纳米材料PAMAM G3及甲型H1N1流感病毒导致小鼠急性肺损伤的致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料PAMAM G3引起A549细胞自噬性死亡,并导致小鼠急性肺损伤
     作为一项重要的和新兴的产业,纳米技术正逐步从研究领域涉及到日常生产生活。然而,直到最近,人们才开始关注纳米材料对人体及环境的安全性问题。已经有研究称:纳米材料可以造成肺部的疾病或损伤,但其所导致的肺部损伤的分子机制却仍然没有被揭示出来。
     本文所研究的纳米材料是一种具有高度支化、对称、呈辐射状的大分子——聚酰胺-胺树枝状大分子纳米材料(PAMAM dendrimer)。它由中心核、内层重复的分支亚单位以及表面的功能基团组成。整代的PAMAM纳米材料表面的功能基团为氨基,半代的PAMAM纳米材料表面的功能基团为羧基。由于氨基带有正电荷,整代的PAMAM常被用作载体,递送DNA,进行细胞或生物体内表达。对于这些PAMAM材料生物安全性的研究甚少。
     本文中,我们测定了PAMAM G1~G8以及G3.5、G4.5、G5.5和G7.5对A549细胞的影响。发现从PAMAM G3到PAMAM G8均会引起A549细胞的死亡。而表面基因为阴离子的半代PAMAM对A549细胞的活性不会产生影响。我们对PAMAM G3引起的A549细胞死亡进行了分析,发现PAMAM G3不是通过凋亡通路引起的A549细胞死亡,而是引起细胞自噬性死亡。给予自噬的抑制剂3MA或是利用siRNA技术抑制自噬基因ATG6的表达,可以有效地缓解PAMAM G3引起的A549细胞死亡。同时,自噬性细胞死亡也在PAMAM G4、G5.G6、G7和G8引起的A549细胞死亡中扮演着重要角色。
     同时,我们对PAMAM G3引起的自噬性细胞死亡的信号通路进行了分析。发现PAMAM G3通过Akt-TSC2-mTOR的信号通路引起A549发生自噬性细胞死亡。
     此外,我们发现PAMAM G3会导致小鼠死亡,引起小鼠急性肺损伤。而自噬的抑制剂3MA有效地缓解PAMAM G3引起的小鼠死亡,改善小鼠的急性肺损伤程度。说明自噬在PAMAM G3引起的小鼠死亡中发挥着重要作用。
     甲型H1N1流感病毒导致小鼠急性肺损伤的致病机理研究
     2009年3月,从美国和墨西哥流感样患者呼吸道标本中,鉴定出新的猪源性甲型H1N1流感病毒。该病毒可在人际间传播,已蔓延100多个国家、地区。人感染后的主要临床表现为急性呼吸道感染症状,部分患者病情进展迅速,继发急性呼吸窘迫综合征、肺出血、呼吸衰竭和多器官损伤,导致死亡。感染甲型H1N1流感病毒导致的急性呼吸系统损伤的致病机制尚不清楚。
     本研究通过建立甲型H1N1流感病毒感染的小鼠模型,揭示NF-K B信号的激活,可诱发炎症相关因子产生,形成细胞因子风暴(Cytokine storm),在小鼠感染病毒后导致的急性肺损伤中发挥重要致病作用。
     通过检测小鼠的死亡率、肺组织湿干比、肺组织病理、支气管肺泡灌洗液中的炎症相关因子以及肺组织中单核巨噬细胞磷酸化NF-κB及IκB-α的表达等指标,比较不同流行株的甲型H1N1流感病毒对不同周龄、不同品系小鼠的致病性。
     结果表明:与CA07株甲型H1N1流感病毒比较,BJ株对4周龄的C57BL/6小鼠具有更强的致肺损伤能力,其在小鼠肺组织中的复制能力也明显高于CA07株甲型H1N1流感病毒。
     感染甲型H1N1流感病毒BJ株的小鼠,在连续给予糖皮质激素地塞米松治疗后,其死亡率有明显降低,肺组织损伤也得到显著缓解,说明激素抑制了剧烈的炎症反应,降低了小鼠的急性肺损伤程度。
     上述结果的阐明,为了解甲型H1N1流感病毒导致的急性肺损伤致病机理,并临床上治疗甲型流感病毒导致的急性呼吸系统损伤提供了重要信息。
PAMAM dendrimer (polyamidoamine dendrimer) is a polymer with dentritic branching and radial symmetry. It consists of three parts:a central core, an interior dendritic structure (the branches) and an exterior surface (the end group).
     PAMAM dendrimers can be divided in to the whole (cationic) or half (anionic) generation polymers. The surface of the whole generation is functionalized with primary amino surface groups and the half generation is with carboxylate surface groups. Due to the cationic surface, the whole generation PAMAM could be used for gene delivery for expression in cells or in animals. Therefore, the biosafety of these PAMAMs need to be evaluated.
     In this dissertation, we determine the cells viability after PAMAM G1to G8and G3.5, G4.5, G5.5and G7.5treatment. We find that treatment of A549cells by cationic PAMAMs, from G3to G8could cause cells death, while the anionic PAMAMs have no effect on cells viability. Furthermore, we find that PAMAM G3causes A549cells death through autophagy, but not through apoptosis. Treating cells with inhibitor of autophagy,3-methyladenine (3MA), or by knockdown the autophagy related gene, beclin, could improve the cells viability treated by PAMAM G3. In the meanwhile, autophagic cell death happens in the PAMAM G4, G5, G6, G7and G8treated A549cells.
     In the following step, we analyze the signal transduction pathways in the PAMAM G3induced autophagic cell death. We find that PAMAM G3induced A549autophagic cell death through Akt-TSC2-mTOR pathway.
     Furthermore, we discover that PAMAM G3could induce acute lung injury and cause death in mice, while the autophagy inhibitor3MA could improve the situation. It is indicated that autophagy plays an important role in PAMAM G3induced mice acute lung injury.
     In March2009, in the United States and Mexico, a new porcine influenza A H1N1virus was identified from specimens of patients with influenza-like symptom. The virus can spread from person to person has been spreading to more than100countries and regions.
     Main clinical manifestations of human infected with influenza A H1N1virus was acute respiratory infection symptom. And rapid progression in some patients, sudden high fever, severe pneumonia or secondary acute respiratory distress syndrome, pulmonary hemorrhage, respiratory failure and multiple organ injury were observed. Mechanism of acute respiratory infection related injury caused by pathogenic is not clear yet.
     In this study, we established animal model of Influenza A H1N1virus infection in mice, found that:the activation of NF-κB signaling can induce production of inflammation-related factors (cytokines, chemokines), then the formation of cytokine storm, which plays an important role in the process of acute lung injury in mice after Influenza A H1N1virus infection.
     By detecting the mortality of mice, the lung wet to dry ratio, lung pathology, the level of the inflammation-related factors (cytokines, chemokines) in broncho-alveolar lavage fluid and phosphorylation of NF-K B and IK B-a in lung mononuclear macrophages as indicators, we compare the virulences of different strains of influenza virus after infection. Influenza A H1N1virus BJ strain on the4-week-old C57BL/6mice was found with a stronger ability of lung injury, in comparison to CA07strain. And the viral load in lung tissue of mice was significantly higher than CA07strain.
     Infected with influenza A H1N1virus strain BJ, mice given continuous steroid Dexamethasone, which significantly reduced mortality and markedly respited the lung injury.
     These findings expand our understanding of influenza A H1N1virus induced lung injury and also provide valuable information for the anti-viral research.
引文
[1]张青红,纳米材料的定义、特点和应用前景,http://159.226.97.8/html/Dir/2003/07/04/6732.htm.
    [2]Aoki H. Medical Applications ofHydroxyapatite[M]. Tokyo:Ishiyaku-Euro America.1994:14-20.
    [3]杨勇骥,纳米材料侵入细胞的电镜研究[J]. Journal of Chinese Electron Microscopy Societ 2008 (5):400-406
    [4]S. Svenson, D.A. Tomalia, Advanced Drug Delivery Reviews 2005, (57): 2106-2129.
    [5]崔玉花,等:聚酰胺-胺(PAMAM)树状大分子的研究进展[J].济南大学学报2007(4):356-360
    [6]D.A. Tomalia, A.M. Naylor, W.A. Goddard Ⅲ, Starburst dendrimers: molecular level control of size, shapes, surface chemistry, topology and flexibility from atoms to macroscopic matter, Angew. Chem., Int. Ed. 1990,(29):138-175.
    [7]R. Duncan, L. Izzo, Dendrimer biocompatibility and toxicity, Advanced Drug Delivery Reviews 2005, (57):2215-2237.
    [8]J.C. Roberts, M.K.. Bhalgat, R.T. Zera, Preliminary biological evaluation of polyamidoamine (PAMAM) Starburstk dendrimers, J. Biomed. Mater. Res. 1996, (30):53-65
    [9]S.P. Hong, A.U. Bielinska, A. Mecke, B. Keszler, J.L. Beals, X.Y. Shi, L. Balogh, B.G. Orr, J.R. Baker, M.M.B. Holl, Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells:hole formation and the relation to transport, Bioconjug. Chem.2004, (15):774-782.
    [10]N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J.W. Weener, E.W. Meijer, W. Paulus, R. Duncan, Dendrimers:relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo, J Control. Release 2000,(65):133-148.
    [11]Levine B, Klionsky D J. Development by self-digestion:molecular molecular mechanisms an d biological functions of autophagy. Dev Cell,2004,6(4): 463-477
    [12]Farre J C, Subraman i S. Peroxisome turnover by micropexophagy:an autophagy-related process. Trends Cell Biol,2004,14(9):515-52
    [13]张松龄等,自体吞噬-Ⅱ型程序性死亡,生物化学与生物物理进展,2005,32(11):1011-1015.
    [14]Klionsky D J, Cregg J M, Dunn W A Jr, et al. A unified nomenclature for yeast autophagy -related genes. Dev Cell,2003,5(4):539-545
    [15]Schmelzle T, Hall M N. TOR, a central controller of cell growth. Cell,2000, 103(2):253-262
    [16]Beth Levine and Guido Kroemer, SnapShot:Macroautophagy. Cell,2008: 132-162.
    [17]Noda T, Suzuki Ohsumi Y. Yeast autophagosomes:de novo formation of a membrane structure. Trends Cell Biol,2002,12(5):231-235
    [18]Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like stem mediates protein lipidation. Nature,2000,408(681):488-492
    [19]Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36(12):2491-2502
    [20]He C, Song H, Yorimitsu T, et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cel Biol.2006,175:925-935.
    [1]武泽光,宁琴.甲型H1N1流感研究进展[J]. J Clin Med,2009,26(8):511-517
    [2]张府春,胡凤玉.新型甲型H1N1流感研究进展[J].中山大学学报,2009,9,30(5):481-485
    [3]Thacker E, Janke B. Swine influenza virus:zoonotic potential and vaccination strategies for the control of avian and swine influenzas[J]. J Infect Dis.2008 Feb 15; 197 Suppl 1:S 19-24. Review.
    [4]Hilleman MR. Realities and enigmas of human viral influenza:pathogenesis, epidemiology and control[J]. Vaccine,2002,20(25-26):3068-3087.
    [5]Shinde V, Bridges CB, Uyeki TM,et al. Triple-reassortant swine influenza A (H1) in humans in the United States,2005-2009 [J]. NEJM,2009,360(25):2616-2625.
    [6]Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. NEJM.2009 Jun 18;360(25):2605-15.
    [7]李亮,稽红,张伟伟,朱凤才.甲型H1N1流感流行病学及应对策略研究进展[J]. Modern Medical Journal 2010,38 (1):77-81
    [8]ECDC working group on influenza A(H1N1)v. Preliminary analysis of influenza A(H1N1)v individual and aggregated case reports from EU and EFTA countries. Euro Surveill.2009 Jun 11; 14(23):1923-1928.
    [9]Peiris JS, Poon LL, Guan Y. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans[J]. J Clin Virol.2009 Jul;45(3):169-173. Epub 2009 Jun 11. Review
    [10]Jung T. Choi C, Chae c. Localization of swine influenza virus in naturally infected pigs[J]. Vet Pathol,2002,39(1):10-16
    [11]Van Reeth K, Nauwynck H, Pensaert M. Bronchoalveolar interferon-alpha, t umor necrosis factor-alpha, interleukin-1, and inflammation during acute influenza in pigs:a possible model for humans [J]? J Infect Dis.1998 Apr; 177(4):1076-1079.
    [12]Van Reeth K, Van Gucht S, Pensaert M. Correlations between lung proinflammatory cytokine levels, virus replication, and disease after swine influenza virus challenge of vaccination-immune pigs[J]. Viral Immunol. 2002;15(4):583-594.
    [13]Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense[J]. J Clin Invest.1998 Feb 1;101(3):643-649.
    [14]Woo PC, Tung ET, Chan KH, Lau CC, Lau SK, Yuen KY. Cytokine Profiles Induced by the Novel Swine-Origin Influenza AH1N1 Virus Implications for Treatment Strategies.[J] J Infect Dis.2010 Feb 1;201(3):346-353.
    [15]曹雪涛,等.精编免疫学实验指南[M].北京:科学出版社,2009:454-466
    [16]郭元吉,程小雯.流行性感冒病毒及其实验技术[M].北京:中国三峡出版社,1997.
    [1]Kuma A, Hatano M, Matsui M, el al. The role of autophagy during the early neonatal starvation period[J]. Nature,2004,432:1032-1036.
    [2]Hara T, Nakamura K, Matsui M, el al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J]. Nature,2006,44:885-889.
    [3]Yoshimori T. Autophagy:a regulated bulk degradation process inside cells[J]. Biochemical& Biophysical Res Communication,2004,313:453-458.
    [4]Codogno P, Meijer AJ. Autophagy and signaling:their role in cell survival and cell death. Cell Death Differ,2005,12:1509-1518.
    [5]Klionsky DJ. The molecular machinery of autophagy:unanswered questions[J]. J Cell Sci,2005,118(1):7-18.
    [6]Wang CW, Kiiomky DJ. The molecular mechanism of autophagy [J]. Mol Med, 2003,9(3-4):65-76.
    [7]Levine B,Yuan J. Autophagy in cell death:an innocent convict [J]. J Clin Invest, 2005,115(10):2679-2688.
    [8]Shintan i T, Huan g WP, Stromhaug PE, et al. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell.2002.3:825-837.
    [9]He C, Song H, Yorimitsu T, et al. Recruitment of Atg9 to the preautophagosomal structure by Atgl 1 is essential for selective autophagy in budding yeast. J Cel Biol,2006,175:925-935.
    [10]Maximiliano GG, Hector AS. Isabel C, et al. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholera. PNAS, 2007,104:1829-1834.
    [11]Ogawa M, Yoshimori T, Suzuki T, et al. Escape of intracellular Shigela from autophagy. Science,2005,307:727-731.
    [12]Tekinay T, Wu MY, Otto GP, et al. Function of the Dictyostelium discoideum Atg1 kinase during autophagy and development. Eukaryotic Cell,2006,5: 1797-1806.
    [13]Klionsky DJ. The molecular machinery of autophagy:unanswered questions. J Cell Sci,2005,118:7-18.
    [14]Matsushita M, Suzuki NN, Obara K, et al. Structure of Atg5 center dot Atg16. a complex essential for autophagy. J Biol Chem,2007.282:6763-6772.
    [15]Kanzawa T, Zhang L, Xiao L, et al. Arsennic trioxide induces autophagic cell death in malignant glioma cells by up-regulation of mitochondrial cell death protein BNIP3[J]. Oncogene,2005,24(6):980-991.
    [16]Meijer AJ, Codogno P. Signalling and autophagy regulation in health, aging and disease[J]. Mol Aspects Med,2006,27(5-6):411-425.
    [17]Qu x, Yu J, Bhagat G, et al. Promotion of tumor-genesis by hetero-zygous disruption of the beclin-1 autophagy gene[J]. J Clin Invest,2003,112(12): 1809-1820.
    [18]Kessel D. Protection of Bcl-2 by salubrinal[J]. Biochem BiophysRes Commun, 2006,346(4):1320-1323.
    [19]Pattingre s, Tassa A, Qu x, et al. Bcl-2 anti-apoptotic proteins inhibit beclin 1-dependent autophagy[J]. Cel,2005,122(6):927-939.
    [20]Pattingre s, Levine B. Bcl-2 inhibition of autophagy:A new mute to cancer[J] Cancer Res,2006,66(6):2885-2888.
    [21]Lamparska-Przybysz M, Gajkowska B, Motyl T. BID-deficient breast cancerMCF-7 cells as a model for the study of autophagy in cancer therapy[J]. Autophagy,2006,2(1):47-48.
    [22]Liang C, Feng P, Ku B, et al. Autophagic and tumor suppressor activity of a novel Beclinl-binding protein UVRAG[J]. Nat Cell Biol,2006,8(7):688-698.
    [23]Crigllton D, Wilkinson S, OPrey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis[J]. Cell,2006,126(1):121-134.
    [24]Crigllton D, Wilkinson s, Ryan KM. DRAM links autophagy to p53 and programmed cell death[J]. Autophagy,2007,3(1):72-74.
    [25]Levine AJ, Feng Z, Mak TW, et al. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways[J]. Genes Dev,2006, 20(3):267-275.
    [26]Comes F, Matrone A, Lastella P, et al. A novel cell type-specific role of p38 alpha in the control of autophagy and cell death in colorectal cancer cells[J]. Cell Death Differ,2006,1-10.
    [27]Inbal B, Bialik S, Shani G, et al. DAP kinase and DRP-1 mediate member blebbing and the formation of autophagic vesicles during progressed cell death[J]. J Cell Biol,2002,157(3):455-468.
    [28]Mills KR, Reginato M, Debnth J, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)is required for induction of autophagy during lumen formation in vitro[J]. PNAS,2004,101(10):3438-3443.
    [29]Yanagis8wa H, Miyashita T, Nakano Y, et al. HSpinl, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase independent autophagic cell death[J]. Cell Death Differ,2003,10(7):798-807.
    [30]Pyo JO, Jang MH, Kwon YK, et al. Essential roles of Atg5 and FADD in autophagic cell death:dissection of autophagic cell death into vacuole formation and cell death[J]. J Biol Chem,2005,280(21):20722-20729.
    [31]Yousefis, Pemzzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis [J]. Nat Cel Biol,2006,8(10):1124-1132.
    [32]Hanaoka H, Noda T, Shirano Y, et al. Leaf senescence and starvation--induced chlorosis are accelerated by the disruption of an arabidopsis autophagy gone. Plant Physiol,2002.129:1181-1193.
    [33]Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cel Biol,2001, 152:657-668.
    [34]Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-ependent cycling of mammalian At between the TGN and endosomes. J Cel Sci,2006.119:3888-3900.
    [35]Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell.2005.120:237-248.
    [36]Petiot A, Ogler-Denis E, Blommaart EF, et al. Distinct classes of phosphotidylinositol 3,-kinases are involved in signaling pathways that control macroautophagy in HT-293 cells. J Biol Chem.2000.275:992-998.
    [37]Gorski SM, Chittaranjan S, Pleasance ED, et al. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol,2003,13:358-363.
    [38]Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons:an alternative mechanism of death execution. Mol Cel Neuro sci,1999,14:180-198.
    [39]Kanzawa T, Kondo Y, Ito H, et al. Inhibition of telomerase activity in malign ant glioma cells correlates with their sensitivity to temozolomide. Br J Cancer, 2003,89:922-999.
    [40]Yanagisawa H, Miyashita T,Nakano Y, et al. HSpinl, a trans-membrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ.2003.10:798-807.
    [1]He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients:relation to the acute lung injury and pathogenesis of SAR[J]. J Pathol,2006,210(3):288-297.
    [2]Ali S, Mann DA. Signal transduction via the NF-kappa B pathway:a targeted treatment modality for infection, inflammation andrepair[J]. Cell Bi℃hem Funct, 2004,22(2):67-79.
    [3]Yamagata T, Ichinose M. Agents against cytokine synthesis or receptors[J]. Eur J Pharmacol,2006,533(1-3):289-301.
    [4]Yao HW, Mao LG, Zhu JP. Protective effects of pravastatin in murine lipopolysaccharide-induced acute lung injury[J]. Clin Exp Pharmacol Physiol, 2006,33(9):793-797.
    [5]Mukhopadhyay S, Hoidal R, Mukherjee TK. Role of TNF-a in pulmonary patho-physiology[J]. Respir Res,2006,7(1):125.
    [6]Nonas S, Miller I, et al. Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury[J]. Am J Respir Crit Care Med, 2006,173(10):1130-1138.
    [7]顾兴,金发光等.细胞因子在ARDS发病机制中的作用[J].现代生物医学进展,2007,7(9):1383-1386.
    [8]Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation[J]. J Clin Invest,2006, 116(12):3211-3219.
    [9]Aghai ZH, Kumar S, et al. Dexamethasone suppresses expression of Nuclear Factor-kappa B in the cells of tracheobronchial lavage fluid in premature neonates with respiratory distress[J]. Pediatr Res,2006,59(6):811-815.
    [10]Abraham E. NF-K B activation[J]. Crit Care Med,2000,28:N100-104.
    [11]Barnes PJ. Adcock IM. NF-κ B:a pivotal role in asthma and a new target for therapy[J]. Trends Pharmacol Sci,1997,18(2):46-50.
    [12]Flohe L, Brigelius-Flohe R, Saliou C, et al. Redox regulation of NF-kappa B activation. Free Radic Biol Med,1997,22(6):1115-1126
    [13]May MJ, Ghosh S. Signal transduction through NF-κ B. Immunol Today,1998, 19(2):80-88.
    [14]Pan JL, Xia JL, Yao LB, et al. Tumor necrosis factor-α of lipopolysaccharide-induced expression of the murine P-selectin gene in endothelial cells involves novel κ B sites and a variant activating transcription factor/cAMP response element[J]. J Biol Chem,1998,273(16):10068-10077.
    [15]Petrache I, Birukova A, Ramirez SI, et al. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability[J]. Am J Respir Cell Mol Biol,2003,28(5):574-581.
    [16]Jany B, Betz R, Schreck R. Activation of the transcription factor NF-K B in human tracheobronchial epithelial cells by inflammatory stimuli[J]. Eur Respir J, 1995,8(3):387-391.
    [17]Blackwell TS, Holden EP,Blackwell TR, et al. Cytokine-induced neutrophil chemoattractant mediates neutrophilic alveolitis in rats.-assocation with nuclear factor kappa B activation[j]. Am J Respir Cell Mol Biol,1994,11 (4):464-472.
    [18]Walley KR, Mcdonald TE, Higashimoto Y et al. Modulation of proinflammatory cytokines by nitric oxide in murine acute lung injury[J]. Am J Respir Crit Care Med,1999,160(2):698-704.
    [19]Tulzo YL, Shenkar R, Kaneko D, et al. Hemorrhage increases cytokine expression in lung mononuclear cells in mice:involvement of catecholamines in nuclear factor -kappa B regulation and cytokine expression[J]. J Clin Invest, 1997,99(7):1516-1524.
    [20]Schwartz MD, Moore EE, Moore FA, et al. Nuclear factor kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome[J]. Crit Care Med,1996,24(8):1285-1292.
    [21]Nys M, Deby Dupont G Habraken Y et al. Bronchoalveolar lavage fluid of ventilated patients with acute lung injury activate NF-kappa B in alveolar epithelial cell line:role of reactive oxygen/nitrogen species and cytokines[J]. Nitric Oxide,2003,9(1):33-43.
    [22]Fernandes AB, Zin WA, Roco PR. Corticosteroids in acute respiratory distress syndrome[J]. Braz J Med Biol Res,2005,38(2):147-159.
    [23]Smoak KA. Cidlowski JA. Mechanisms of glucocorticoid receptor signaling during inflammation[J]. Mech Ageing Dev,2004,125(10-11):697-706.
    [24]Ito K, Yamamura S, Essilfie Ouaye S, et al. Histone deacetylase2-mediated deacetylation of the glucocorticoid receptor enables NF-kappa B suppression[J]. J Exp Med,2006,203:7-13.
    [25]You CG Lee S, Kim YW, et al. Effect of acetylsalicylic acid on endogenous I kappa B kinase activity in lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol,2001,280(1):3-9.
    [26]Yinjun L, Jie J, Yungui W. Triptolide inhibits transcription factor NF-kappaB and induces apoptosis of multiple myeloma cells[J]. Leuk Res,2005,29(1):99-105.
    [27]Meyer S, Kohler NG, Joly A. Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation[J]. FEBS Lett,1997, 413(2):354-358.
    [28]Blackwell TS, Blackwell TR, Holden EP, et al. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation[J]. J Immunol,1996,157(4):1630-1637.
    [29]Mendes AF, Caramona MM, Carvalho AP, et al. Role of mitogen-activated protein kinases and tyrosine kinases on IL-1-induced NF-kappaB activation and iNOS expression in bovine articular chondrocytes[J]. Nitric Oxide,2002,6(1): 35-44.
    [30]Lentsch AB, Jordan JA, Czermak BJ, et al. Inhibition of NF-κB activation and augmentation of IκB-β by secretory leukocyte protease inhibitor during lung inflammation [J]. Am J Pathol,1999,154(1):239-247.
    [30]Lentsch AB, Shanley TP,Sarma V, et al. In vivo suppression of NF-kappa B and preservation of I kappa B-alpha by interleukin-10 and interleukin-13[J]. J Chin Invest,1997,100(10):2443-2448.
    [31]Lentsch AB, Crouch LD, Jordan JA, et al. Regulatory effects of interleukin-11 during acute lung inflammatory injury[J]. J Leuk Biol,1999,66(1):151-157.
    [32]Griesenbach U, Scheid P, Hillery E, et al. Anti-inflmmatory gene therapy directed at the airway epithelium[J]. Gene Ther,2000,7(4):306-313.
    [33]Schimmer AD, Welsh K, Pinilla C, et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity[J]. Cancer Cell,2004,5(1): 25-35.
    [34]Von Knethen A, Callsen D, Brune B. NF-kappa B and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW264.7 macrophages[J]. Mol Biol Cell,1999,10(2):361-372.
    [35]Kang JL, Park W, Pack IS, et al. Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-kappa B and inflammatinn[J]. J Appl Physiol, 2002,92(2):795-801.
    [36]Madjdpour L, Kneller S, Booy C, et al. Acid-induced lung injury:role of nuclear factor-kappa B[J]. Anesthesiology,2003,99(6):1323-1332.
    [37]Saitoh H, Masuda T, Zhang XY et al. Effect of antisense oligonucleotides to nuclear factor-kappa B on the survival of LPS-induced ARDS in mouse[J]. Exp Lung Res,2002,28(3):219-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700