排水路面沥青混合料的胶浆特性与矿料组成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速公路的快速发展与人们生活水平的提高,公众对路面的使用品质越来越重视。传统的密级配沥青混凝土路面在雨天易出现水漂、水雾等现象,进而影响车辆的行驶安全,而排水沥青路面以其优良的表面功能为众多道路工作者所关注。但排水路面沥青混合料的组成、性能、施工工艺等均不同于普通的密级配沥青混合料,对其进行深入、系统的研究对于排水路面的进一步推广应用具有重要的理论价值和工程意义。
     本文根据胶浆理论,分析了高粘改性沥青胶浆的组成特点,并针对不同沥青与矿粉组成的高粘度改性沥青胶浆进行了物理力学特性与流变特性研究,结果表明,与矿粉对胶浆性能的影响相比,沥青结合料性能对其有着显著的影响。不同粉胶比的高粘沥青胶浆在不同温度下表现出不同的技术特性,随着粉胶比的增大,高粘沥青胶浆感温性变大;随着温度升高,高粘沥青胶浆粘度和抗车辙因子G*/sinδ迅速降低,粘温曲线满足幂函数关系,抗车辙因子与温度之间满足指数关系。锥入度试验结果表明,粉胶比为1.2时胶浆抗剪强度的温度敏感性最小。高粘沥青胶浆是影响排水路面沥青混合料低温性能的重要因素,当粉胶比在1.2-1.4之间时,胶浆的低温性能能够很好地反映排水路面沥青混合料的低温性能。
     针对排水路面沥青混合料大空隙结构特点,综合骨架思想与填充原则,推荐了适合排水路面沥青混合料级配评价的FAc和FAf范围,引入新的矿料组成设计指标VMA*(VMA*=VV+V胶浆),提出了基于VMA*的排水路面沥青混合料组成设计方法。通过正交试验分析了不同筛孔通过率对混合料空隙率和连通空隙率的影响规律,提出了矿料组成设计的关键控制筛孔,为级配的进一步优化提供了依据。另外,引入矿料颗粒形状因子SFn,i,建立了基于矿料自身特性的表面积计算模型。运用三维t-模型计算沥青混合料中沥青膜厚度,并根据计算结果提出了排水路面沥青混合料沥青膜合理厚度的推荐值。
     综合全文研究成果,通过对原材料指标分析、高粘沥青胶浆性能研究、矿料组成设计指标的确定、沥青用量预估模型的建立以及混合料性能的评价,提出了基于VMA*的排水路面沥青混合料组成设计方法。
With the rapid development of highway in China, higher and higher requirement for road-performance is put forward. Traditional dense-graded asphalt pavement has many problems which influence driving safety especially on rainy days. Meanwhile drainage asphalt pavement is one of the effective means to solve these problems. However, the composition, performance and construction technology of drainage asphalt mixture are different from dense-graded asphalt mixture. Therefore, systemic study for mortar of drainage asphalt mixture is extremely important in theoretic value and project significance for its application.
     In this paper, it is studied of physical and mechanical characteristics and rheological properties for different modified asphalt mortar with high viscosity composed of different asphalt binders and mineral fillers. It is found that asphalt binder is the main factor influencing the mortar properties compared to mineral filler. And different characteristics lay out of different asphalt mortar with different rate of filler to asphalt at different temperature. Meanwhile, the results of DSR and Brookfield test indicate that temperature susceptibility of asphalt mortar with high viscosity increases with the increasing of rate of filler to asphalt, and viscosity of asphalt mortar and rut factor G*/sinδboth decrease with increasing of temperature. Also it can be shown that viscosity-temperature curves satisfies power function and rut factor and temperature satisfies index function. The cone penetration test indicates that temperature susceptibility of asphalt mortar is the lowest when the rate of filler to asphalt is 1.2. Bending test results at low temperature of-10℃for mortar and mixture show that asphalt mortar is one main factor influencing the performance of mixture and low temperature performance of asphalt mortar can imply that of mixture perfectly in the rate of filler to asphalt of 1.2-1.4.
     Considering high void ratio and skeleton structure in drainage asphalt mixture, new test ranges for FAc and FAf are suggested adapting to the gradation of drainage asphalt mixture. Meanwhile, a new design index for mineral composition, VMA*, is introduced. Consequently, the new method for design of drainage asphalt mixture based on VMA* is put forward. Tests for influence of passing percentage to air void and effective air void have been done in the lab, and a key sieve is put forward for mineral composition design which provides reference for gradation optimizing. Besides, shape factor SFn,i of aggregate is introduced to establish the model for surface areas calculation. Finally asphalt film thickness is calculated with 3D t-model and reasonable thickness of 13μm is suggested for drainage asphalt mixture.
     Collecting the research findings in this paper, composition design method for drainage asphalt mixture based on VMA* is put forward by analyzing materials indices, studying asphalt mortar properties, determining aggregate composition design index, building prediction model for asphalt content and evaluating mixture performance.
引文
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.5
    [2]邓学均编著.路基路面工程[M].北京:人民交通出版社,2003
    [3]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001:58-68
    [4]张海涛,张栋梁.黑龙江省高等级公路沥青路面抗滑表层初探[J].森林工程,2004,3(2):46-49
    [5]邵毅明等编著.高等级公路交通安全管理[M].北京:人民交通出版社,1999
    [6]伍石生.低噪声沥青路面设计与施工养护[M].北京:人民交通出版社,2005
    [7]王旭东.低噪声沥青路面结构设计研究[J].公路交通科技,2003,1:33-37
    [8]曹卫东,陈旭,吕伟民.简述国内外低噪声沥青路面研究状况[J].石油沥青,2005,2:50-54
    [9]黄岩,黄勇.改性沥青混合料在国内、外的应用及展望[J].上海公路,2003,1:19-22
    [10]R. W. Smith., J. M. Rice and S. R. Spelmen. Design of Open-Gradd Friction Course. Report FHWA, Federal Highway Administration,1974.
    [11]Morris, G. R. Arizona's Experience with Asphalt Concrete Friction Courses. Los Angeles Calif. AASHO Subcommittee on Maintenance,1973.
    [12]Smith, H. A. Performance Characteristics of Open-Graded Friction Courses [R]. Washington, D.C. In NCHRP Synthesis of Highway Practice 180, TRB, National Research Council,1992.
    [13]Kandhal P. S., Mallick R. B. Open-graded Friction Course:State of the Practice. Transportation Research Board. Washington, D.C.1998,12
    [14]日本道路协会.排水铺装技术指针(案).东京:丸善株式会社,1996
    [15]屈殿功,巩涛,张宵鹏.OGFC排水性沥青混凝土路面施工技术[J].公路,2004,1:21-28
    [16]吕伟民,王佐民,徐建达等.排水性沥青路面降噪效果的现场观测[J].华东公路,1998,4:70-73
    [17]叶宗玮.空隙率对排水沥青混凝土成效之比较[D].台湾:国立中央大学,2004.6
    [18]苏育民.沥青胶浆性质对排水性沥青混凝土成效之影响[D].台湾:国立中央大学,2002
    [19]张廖年.国道高速公路铺设石胶泥及排水性沥青混凝土成效之研究[D].台湾:国立中央大学,2004
    [20]Smith, H. A. Performance Characteristics of Open-Graded Friction Courses [R]. Washington, D. C. In NCHRP Synthesis of Highway Practice 180, TRB, National Research Council,1992.
    [21]Mallick R. B., Kandhal P. S., Cooley L.A., etal. Design, Construction and Performance of New Generation Open-Graded Friction Courses. National Center for Asphalt Technology Report. AL:2000
    [22]R. W. Smith., J. M. Rice and S. R. Spelmen. Design of Open-Gradd Friction Course. Report FHWA, Federal Highway Administration,1974
    [23]Federal Highway Administration. Open-Graded Friction Courses FHWA Mix Design Method. Federal Highway Administration, U. S. Department of Transportation, Washington D. C.:1990
    [24]Kandhal P. S., Mallick R. B. Open-graded Friction Course:State of the Practice. Transportation Research Board. Washington, D. C.1998,12
    [25]Alvarez A. E., Martin A.E., Estakhri C. K., et al. Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses[R]. FHWA, Texas:2006.
    [26]Kandhal, P. S. Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses. National Asphalt Pavement Association, MD:2002
    [27]Poulikakos, L., Takahashi S., Part1 M. A Comparison of Swiss and Japanese Porous Asphalt through Various Mechanical Tests. Conference paper Swiss Transport Research Conference 2004
    [28]Khalid, H., Perez F. Performance Assessment of Spanish and British Porous Asphalts. Performance and Durability of Bituminous Materials, London:1996
    [29]Watson, D. E., Cooley L. A. Jr., Moore K. A., et al. Laboratory Performance Testing of Open-Graded Friction Course Mixtures. TRR:Journal of the Transportation Research Board, No.1891, TRB, National Research Council, Washington, D. C.,2004
    [30]Australian Asphalt Pavement Association, ARRB Transport Ltd. Selection and Design of Asphalt Mixes:Australian Provisional Guide[R]. Vermont South, Australia:2002.
    [31]黄晓明,吴少鹏.沥青与沥青混合料[M].东南大学出版社,南京,2002.9
    [32]刘丽.沥青胶浆技术性能及评价方法研究[D].长安大学,西安,2004
    [33]张争奇,张卫平,李平.沥青混合料粉胶比[J].长安大学学报(自然科学版),2004,24 (5):7-10.
    [34]邵显智,谭忆秋,孙立军.几种矿粉指标与沥青胶浆的关联分析[J].公路交通科技,2005,22(2):10-13.
    [35]邹桂莲,张肖宁,袁燕.应用流变学的方法研究填料对沥青胶浆高温性能的影响[J].公路,2004(3):94-97.
    [36]王捷,龚涌峰.粉胶比对沥青胶浆和沥青混合料性能的影响[J].长沙交通学院学报,2004,20(4):73-77.
    [37]刘丽,郝培文.SMA沥青胶浆的研究[J].中外公路,2004,24(5):97-100.
    [38]Mogawer W S, Stuart K D. Effects of mineral fillers on properties of stone matrix asphalt mixtures [J]. TRR,1996,1530:86-94.
    [39]冯浩.基于粘弹性理论的沥青胶浆试验特性研究[D].长沙:长沙理工大学,2008
    [40]冯师蓉.沥青玛蹄脂粘弹性特性的DSR试验研究[D].郑州:郑州大学,2007
    [41]严家伋编著.道路建筑材料(第三版)[M].北京:人民交通出版社,2001
    [42]Superpave Binder Specification and Test Methods[R]. Canadian strategic highway research program.1995.11
    [43]E. Ray Brown, John E. Haddock, Campbell Crawford. Investigation of Ston Matrix Asphalt Mortars[J].Transportation Research Record,1996,1530:95-102
    [44]J. S. Chen. Rheological Properties of Asphalt-Mineral Filler Mastics[J]. Transportation Research Board,75th Annual Meeting, Washington, D. C. 1996:57-62
    [45]J. S.Chen and C.H.Peng. Analyses of Tensile Failure Properties of Asphalt-Mineral Filler Mastics [J]. Journal of Material in Civil Engineering, 1998:134-141
    [46]吕伟民编著.沥青混合料设计原理与方法[M].上海:同济大学,2001
    [47]Cristian Druta. A Micromechanical Approach for Predicting the Complex Shear Modulus and Accumulated Shear Strain of Asphalt Mixtures from Binder and Mastics[D]. Louisiana State University,2006:41-58
    [48]R. M. Recasens. Effect of Filler on the Aging Potential of Asphalt Mixtures [J]. Transportation Research Record,2005(1901):10-17
    [49]张争奇,李平,王秉纲.纤维和矿粉度沥青胶浆性能的影响[J].长安大学学报(自然科学版),2005(05)
    [50]李平.基于胶浆特性的沥青混合料设计[M].西安:长安大学,2007
    [51]王捷,龚涌峰.粉胶比对沥青胶浆和沥青混合料性能的影响[J].长沙交通学院学报,2004,04
    [52]陆学元.湿陷性黄土地区SMA混合料组成设计和最佳沥青用量确定方法研究[D].西安:长安大学,2004
    [53]沈金安.开级配多空隙排水型沥青路面[J].国外公路,1994,6:15-20
    [54]Prithvi S. Kandhal and Larry Lockett. Construction and Performance of Ultrathin Asphalt Friction Course[R]. Alabama Department of Transportation,1997
    [55]陈拴发,陈华鑫,郑木莲.沥青混合料设计与施工[M].北京:化学工业出版社,2006:305-318
    [56]韩宏伟,黄绍龙,丁庆军等.运用高粘度改性沥青配制OGFC的研究[J].武汉理工大学学报,2005,3:41-43
    [57]严军,叶奋,王小生等.排水面层沥青混合料组成设计的研究[J].同济大学学报,2003,31(3):300-303
    [58]郭勇.高速公路排水性沥青混合料应用研究[M].南京:东南大学,2006
    [59]张 锐,黄晓明,侯曙光.新型沥青添加剂TPS的性能[J].交通运输工程学报,2006.6(4):36-40
    [60]赵振军,胡光艳.用弯曲应变能评价硅藻土改性沥青混合料的低温抗裂性能[J].公路交通科技,2008(6)
    [61]袁龙蔚,智荣斌,李之达著.流变断裂学基础[M].北京:国防工业出版设,1992
    [62]Hun Song, Jeongyun Do, Yangseob Soh. Feasibility study of asphalt-modified mortars using asphalt emulsion[J]. Construction and Building Materials, 2006. Volume 20(5):332-337.
    [63]Saad Abo-Qudais, Haider Al-Shweily. Effect of aggregate properties on asphalt mixtures stripping and creep behavior [J]. Construction and Building Materials,2007. Volume 21 (9):1886-1898.
    [64]肖月.沥青混合料中胶浆_集料粘结性及力学性能研究[D].武汉:武汉理工大学,2008
    [65]岳学军,黄晓明,李文龙等.测力延度试验以及韧性比评价指标的研究[J].公路交通科技,2007,12(2)
    [66]美国沥青协会著.高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社,2005,8
    [67]李晓民.基于动态粘弹力学的沥青胶浆高温性能试验研究[J].公路交通科技,2007,24(4)
    [68]周持兴主编.聚合物流变试验与应用[M].上海:上海交通大学出版社,2003
    [69]Reed B. F., James L, BuratiJ. R. Polyester Fibers in Asphalt Paving Mxtures[J]. Joumal of the Assoeiation o fAsphalt Paving Technologists.1996, 65(1)
    [70]Kietzman J H. Performance of Asbestos-asphalt Pavement Surface Course with High Asphalt Contents[R]. Highway Research Record,1963.
    [71]李海军,吕伟民.纤维在SMA混合料中作用机理分析与试验研究[J].石油沥青,1998,12(4):
    [72]Cooley L. A., Brown E. R., Watson D. E. Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers[J]. Transportation Research Record,2002, (1723)
    [73]Witczak M. W, Kaloush K, Pellinen T, etal. Simple Performance Test for Superpave Mix Design[R]. National Cooperative Highway Research Program (NCHRP) Report 465, Washington, D. C. National Research Council,2002.
    [74]Shenoy A. Model-fitting the master curve of the dynamic shear rheometer data to extracta rut-controlling term for asphalt pavements[J]. Journal of Testing and Evaluation,2002,30(2):95-112.
    [75]顾国芳,浦鸿汀编.聚合物流变学基础[M].上海:同济大学出版社,2001
    [76]中华人民共和国行业标准.JTJ052-2000,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000
    [77]叶群山.纤维改性沥青胶浆与混合料流变特性研究[D].武汉:武汉理工大学,2007
    [78]袁龙蔚著.缺陷体流变学[M].北京:国防工业出版设,1994
    [79]陈华鑫.沥青材料的感温性分析[J].长安大学学报,2006(01)
    [80]Rasmussen Robert,0., Method to Predict Temperature Susceptibility of an Asphalt Binder[J]. Journal ofMaterials in Civil Engineering, 2002,14(3):246-252
    [81]沈金安,李福普.评价沥青质量的核心指标-沥青感温性[J].石油沥青,1997,11(2)
    [82]林秀贤.柔性路面结构设计[M].北京:人民交通出版社,1987
    [83]许福.大粒径透水性沥青混合料配合比设计方法在泰莱公路中的应用研究[D].吉林:长春大学,2006.
    [84]沙庆林编著.多碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社,2005
    [85]薛小刚.沥青混合料级配优化及配合比设计方法研究[D].西安:长安大学,2005.
    [86]William Robert Vavrik. Aspahlt Mixture Design Concepts to Develop Aggregate Interlock[D]. Urbana, Illinois:University of Illinois
    [87]William R. Vavrik, William J. Pine, Gerald Huber, Samuel H. Capenter and Robert Bailey. Bailey Method for Gradation Selection in Hot-Mix Asphalt Design [R]. Transportation Research Broad:Washington DC. October 2002.
    [88]William R. Vavrik, William J. Pine, Gerald Huber, Samuel H. Capenter and Robert Bailey. The Bailey Method of Gradation Evaluation:The Influence of Aggregate Gradation and Packing Characteristics in Voids in the Mineral Aggregate[R]. AAPT, Vol.70.2001.
    [89]刘元烈.大粒径沥青混凝土级配设计及技术性能研究[D].长安大学,2007
    [90]William Robert Vavrik. Bailey Method for Gradation Selection in Hot-Mix Asphalt Mixture Design[R]. Transportation Research Broad:Washington DC. No. E-C044, October 2002
    [91]王艳丽.沥青混合料级配优化研究[M].西安:长安大学,2008
    [92]丛卓红.高性能沥青混合料设计方法研究[D].西安:长安大学,2004
    [93]中华人民共和国行业标准.JTJ 058-2000公路工程集料试验规程[S].北京:人民交通出版社,2000
    [94]张肖宁,王绍怀.沥青混合料组成设计的CAVF法[J].公路,2001,12:17-21
    [95]郝培文,徐金枝,周怀治.应用贝雷法进行级配组成设计的关键技术[J].长安大学学报,2004(24)6:1-6
    [96]邢明亮.透水性沥青混合料组成设计及性能研究[D].西安:长安大学,2007
    [97]陈兆能,邱泽麟,余经洪编著.试验分析与设计[M].上海:上海交通大学出版社,1991.12
    [98]吴诩,李永乐,胡庆军编著.应用数理统计[M].长沙:国防科技大学出版社,2001.7
    [99]汪荣鑫著.数理统计[M].西安,西安交通大学出版社,2004.9
    [100]陈兴伟,许志鸿.高性能沥青路面混合料初始沥青用量的预估[J].同济大学学报,2005,33(4)
    [101]AASHTO Designation:MP2-00, Standard Specification for Superpave Volumetric Mix Design[S].
    [102]AASHTO. Standard Practice for the Laboratory Evaluation of Modified Asphalt Syatem. pp:5-93
    [103]R. B. McGennis, R.M.Anderson, T.W.Kennedy, M. Solaimanian. Background of Superpave asphalt mixture design and analysis[R]. FHWA,95-003
    [104]陈华鑫,邢明亮.排水沥青混合料设计方法综述[J].公路,2008,10
    [105]中华人民共和国行业标准.JTG F40-2004,公路沥青路面施工技术规范[S].北京:人民交通出版社,2004
    [106]Campen, W. H., J. R. Smith, L. G. Erickson, and L. R. Mertz. The Control of Voids in Aggregate for Bituminous Paving Mixtures. Proceedings of the AAPT, 1957. Vol.26:297-311.
    [107]Campen, W. H., J. R. Smith, L. G. Erickson, and L. R. Mertz. The Relationships Between Voids, Surface Area, Film Thickness and Stability in Bituminous Paving Mixtures. Proceedings of the AAPT,1959. Vol.28:.149-178.
    [108]刘铁山,延西利,韩森.基于沥青膜厚度的纤维沥青混合料最佳油石比研究[J].中外公路,2007,12(6) [109]刘红英.沥青膜厚对沥青混合料工程性能的影响[J].公路交通技术,2004,3:30-34[110]余叔藩译.Spuerpave水准Ⅰ沥青混合料设计(SP-2).美国沥青协会,1995.[111]余叔藩.沥青混合料设计中沥青用量的确定[J].公路,2002,6:116-120[112] M. A. Heitzman. Development of New Film Thickness Models for Hot Mix Asphalt[M].Ames, Iowa, Iowa State University,2005 [113] Mix Design Methods for Asphalt Concrete (MS-2). Asphalt Institute, May 1962. The Asphalt Handbook(MS-4), Asphalt Institute,1989.[114]侯芸,魏道新,田波,刘永祥.沥青混合料油膜厚度计算方法[J].交通运输工程学报,2007,7(4)[115] Hot Mix Asphat Materials, Mixture Design and Construction. NCAT, Auburn, Alabama, pp.151-153[116]刘丹.应力吸收层材料组成及其特性研究[D].西安:长安大学,2008[117] B. Radovskiy. Analytical Formulas for Film Thickness in Compacted Asphalt Mixture[A]. Transportation Research Record 1829, TRB, Washington DC,2003 pp.26-32 [118] Lu, B. and S. Torquato. Nearest-surface distribution functions for polydispersed particles system[J]. Physical Review A,1992, Vol.45,8, pp.5530-5544. [119] Torquato, S. Random Heterogeneous Materials:Microstructure and Macroscopic Properties. Springer-Verlag, New York,2001. [120] Garboczi, E. J. and D. Bentz. Multiscale Analyticcal/Numerical Theory of Diffusivity of Concrete[J]. Advanced Cement Based Materials,1998, Vol.8, pp.77-88. [121] J. L. Lebowitz, E. Helfand and E. Praestgaard, "Scaled Particle Theory of Fluid Mixtures[J]. Chem. Phys.1965, Vol.43,774-779。 [122] J. L. Lebowitz. Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres[J]. Phys. Rev.1964, Vol.133,, pp.895-899 [123] Mansoori G A; Carnahan N F; Starling K E. G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland, J. Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres [J]. Chem. Phys.1971, Vol.54, pp.1523-1525.
    [124]T. Boublik. Hard-Sphere Equation of State[J]. Chem. Phys.1970, Vol.53, pp.471-472
    [125]http://bbs. matwav. com/viewthread. php?tid=378634
    [126]http://tieba. baidu. com/f?kz=7128413
    [127]肖卫国.高等数学[M].上海:同济大学出版社,2004
    [128]张登良编著.沥青路面[M].北京:人民交通出版社,1999
    [129]Huber G. Performance Survey on Open-Graded Friction Course Mixes. NCHRP Synthesis 284 [M]. Washington, D. C.:Transportation Research Board,2000.
    [130]Mallick R. B., Kandhal P. S., Cooley L.A., et al. Design, Construction and Performance of New-Generation Open-Graded Friction Courses [J]. AAPT,2000
    [131]牛俊明,许永明,赵平均.排水性沥青抗滑层混合料的路用性能研究[J].石油沥青,1997,1:37-44
    [132]张登良等.沥青路面工程手册[M].北京:人民交通出版社,2003[9]
    [133]郑南翔,丛卓红.粉油比对沥青混合料路用性能的影响[J].公路,2004,10[11]
    [134]于洪兴.粉油比对沥青混合料高温稳定性的影响。公路交通科技,2005,22(10)
    [135]Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage, AASHTO T283.
    [136]Grorgia Department of Transportation. Method of Test for Evaluating the Moisture Susceptibility of Bituminous Mixtures By Diametral Tensile Splitting. GDT-66, June 1998
    [137]Kennedy T W, Roberts F L, Lee W K. Evaluation of Moisture Susceptibility of Asphalt Mixtures Using the Texas Freeze-thaw Pedestal Test[J]. Asphalt Paving Technology,1982,51
    [138]曹廷维.掺高粘度沥青添加剂排水性沥青混合料的性能研究[D].武汉理工大学,2008.
    [139]王鸿博,钱春香,王修田.粉胶比与集料级配对开级配沥青混凝土性能的影响[J].公路,2006,2
    [140]沈金安编著.改性沥青与SMA路面[M].北京:人民交通出版社.1999,7
    [141]张东,刘娟淯,陈兵.关于三点弯曲法确定混凝土断裂能的分析[J].建筑材料学报,1999,2(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700