochemistry,2006,41,1244-1252.
    [43]Kristensen Jan B,Borjesson Johan,Bruun Maria H,etal.Use of surface active additives inenzymatic hydrolysis of wheat straw lingocellulose[J].Enzyme and Microbial Technology,2007,40,888-895.
    [44]孙健,陈砺,王红林等.纤维素原料生产燃料究竟的技术现状[J].可再生能源,2003,(6):5-9.
    [45]Nathan Mosier,Charles Wyman,Bruce Dale,etal.Features of promising technologies for pretreatment of lignocellulosic biomass[J].Bioresource Technology,2005,96(6):673-686.
    [46]Curreli N,Fadda M B,Rescigno A,etal.Mild alkaline/oxidative pretreatment of wheat straw[J].Process Biochemistry,1997,32(8):665-670.
    [47]陶荣,白晓峰,蒋磊.未来可持续发展的新动力——秸秆发酵制酒精[J].酿酒, 2006,33(3):45-48.
    [48]Vidal P E,Molinier J.Ozonolysis of lignin improvement of in vitro digestibility of polar saw dust[J].Biomass,1998,16(1):1-17.
    [49]Itoh,H.,Wada,M.,and Honda,Y..Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi.Journal of Biotechnology,2003,103,273-280.
    [50]潘亚杰,张雷,郭军等.农作物秸秆生物法降解的研究[J].可再生能源,2005,(3):33-35.
    [51]罗鹏,刘忠.用木质纤维素原料生产乙醇的预处理工艺[J].酿酒科技,2005,(8):42-47.
    [52]常景玲,李慧.预处理对作物秸秆纤维素降解的影响[J].江苏农业科学,2006,(4):177-179.
    [53]朱圣东,吴元欣,喻子牛等.植物纤维素原料生产燃料酒精研究进展[J].化学与生物工程,2003,20(5):8-11.
    [54]刘东波,李凤敏,陈珊.纤维素诺卡氏菌降解玉米秸秆和玉米芯的研究[J].东北师大学报(自然科学版),2001,(01):60-63.
    [55]宋波,羊键.一株降解纤维素的放线菌的筛选及其产酶条件的研究[J].微生物学杂志,2005,(05):36-39.
    [56]钟文文.纤维素酶产生菌的选育及发酵条件优化[J].环境工程学报,2007,(11):140-144.
    [57]马旭光,张宗舟,蔺海明等.黑曲霉突变株ZM-8产纤维素酶条件的研究[J].甘肃农业大学学报,2007,(05):30-32.
    [58]Henrissat,B.,Driguez,H.,Viet,C,Schulein,M..Synergism of cellulases from Trichoderma reesei in the degradation of cellulose.Bio/Technology,1985,3,722-726.
    [59]Vrasnska M.and Hiely P..The cellobiohydrolase I from Trichoderma reesei QM 9414:action on cello-oligosaccharides.Carbohydrate Research,1992,227,19-27.
    [60]Van Tibeurgh H.and Claeyssens M.Detection and differentiation of cellulose components using low molecular mass fiuorogenic substrates.FEBS Lett.,1985,187,283-288.
    [61]Coughlan M.P..The properties of fungal and bacterial cellulases with comment on their production and application.Biotechnology and Genetic Engineering Reviews 1985,3,39-109.
    [62]Koenigs J.W..Hydrogen peroxide and iron:a microbial cellulolytic system.Biotechnol Bioeng Symp,1975,(5):151-159.
    [63]Griffin M.,Dintzis F.R.,Krull L.and Baker F.L..A microfibril generating factor from the enzyme complex of Trichoderma reesei.Biotechnology and Bioengineering,1984,26,296-300.
    [64]Halliwell G..Catalytic decomposition of cellulose under biological conditions. Biochemical Journal,1965,95,35-40.
    [65]Griffin M.,Dintzis F.R.,Krull L.and Baker F.L..Shortfibre formation during cellulose degradation by cellulolytic fungi.Biotechnology Letters,1996,18,1235-1240.
    [66]Taherzadel,M.J.,Niklasson,C.,and Liden,G.On-line control of fedbatch fermentation of dilute-acid hydrolyzates.Biotechoology and Bioengineering,2000,69,330-338.
    [67]Nigam,J.N..Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate.Journal of Applied Microbiology,2001,90,208-215.
    [68]Chung,I.S.,and Lee,Y.Y..Ethanol fermentation of crude acid hydrolyzate of cellulose using high-level yeast inocula.Biotechnology and Bioengineering,1985,27,308-315.
    [69]Galazzo,J.,and Bailey J..Growing Saecharomyces cerevisiae in calciumalginate beads induces cell alterations which aeeelerate glueose conversion to ethanol.Biotechnology and Bioengineering,1990,36,417-426.
    [70]石孔威.香蕉酒及其生产方法.中国,发明专利,02138796.6,2003.1-7.
    [71]李沧海.以香蕉纤维制造钞票纸等的方法.中国,发明专利,93108071.1,1994.1-8.
    [72]胡仕凤,唐俊,高永东等.高产纤维素酶木霉REMI突变株的构建与筛选[J].上海交通大学学报:农业科学版,2007,(06):513-518.
    [73]陈健旋,陈莲.绿色木霉在啤酒糟基质上产纤维素酶条件的优化[J].亚热带植物科学,2007,(03):23-26.
    [74]金加明,吴宝霞.绿色木霉液体发酵产纤维素酶条件及部分酶性质的研究[J].中国饲料,2007,(15):35-37,40.
    [75]祝英,翟峰,蒲训.绿色木霉、黑曲霉和米曲霉对马铃薯废渣分解能力的研究[J].中国饲料,2007,(23):27-29.
    [76]李兰晓,杜金华,商日玲等.黑曲霉固态发酵啤酒糟生产纤维素酶的研究[J].食品与发酵工业,2007,(06):61-64.
    [77]孙宪昀,曲音波,刘自勇.青霉木质纤维素降解酶系研究进展[J].应用与环境生物学报,2007,(05):736-740.
    [78]白洪志,杨谦,张鲁进.纤维素降解菌简青霉H-11的筛选及酶学特性的研究[J].华北农学报,2007,(03):160-1620.
    [79]刘清锋,支晓鹏,徐惠娟.纤维素降解菌青霉T24-2的分离及产酶特性[J].工业微生物,2007,(03):15-19.
    [80]王高学,梁朝军,黄海洪等.嗜麦芽寡养单胞菌(DR-929)纤溶酶的发酵条件优化及其分离纯化[J].中国生物工程杂志,2007,27(9),47-52.
    [81]叶央芳,杜宇峰.三株寡养单胞菌对苯噻草胺的降解及系统发育分析[J].江苏环境科技,2005,18(04),4-6.
    [82]张卫,虞云龙,吴加伦等.阿维菌素在土壤中的降解和高效降解菌的筛选[J]. 土壤学报,2004,41(04),590-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700