无线传感器节点能量管理系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络具有多跳性、能够自组织网络、无需基础设施支持的优点,在军事、民用领域都有着广阔的应用前景。然而,传感器网络节点数目庞大,分布区域广、部署环境复杂或危险,无法利用人工更换电池的方式来补充电能。所以解决无线传感器网络能量问题并对能量进行充分、合理的利用是我们研究的重点。
     本文的主要工作如下。
     1.采用低功耗的无线收发射频芯片nRF401和AT89C2051-12PU单片机,研制出一种体积小、成本低的无线传感器节点。该节点上携带有照度传感器和温度传感器,能够获取环境中的照度信息和温度信息,并测试出无线传感器节点在不同条件下的传输距离。结合无线传感器节点研制过程中遇到的困难,总结出无线传感器节点在设计和制作过程中应注意的问题。
     2.分析了太阳能电池及光伏系统的特性,发现光伏电池工作在最大功率点时,输出性能是最好的,如果能使光伏电池一直工作在最大功率点附近,则能更高效地给传感器节点供能。在设计中引进了最大功率点跟踪算法。
     3.分析了超级电容器和锂离子电池的原理及特性,并对超级电容器和锂离子电池混合使用的可行性进行了分析。分析结果表明将锂离子电池与超级电容器混合使用,可以减小锂离子电池的输出电流和充放电次数,降低内部损耗,延长放电时间,延缓失效进程。超级电容器和锂离子电池混合使用,可以扬长避短,优势互补,形成高容量、高功率、长寿命的混合储能系统,将扩展锂离子电池和超级电容器的应用空间。
     4.分析了太阳能光伏电池的温度效应。发现太阳能电池中80%的光能转化为热能,20%的光能转化为电能。同时发现太阳能电池的温度升高影响其本身的工作效率。为了更充分地利用太阳能,减少温度升高对太阳能电池的影响,构建了光伏-温差混合能量管理系统。温差电池吸收光伏电池产生的热能并转化为电能,这不仅降低了光伏电池的温度,而且提高了光伏电池的输出电压和峰值功率。给系统增加电能的产出。在相同条件下,通过理论和实验验证,光伏电池单能量转化子系统与光伏-温差双能量转化子系统相比较,混合能源中光伏电池的背面温度最大可降低13℃;光伏电池的开路电压最大升高了304mV;光伏电池的效率提高了5.2%。充分体现了混合能源的优势,提高了光伏电池的发电效率并实现余热利用。因此,光伏-温差混合能量管理系统能为节点带来更多能量。但温差电池本身产生电压并不高,除了夏天之外,在一年的其它季节,温差电池输出的电压很难达到升压电路的启动工作电压,如果用温差电池直接向超级电容器充电,超级电容器中存储的电量也不会很多,为了尽可能多的利用能量,设计中采用了超低压升压技术。
     5.通过对太阳能光伏电池输出特性的分析研究,发现在太阳能电池遇到多云天气或每天的早晨、黄昏,光照强度较低,输出功率低,虽然无法直接为传感器节点供电,但这部分能量持续的时间还比较长,如果不加以利用,必然是一种浪费。提出了太阳能光伏电池不同功率分段利用的思想,设计了太阳能光伏电池的能量高效收集电路。实验结果表明,应用了太阳能电池功率分段思想能够更有效地利用环境能量,提高了太阳能光伏电池的使用效率。
     6.针对所设计的四代能量管理系统中均存在一个问题:能耗较高。设计了节能的能量管理系统。通过对单片机进行控制,使超级电容器仅仅在放电的时间内单片机开始工作,超级电容器放电完毕单片机停止工作,从而降低能量管理系统的能耗。
     7.针对温差电池输出功率较低的缺点,研制出四块太阳能光伏电池为无线传感器节点供电的能量管理系统,将无线传感器节点周围的太阳能得以充分利用。在标准光强下,测试了基于传感器节点的单一能量管理系统和混合能量管理系统的整体性能,实验结果表明,所设计的能量管理系统各个部分能够协调工作,整个系统输出稳定,能够保证传感器节点的正常工作。
Wireless sensor network has the virtues of multi-hop, self-organization and infrastructureless, so it can offer many useful applications in military and civil field. However, so many tiny sensor nodes are distributed widely at the dangerous or complex topography, that there is no way to change batteries to supply energy. So,to solve energy problems in wireless sensor networks and to use energy fully and rationaly is the focus of our research.
     The main contents are listed as follows:
     1. Using low-power wireless RF transceiver chip nRF401 and AT89C2051-12PU single-chip microcomputer (SCM), there developed small, low-cost wireless sensor nodes, which carry a light sensor and temperature sensor that are able to obtain the information environment illumination and temperature information, and to test out the transmission distance under different conditions. Combined with the difficulties in the process of researching, some problems that should be paid attention in designing and producing the wireless sensor nodes have been concluded.
     2. After analyzing the characteristics of the solar cells and photovoltaic system, it is found that when around the point of maximum power, the photovoltaic shows best output characteristics. If possible to make the photovoltaic working around the point of the point of maximum power, it can supply energy to sensor nodes more efficiently. In the design maximum power point tracking algorithm has been introducted.
     3. The principle and characteristics of ultra-capacitors and lithium-ion batteries and the feasibility of using them together are analyzed. The results show that if the lithium-ion batteries and ultra-capacitors are mixed used, the frequency of the lithium-ion battery’s’charging and discharging, the output current and the internal loss will be reduced, the discharge time will be extended, and the process of failure will slow down. The mix can avoid weaknesses, and complete each other to form a high-capacity, high power, long-life hybrid energy storage system. The application space of lithium-ion battery and ultracapacitor will be extended.
     4. The temperature effect of photovoltaic is analyzed. It was found that the solar cells convert 80% of light to heat, 20% of the light energy into electrical energy. The temperature of solar cells affects their own productivity. To utilize solar energy more fully, to reduce the temperature’s affected to the solar cells. A photovoltaic - thermal hybrid power management system was constructed. The thermoelectric batteries absorb heat which are generated by photovoltaic cells and converted it into electricity; it will not only reduce the temperature of photovoltaic, but also increase the output voltage and the peak power to increase the power output of the system. Through the theoretical and experimental validation, compared to a single photovoltaic energy conversion subsystem, in the photovoltaic - thermal energy conversion subsystem, the back temperature of photovoltaic can decrease 13℃at most; the largest voltage in the open circuit of photovoltaic increase 304mV; the efficiency of photovoltaic are improved by 5.2% under the same conditions. The advantages of energy mix are fully embodied, the efficiency of photovoltaic are improved compared to the generate electricity and waste heat utilization is achieved. Therefore, the photovoltaic - thermal hybrid energy management system can bring more energy to the node. But the voltage that the thermoelectric battery produced is not high, unless in the summer, the output voltage of the battery temperature is difficult to achieve the step-up circuit voltage to start operating, so if the super capacitor charged by the thermoelectric battery directly, the super-capacitors will store a little power. In the design, the ultra-low-voltage boost technology was used in order to use the energy as much as possible.
     5. Through the analysis of the solar cells output characteristics, it is found that when in daily days, or at dawn and sunset of everyday, light intensity and output power are much lower. Although it’s not possible to supply energy to the sensor nodes directly, this part of energy lasts quite long time. Without efficient usage, it is sure to cause a huge waste. An idea that solar cells use different power has been proposed. A circuit in which the solar cells collect energy efficiently has been designed. Experimental results show that the application of solar cells power sub-thought takes fuller advantages of environmental energy and improves the utilization efficiency of solar photovoltaic cells.
     6. There exists a common problem of high energy consumption in the designed four-generation energy management system.. Aimed at this problem, an energy-saving energy management system is designed. Through controlling the SCM to make it start working within the discharge time of the ultracapacitor and stop as the the discharge is completed. Thus the energy consumption of energy management systems is successfully reduced.
     7. Aimed at the shortcomings of the thermotelecric battery’s low output power, a energy management system which contains four photovoltaic to provide energy for wireless sensor nodes is designed. Thus making full use of the solar energy around the nodes.Under standard light intensity, tests of both the single and hybrid management systems’overfall performance have been made (both two systems are based on sensor nodes). Experimental results show that every part of the designed system coordinate the work, the system’s output is stable, and the system can guarantee the sensor nodes work normally.
引文
[1] Ren Feng-Yuan,Huang Hai-Ning,Lin Chuang. Wireless Sensor Network. Journal of Software. 2003. 7,Vol. 14(No. 2):1148-1157.
    [2] Asada G.,Dong M.,Lin T.,et al. Wireless Integrated Network Sensors:LowPower Systems on a Chip. Proceedings of the 24th IEEE European Solid-State Circuits Conference. Den Hague,The Netherlands. Sept. 21-25,1998. Elsevier. 1998.9-12.
    [3] David E.Culler,Wei Hong. Wireless Sensor Networks. Communications of ACM,2004,47(6):30-33.
    [4] Pottie G J,Kaiser W J. Wireless Integrated Network Sensors. ACM Communications,2000,43(5):51-58.
    [5]郑增威,吴朝晖,金水祥.无线传感器网络及其应用.计算机科学,2003,30(10): 138-140.
    [6]任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003,14(7) :1282-1291.
    [7] Akyildiz LF,Su WL,Sankarasubramaniam Y,Cayirci E. A Survey on Sensor Networks. IEEE Communications Magazine,2002,40(8):102-114.
    [8] J.M. Kahn , R.H.Katz , K.S.J.Pister. Mobile Networking for Smart Dust. ACM/IEEE Intl.Conf. on Mobile Computing and Networking (MobiCom 99), Seattle,WA,August 17-19,1999.
    [9] F.Akvildiz,W Su,Y.Sankarsubramaniam,E Cayirci. Wireless Sensor Network: a Survey.Computer Networks,Vol. 38,2002.393-424.
    [10] 10 Emerging Technologies that will Change the World. Technol.Rev.,2003,106(1):33-49.
    [11] Tubasihat M,Madria S,“Sensor Networks:an Overview”,IEEE Potentials 2003,22(2):20-23.
    [12] Anderson R,Haowen Chan H W, Perrig A. Key Infection: Smart Trust for Smart Dust. Network Protocols, 2004.ICNP 2004.Proceedings of the 12th IEEE International Conference on.2004,11(1):206-215.
    [13] Xu N. A Survey of Sensor Network Applications. EURASIP Journal on WirelessCommunications and Networking. 2005,5(5):774-788.
    [14] Estrin D,Govindan R,Heidemann J,et al. Next Century Challenges:Scalable Coordination in Sensor Networks // ACM/IEEE Intemational Confereneeon Mobile Computing and Networking,Seattle:ACM Press,1999:263-270.
    [15] Mainwaring A,Polastre J,Szewczyk R,et al. Wireless Sensor Networks for Habitat Monitoring. International Workshop on Wireless Sensor Networks and Applications, Proceedings of the 1st ACM International Workshop on Wireless sensor Networks and Applications. 2002,88-97.
    [16] HamritaT K,Kaluskar N P and Wolfe K L. Advances in Smart Sensor Technology. Conference of Industry Applications,2005,3:2059-2062.
    [17] Intanagonwiwat C,Govindan R and Estrin D.Directed Diffusion:a Scalable and Robust Communication Paradigm for Sensor Networks.Proceeding of the 6th Annual Interational Conference on Mobile Computing and Networking,Boston,MA, 2000:56-67.
    [18] Pottie G J and Kaiser W J.Wireless Integrated Network Sensors.Communication of ACM,May 2000,43(5):551-558.
    [19] Bakshi A,Prasanna V.K.Algorithm Design and Synthesis for Wireless Sensor Networks. Parallel Processing,2004. ICPP 2004.International Conference on.2004,1:423-430.
    [20] Perrig A,Szewczyk R,Tygar J D,et al. SPINS:Security Protoeols for Sensor Networks.Wireless Networks,Sep. 2002,8(5):521-534.
    [21] CullerD,Estrin D and Srivastava M.Guest editors’introduetion:Overview of Sensor Network.Computer,2004,37(8):41-49.
    [22] Cui L,Wang F,Luo HY,et al.A Pervasive Sensor Node Architecture.The IFIP NPC’04 Workshop on Building Intelligent Sensor Networks (BISON’04),Wuhan,2004,565-567.
    [23] Ghose A,Grobklags J and Chuang J.Resilient Data-centric Storage in Wireless Ad-hoc Sensor Networks.Proeeedings the 4th Intemational Conference on Mobile Data Management (MDM’03),2003:45-62.
    [24] Torfs T,Sanders S,Winters C,et al. Wireless Network of Autonomous Environmental Sensors.2005,5(9):923-926.
    [25] Roundy S,Otis B,Chee Y H,et al.A 1.9ghz RF Transmit Beacon Using Environmentally Scavenged Energy, in Proc. of 2003 ISLPED,August 2003,25-27.
    [26] Kohvakka,M. Hannikainen,M. and Hamalainen,T.D. Wireless Sensor Prototype Platform. Industrial Electronics Society,2003.IECON '03.The 29th Annual Conference of the IEEE,2004,4(5):1499-1504.
    [27] Hari Balakrishnan,et al.Lessons from Developing and Deploying the Cricket indoor Location System,http://cricket.csail.mit.edu/V1Exp.Pdf.
    [28] Kansal A, Srivastava M B.An Environmental Energy Harvesting framework for Sensor Networks.Proceedings of the 2003 International Symosium on Low Power Electronics and Design,25-27 Aug.2003,481-486.
    [29] Raghunathan V,Kansal A,Hsu J,et al.Design Considerations for Solar Energy Harvesting Wireless Embedded Systems. Infromation processing in Sensor Networks of Fourth International Symposium.2005,457-462 .
    [30] Szafoni ?ukasz: Zastosowanie materia?ówpiezoelektrycznych w pozyskiwaniu energii elektrycznej na potrzeby zasilania bezprzewodowych modu?ów pomiarowych, M.Sc. thesis, Department of Microelectronics and Computer Science,Technical University of Lodz,2006.
    [31] Lefeuvre Elie et al.:A Comparison between Several Vibration-powered Piezoelectric Generators for Standalone Systems,Sensors and Actuators,Elsevier,A126,2006,pp.405–416.
    [32] Brunelli Davide,Benini Luca,Moser Clemens.An Efficient Solar Energy Harvester for Wireless Sensor Nodes[J].Design,Automation and Test in Europe,2008.
    [33] Simjee.F.I,Chou.P.H.Eddicient Charging of Supercapacitors for Extended Lifetime of Wireless Sensor Nodes[J] . Power Elecrronics , IEEE Transactions on.Volume 23,Issue 3,2008.
    [34]胡冠山,姚彦青.无线网络传感器能量收集管理技术.传感器世界,2006,12(3):33-36.
    [35]官晟,解勤卫,张杰,张晓东.环境监测无线传感器网络节点能源技术.传感器与仪器仪表。2007,23 (11-1 ):108-110.
    [36]杜冬梅,何青,张志.无线传感器网络能量收集技术分析.微纳电子技术, 2007(7/ 8):430-433.
    [37]彭爱平,郭晓松,蔡伟,谭立龙.无线传感器网络能量管理研究.传感器与微系统2007,26(8):1-5.
    [38]李帅,尤著宏,孔令成等.青藏铁路冻土监测无线传感器网络节点设计.自动化与仪表2008(8):25-28.
    [39]杨志勇,王卫星.无线传感器网络节点电源系统设计.通信电源技术,2008,25(6):63-64.
    [40]张玉国,赵湛,方震,郭鹏.无线传感器网络节点能量供应系统设计.传感器与仪器仪表2008 ,24(2-1):129-130,284.
    [41]陈岩,宋楠楠,乔继红,郭宏.微能源技术在无线传感器网络中的应用.微计算机信息2008,24(31) :159-160,165.
    [42]刘勇,仲元昌,李秀珍等..采用太阳能电池的无线传感器网络能量模型的研究[J].中国科技论文在线精品论文,2008,1(10):1147-1151.
    [43] LI Yan-qiu,U Hong-yun.Hybrid Micro Power Source for Wireless Sensor Networks,Sensors Journal,IEEE,Vol.8,No.6,2008,pp678-681.
    [44] Hongyun Yu,Yanqiu Li,et al. Design of the Micro PV System for Wireless Sensor Networks, Journal of Functional Materials and Devices,Vol.14,No.2, 2008,pp476-480.
    [45] Hongyun Yu , Yanqiu Li , et al.Design and Investigation of Photovoltaic and Thermo-electric Hybrid Power Source for Wireless Sensor Networks,Proceedings of the 3rd Annual IEEE International Conference on Nano/Micro Engineered and Molecular System,2008, pp196-201.
    [46]于红云,李艳秋等.光伏-温差混合能源的优化设计与实验研究[J].太阳能学报,2009,30(4):436-440.
    [47]苏波,李艳秋,于红云.基于无线传感器节点的能量管理系统[J].太阳能学报,2009,30(8):1069-1072.
    [48]何永泰,黄文卿,张玉春.混合能量存储在光电微能源中应用[J].电测与仪表, 2009,46(7):17-21.
    [49] Vieira M. A. M. ,Coelho C. N,Silva D.C.,et al.“Survey on Wireless Sensor Network Devices,”Proceedings of IEEE Conference on Emerging Technologies and FactoryAutomation 2003,ETFA 2003,1(6) :537-533.
    [50] Warneke B,Last M,Liebowitz B,Pister KSJ.Smart dust Communicating with a Cubic-millimeter Computer.IEEE Computer Magazine,2001,34(1):44-51.
    [51]朱红兵、宋宁华.射频电路PCB设计和电磁兼容.试验技术与试验机.2005,12(1、2):57-59.
    [52] Mahlknecht, S. Roetzer, M. Energy Supply Considerations for Self-sustaining Wireless Sensor Networks.Wireless Sensor Networks, 2005.Proceeedings of the Second European Workshop on 31 Jan.-2 Feb. 2005,397-399.
    [53]唐云建,梁山,冯会伟等.低功耗射频唤醒无线传感器网络设计[J] .传感技术学报,2007,20(10):2328-2332.
    [54] Roundy S, Otis B P, Chee Y H, et al. A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy[C], ISPLED 2003, Seoul Korea, August 25-27, 2003.
    [55]王长贵,王淳,董路影.小型新能源和可再生能源发电系统建设与管理[ M ] .北京.中国电力出版社,2004.
    [56]杨金焕,陈中华.2 1世纪太阳能发电的展望,上海电力学院学报,2001. 12第17卷第4期.
    [57]桑野幸德.太阳电池及其应用[ M ] .北京:科学出版社,1990:32 - 40 .
    [58] Chihchiang Hua,Chihming Shen.Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System.PESC 98 Record.29th Annual IEEE,Vol.:1,1998:86-93.
    [59]孙佩石,陶磊.带有最大功率点跟踪功能的光伏充电器[J] .实用技术.2003,5 (111):18 -20.
    [60]欧阳名三,余世杰,沈玉梁等.具有最大功率点跟踪功能的户用光伏充电系统的研究[J] .农业1程学报. 2003 ,1 9( 6 ):272-275.
    [61]赵为.太阳能光伏并网发电系统的研究[D]:[博士学位论文],合肥:合肥工业大学,2003(2):29-45.
    [62]雷元超、陈春根等.光伏电源最大功率点跟踪控制方法研究[J] .电工电能新技术,2004,23(3):76-80.
    [63]陈兴峰、曹志峰等.光伏发电的最大功率跟踪算法研究[J] .可再生能源,2005,(1):8-11.
    [64]吴玉庭、朱宏晔等.聚光条件下太阳能电池的热电特性分析[J].太阳能学报,2004(3),337-340.
    [65] Hussein K H,Muta I,Hoshino T,Osakada M.Maximum Photovoltaic Power Tracking:an Algotithm for Rapidly Changing Atomospheric Conditions[J].Transmission and Distributiion.IEE Proceedings,1995,142(1):59-64.
    [66] Methmet Akbaba,Isa Qamber,Adel Kemal.Matching of Separately Excited DC Motors to Photovoltaic Generators for Msximun Power Output.Solar Energy[J].1998,63(6):375-385.
    [67] J.A.达菲,W.A.贝克曼.太阳能—热能转化过程.科学出版社,北京,1980.
    [68] Shigemasa and Junichiro, "Optelectric Transducer," United States Patent 3956017.
    [69]王建军.太阳能光伏发电应用中的温度影响.青海师范大学学报(自然科学版) [J],2005,(1):28-30.
    [70]黄护林,韩东,孔令宾.光伏建材型太阳电池板自然通风冷却的研究[J] .太阳能学报,2006,27(3):309-313.
    [71] M.H.Bao,W.Y.Wang.Future of Microelectromechanical System,Sensors and Actuators,1996,56(1):135-141.
    [72]M. Strasser, R.Aigne, C.Lauterhach. MICROMACHINED CMOS THERMOELECTRIC GENERATORS AS ON-CHIP POWER SUPPLY.D-7803-7731-1/03/517 2003 IEEE:45-48.
    [73]M.Kishi, H.Nemoto, T.Hamo, etc., Micro-Thermoelectric Modules and Their Application to Wristwatches as an Energy Source. 0-7803-5451-6 ,IEEE,2000:301-307.
    [74]G . Min , D . M . Rowe , Recent Concepts in Thermoelectric Power Generation.Proc.21st Int.Conf.On the Rmoelectrics,USA:IEEE Inc,2002,365-373.
    [75] J.R.Limyder, G..J.Synder,C.K.Huang。et a1.Thermoelectric Micro- device Fabrication Process and Evaluation , Proc. 21st hat . Conf . On Thermoelectrics,USA:IEEE Inc,2002,535—539.
    [76]王培珍,沈玉,杨维翰.太阳光伏阵列的温度与红外特性分析.安徽工业大学电气信息学院.
    [77]赵春江,崔容强.太阳能建材技术的研究与开发(I)——光伏屋顶热性能的调查,太阳能学报,2003,24(3):352-356.
    [78] Erwin De Baetseliel-, Wim Goedertier, Gilbert De hley.A Survey of the Thermal stability of An Active Heat Sink.0-7803-332S 1996 IEEE:373-382.
    [79]郭炳焜,徐徽等.《锂离子电池》,长沙,中国大学出版社,2002.
    [80]徐峰.锂离子电池技术.电子工程专辑.2002年第7期.
    [81]蒋新华,冯毅等.锂离子蓄电池保护电路发展现状及趋势[J] .电源技术.2004年9月.
    [82]廖如红.新型智能锂离子电池测试仪的研究.计量技术期刊,2002,第3期:25-26.
    [83] Cao Xi-wu,Cheng Ya-ming,Luo Li-hui.A Design of Charging for Lithium-ion Battery of Ambulatory Medical Instruments[M].Chinese Journal of Medical Physics.2003.1.
    [84]王国华、王鸿麟等.便携电子设备电源管理技术.第1版。西安:西安电子科技大学出版社.2004.1.152-153.
    [85] David Bell.Simple Charger Targets Lithium-ion Batteries[M].Linear Technology Corp.1999.9.
    [86] Yao Y Y,Zhang D L and Xu D G.A Study of Supercapacitor Parameters and Characteristics.International Conference on Power System Technology.IEEE,2006:1-4.
    [87]张惠研.超级电容器直流储能系统分析与控制技术的研究(博士学位论文).北京:中国科学院电工研究所,2006.
    [88]遇桂春、徐继芬.电化学双电层电容器的研制[J] .电子元件与材料,2002,21(8):19-21.
    [89] J P Zheng,T R Jow.A New Charge Storage Mechanism for Electrochemical Capactors.J Electrochem Soc.,1995,142(1):6-8.
    [90] J P Zheng,P J Cygan,et al.Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors.J Electrochem Soc.,1995,142(8):2699-2703.
    [91] J P Zheng,T R Jow.High Energy and High Power Density Electrochemical Capacitors.J Power Sources1996,62(1):155-159.
    [92]刘志祥,董国君.双电层电容器的制备与性能.2001,25(6):413-416.
    [93]王晓峰,孔祥华等.新型化学储能器件---电化学容器.化学世界,2001,42(2):103-108.
    [94] B E Conway.Transition from“Supercapacitor”to“Battery”Behavior in Electrochemical Energy Storage.J Electrochem Soc.,1991,138(6):1539-1548.
    [95] D H Fritts.Analysis of Electrochemical Capacitors.J Electrochem Soc.,1997,147(6): 2233-2241.
    [96] Y A Maletin,N G Strizhakova,et al.Novel Type of Storage Cells Based on Elect-rochemical Double-layer Capacitors.NATO ASI Series,1996,6(3):363-372.
    [97]赵争鸣,刘建政,孙晓瑛等.太阳能光伏发电及其应用.科学出版社.2005年.
    [98]王菊芬,李宣富,杨海平等.太阳能发电系统中影响蓄电池寿命的分析,蓄电池,2002,2:51-54.
    [99]毛贤仙,项文敏,唐征.太阳能光伏系统用VRLA电池技术性能探讨,蓄电池,2003,1:22-24.
    [100] R. A. Dougal, S. Liu, R. E.White, Power and Life Extension of Battery-ultracapacitor Hybrids, IEEE Trans. On Components and Packaging Technologies, March 2002, 25 (1), Page(s):120-131.
    [101] Gao L., Dougal R. A., Liu S., Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid, IEEE Trans. On Power Electronics, Jan. 2005, 20 (1), Page(s): 236-243.
    [102] J. P. Zheng, T. R. Jow, M. S. Ding, Hybrid Power Sourses for Pulsed Current Applications, Jan. 2001, 37(1), Page(s): 288-292.
    [103] Gao L, Dougal R.A., Liu s., Active Power Sharing in Hybrid Battery/Capacitor Power Sources, Applied Power Electronics Conference and Exposition 2003, 9-13 Feb. 2003, 1, Page(s): 497-503.
    [104] L. Shengyi, R. A. Dougal, Design and Analysis of a Current-mode Controlled Battery/Ultracapacitor Hybrid, Industry Applications Conference 2004, 3-7 Oct. 2004, 2, Page(s):1140-1145.
    [105] C. E. Holland, J. W. Weidner, R. A. Dougal, et al., Experimental Characterization of Hybrid Power Systems under Pulse Current Loads, Journal of Power Sources, 2002, 190, Page(s): 32-37.
    [106] Y. Nozaki, K. Akiyama, H. Kawaguchi, et al., Ecaluation of an EDLC-battery Hubrid Stand-alone Photovoltaic Power System, Photoltaic Specialists Conference, 15-22 Sept. 2000, Page(s):1634-1637.
    [107] Y. Nozaki, K. Akiyama, H. Kawaguchi, et al., An Inmroves Method for Controlling an EDLC-battery Hybrid Stand-alone Photovoltaic Powersystem, Applied Power Electronics Conference and Exposition, 2002, Fifteenth Annual IEEE, 6-10 Feb. 2000, 2, Page(s): 781-786.
    [108] K. Akiyama, Y. Nozaki, M. Kudo, et al., Ni-MH batteries and EDLCs hybrid stand-alone photovoltaic power system for digital access equipment, Teleconmmunications Energy Conference 2002, INTELEC, Twenty-second International, 10-14 Sept. 2000, Page(s): 387-393.
    [109] Zheng Chen, High Pulse Power System through Engineering Battery-capacitor Combination, Energy Conversion Engineering Conference and Exhibit, 2002, 24-28 July 2002, 2, Page(s): 752-755.
    [110] L. Palma, P. Enjeti, J. W. Howze, An Approach to Improve Battery Run-time in Mobile Applications with Supercapatitors, Power Electronics Specialist Conference 2003, 15-19 June 2003, 2, Page(s): 918-923.
    [111] H. W. Brandhors, C. Zheng, Achieving a High Pulse Power System through Engineering the Battery-capacitor Combination, The sixteenth Annual Battery Conference on 9-12 Jan 2001, Page(s): 153-156.
    [112] T. A. Smith, J. P. Mars, G.. A.Turner, Using Supercapacitor to Improve Battery Performance, Power Electronics Specialists Conference 2002 IEEE 33nd Annual, 23-27 June 2002, 1, Page(s): 124-128.
    [113] S. Pay, Y. Baghzouz, Effectiveness of Battery-supercapaceitor Combination in Electric Vehicles, IEEE Bologna Powertech Conference 2003, Page(s): 6.
    [114] R. M. Schupbach, J. C. Balda, M. Zolot, et al., Design Methodology of a Combined Battery-ultracapacitor Energy Storage Unit for Vehicle Power Management, Power Electronics Specialalist Conference 2003, 2003 IEEE 34th Annual, 15-19 June 2003, 1, Page(s): 88-93.
    [115] J. P. Miller, Development of Equivalent Circuit Models for Batteries and Electro- chemical Capacitor, Battery Conference on Applications and Advances, The Fourteenth Annual 12-15 Jan. 1999, Page(s): 107-109.
    [116] Gao L,Dougal R A,Liu S. Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid[J]. IEEE Trans. on Power Electronics,Jan. 2005,20(1):236-243.
    [117] Zheng J P,Jow T R,Ding M S. Hybrid Power Sources for Pulsed CVurrentApplications[J]. IEEE Trans on Aerospace and Electronic Systems,Jan. 2001,37(1):288-292.
    [118] Brandhorst H W,Chen Z. Achieving a High Pulse Power System through Engineering the Batterycapacitor Combination[C]. Applications and Advances 2001. The Sixteenth Annual Battery Conference,9-12 Jan. 2001:153-156.
    [119]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究[D]:[博士学位论文],北京:中国科学院电工研究所,2006.
    [120] Palma L,Enjeti P,Howze J W. An Approach to Improve Battery Run-time in Mobile Applications with Supercapacitors[C]. Power Electronics Specialist Conference 2003 IEEE 34th Annual,2003:918-923.
    [121] Smith T A,Mars J P,Turner G A. Using Supercapacitors to Improve Battery Performance[C].Power Electronics Specialists Conference 2002 IEEE 33rd Annual,23-27 June 2002,1:124-128.
    [122] Dougal R A,Liu S,Ralph E W. Power and Life Extension of Battery-Ultracapacitor Hybrids[J].IEEE Trans. on Components and Packaging Technologies,Mar. 2002,25(1):120-131.
    [123] L. S. Russell, R. M. Nelms, Optimization of Duble-layer Capacitor Array, IEEE Trans on Industry Application, 2002,36 (1), Page(s): 194-198.
    [124] R. L. Spyker, R. M. Nelms, Analysis of Duble-layer Capacitor Supplying Constant Power Loads, IEEE Trans. on Aerospace and Electronic Systems, Oct. 2002, 36 (4), Page(s): 1439-1443.
    [125] R. L. Spyker, R. M. Nelms, Classical Equivalent Circuit Parameters for a Double-layer Capacitor, IEEE Trans. on Aerospace and Electronic Systems,July 2000, 26(3).
    [126] Mahlknecht, S. Roetzer, M. Energy Supply Conside for Self-sustaining Wireless Sensor Networks. Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on 31 Jan.-2 Feb. 2005,397-399.
    [127] http://cvs.nesl.ucla.edu
    [128] http://www.enocean.com
    [129]V. Raghunathan, A. Kansal, J. Hsu, et al. Design Considerations for Solar Energy Harvesting.
    [130]Warneke. B.A, Scott. M.D, Leibowitz. B.S et al. An Autonomous 16 mm/sup 3/ Solar-powered Node for Distributed Wireless Sensor Networks[A].Sensors Proceedings ofIEEE.2002, 2:12-14 .
    [131] Warneke, B, Atwood, B, Pister, K.S.J. Smart Dust Mote Forerunners[A].Micro Electro Mechanical Systems, 2001. The 14th IEEE International Conference on 21-25 Jan. 2001, 357-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700