长期使用氯胺酮导致食蟹猴大脑血管氧化应激及凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     氯胺酮是N-甲基-D-天门冬氨酸(N-methyl-D-aspartate,NMDA)受体的非竞争性拮抗剂,长期滥用会导致学习、记忆等认知功能的损害,但其机制尚不完全清楚。大量研究认为,长期应用麻醉剂量的氯胺酮可致神经细胞调亡,从而引发与记忆密切相关的脑区如海马功能紊乱,继而出现记忆障碍。最近的研究结果表明,氯胺酮作为新兴毒品被长期滥用,除导致记忆功能损伤外,还引起人情绪和人格出现异常,提示氯胺酮的中枢损伤效应存在多元性。学习记忆障碍是脑血管性疾病的主要症状,由脑血管损伤引发的缺血缺氧是导致学习记忆障碍的主要原因之一。但氯胺酮长期使用是否对脑血管产生影响尚没有系统研究。本实验通过观察长期静脉应用氯胺酮的食蟹猴行为学、大脑动脉形态学及蛋白质组学的改变来研究氯胺酮引起食蟹猴大脑血管氧化应激及凋亡的可能机制。
     研究目的
     观察氯胺酮连续给药对食蟹猴行为学、大脑动脉(动脉环交通支)形态、氧化应激及凋亡的影响。
     研究方法
     随机将12只健康雄性食蟹猴分为氯胺酮组和生理盐水组,氯胺酮组8只,每天股静脉注射盐酸氯胺酮注射液,剂量为1mg/kg。生理盐水组4只,每天股静脉注射生理盐水,剂量为1mL/kgo分别在造模的第1、3、7、14、56、112、183、184、185天,于自然状态下用摄像机记录注射氯胺酮或生理盐水前后15分钟的行为变化,连续观察6个月。持续给药6个月后牺牲动物,冰上剥离食蟹猴脑血管(动脉环交通支),部分置-80℃保存,剩余部分制备石蜡切片。HE染色观察大脑动脉的形态学变化;原位末端脱氧核糖核苷酸转移酶标记技术(Tunnel法)检测脑动脉细胞凋亡水平:用比色法测定H2O2水平用以衡量血清和血管组织内的活性氧(reactive oxygen species,ROS)水平;采用免疫组织化学染色和Western blot检测血管中NADPH氧化酶的表达。
     研究结果
     1.与对照组比较,氯胺酮组行为学未出现明显变化。
     2.连续给药6个月后,氯胺酮组动脉环交通支中出现明显的血栓,血栓成分主要是血小板、红细胞、白细胞和纤维蛋白,呈混合血栓的特征,另外还可发现血管内膜增厚;而对照组其血管壁光滑,无异物出现。此外,氯胺酮组动脉环交通支外膜有明显的炎性细胞浸润;而对照组血管壁无白细胞浸润。
     3.连续给药6个月后,氯胺酮组和对照组动脉环交通支细胞均未出现明显的凋亡现象。
     4.连续给药6个月后,氯胺酮组血清和血管组织中活性氧水平明显高于对照组,说明氯胺酮长期滥用后可引起组织中抗氧化能力降低、细胞功能受损。
     5.连续给药6个月后,氯胺酮组免疫组织化学和Western blot检测动脉环交通支组织NADPH亚基p47phox蛋白的表达明显高于对照组,差异有统计学意义。
     研究结论
     1.长期连续使用氯胺酮不会引起食蟹猴明显的行为学改变。
     2.长期连续使用氯胺酮不会引起食蟹猴脑血管细胞凋亡。
     3.长期连续使用氯胺酮可激活脑血管内皮细胞NADPH氧化酶,后者诱发血管内皮细胞氧化应激,导致血管炎症和血栓形成。
Hypothesis
     Ketamine is an antagonist of the N-methyl-d-aspartate receptor (NMDAR). Long-termed abuse of ketamine might result in the dysfunction in learning and memory. However, to date, the underlying mechanism remains unclear. Nowadays, more and more evidence have suggested that ketamine could cause neuronal apoptosis. If it occurred in the hippocampus, which is an important region responsible for learning and memory in the central nervous system, damaged ability of learning and memory were also paralleled as a consequence of behavioral change. Recent evidence showed that ketamine was abused as a new drug and caused a lot of issues related to emotion and personality besides dysfunction of learning and memory, suggesting that ketamine may have multiple negative effects on the different regions in the central nervous system. Given the fact that cerebrovascular diseases can lead to hypoxia and ischemia, which may be the factors contributing to the dysfunction in learning and memory. However, till now, it is still to be elucidated that weather long-term administration of ketamine affects cerebrovascular system.
     Objective
     The aim of the present study was to explore the effects of long-term administration of ketamine on behavior in macaca fascicularis. Further more, we examined weather ketamine could have an effect on morphology of arterial circle of Willis and the underlying mechanisms relevant to NADPH oxidase activation and apoptosis of endothelial of cerebrovascular system.
     Methods
     Twelve healthy male macaca fascicularis were randomly divided into two groups:4 in control group which was treated with normal saline in a intravenous manner; 8 in experimental group administered with ketamine in 1 mg/kg/day.The duration of the experiment were 6 months. Behavior data including climb, movement, jump and walk was recorded by a video camera 15 minute before and after administration of the drug or vehicle. At the end of the experiment, the monkeys were sacrificed and trunk blood was collected. In addition, the brain was removed and cerebrovascular system were dissected on ice and stored at-80℃for further study. Morphology of arterial circle of Willis was examined by HE staining and apoptosis of cerebrovascular endothelium was also assessed by TdT-mediated dUTP nick end labeling (TUNEL) assay. Serum level of H2O 2 was taken as an indicator of reactive oxygen species (ROS). Immunohistochemistry and Western blotting were performed to observe the NADPH oxidase activation.
     Results
     1. Compared to the control group, monkeys in the experimental goup did not show significant difference in behavioral changes.
     2. Six months after ketamine administration, cerebrovascular endothelial thrombosis was markedly evidenced by HE staining in the experimental group compared to the control group. The main components of thrombus were composed of platelet, red blood cells (RBC), white blood cells (WBC) and fibrin, which is the characteristic pattern of mixed thrombus. In addition, cerebrovascular intima hyperplasia was also observed. There were also a large number of inflammatory cells infiltration in cerebrovascular adventitia in the experimental group, while the control group did not show the corresponding changes.
     3. There were also no cerebrovascular endothelial apoptosis observed both in the control and experimental group after 6 months of administration of ketamine.
     4. In the experimental group, serum and cerebrovascular levels of reactive oxygen species were higher than those in the control group, indicating that long-termed use of ketamine might result in the decrease of the antioxidant capacity and cellular dysfunction.
     5. Six months after ketamine administration, by Immunohistochemistry and Western blotting, there were also higher level of expression of p47phox, one of subunits of NADPH, in the experimental group compared to the control group.
     Conclusion
     First, long-term(6 months) administration of ketamine had no effect on the behavioral changes.
     Second, after long-term(6 months) administration of ketamine cerebrovascular endothelial apoptosis was not observed in macaca fascicularis.
     Last, long-term(6 months) administration of ketamine was able to activate cerebrovascular endothelial NADPH oxidase, which could further induce the imbanlace of reactive oxygen species (ROS) and result in the cerebrovascular inflammation and formation of thrombosis in macaca fascicularis.
引文
1.Kawasaki T, Ogata M, Kawasaki C, et al. Ketamine suppresses proinflammtory eytokine production in human whole blood in vitro [J]. Anesth Analg.1999, 89:665-669
    2. Taniguchi T, Shibata K, Yamamoto K. Ketamine inhibitsendotozxine induced shock in rats [J]. Anesthesiology.2001,95:928-932.
    3. Larsen B, Hoff G, Wilhelm W, et al. Effect of intravenousanes thetics on sponlancous and endotoxin stimuliated cytokine response in cultured buman whole blood [J]. Anesthesiology.1998,89:1218-1227.
    4.胡春旭,高崇荣.亚麻醉剂量氯胺酮用于治疗急性严重哮喘9例报道[J].临床麻醉学杂志.2000,16:1100-1106.
    5.Petrillo TM, Fortenberry JD, Linzer JF, et al. Emergency department use of ketamine in pediatric status asthmaticus [J]. J Asthma.2001,38:657-664.
    6.Cui JG, O'Connor WT, Ungerstedt U, et al. Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism [J]. Pain.1997,73:87-95.
    7.Bowdle TA, Radant AD, Cowley DS, et al. Psychedelic effects of ketamine in healthy volunteers:relationship to steady-state plasma concentrations [J]. Anesthesiology. 1998,88:82-88.
    8.Pfenninger EG, Durieux ME, Himmelseher S. Cognitive impairment after small-dose ketamine isomers in comparison to equianalgesic racemic ketamine in human volunteers [J]. Anesthesiology.2002,96:357-366.
    9.Parwani A, Weiler MA, Blaxton TA, et al. The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers [J]. Psychopharmacology.2005, 183:265-274.
    10.Rudin M, Ben-Abraham R, Gazit V, et al. Single-dose ketamine administration induces apoptosis in neonatal mouse brain [J]. J Basic Clin Physiol Pharmacol.2005, 16:231-243.
    11.Fletcher PC, Honey GD. Schizophrenia, ketamine and cannabis:evidence of overlapping memory deficits [J]. Trends Cogn Sci.2006,10:167-174.
    12.Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMD A antagonist, ketamine, in humans [J]. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry.1994,51:199-214.
    13.Altura BM, Gupta RK. Cocaine induces intracellular free Mg deficits, ischemia and stroke as observed by in-vivo 31P-NMR of the brain. Biochim [J]. Biophys. Acta. 1992,1111:271-274.
    14.Altura BM, Zhang A, Cheng TPO, et al. Cocaine induces rapid loss of intracellular free Mg2+in cerebral vascular smooth muscle cells [J]. Eur J Pharmacol.1993, 246:299-301.
    15.Barbour RL, Gebrewold A, Altura BM. Optical backscatter spectroscopy of rat brain indicates cocaine alters blood volume, hemoglobin oxygenation and mitochondrial redox state [J]. FASEB J.1993,7:1076.
    16.Bennett MR, Evan GI, Newby AC. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-gamma, heparin and cyclic nucleotide analogues and induces apoptosis [J]. Circ Res.1994,74:525-536
    17. Young C, Jevtovic-Todorovic V, Qin YQ, et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain [J]. Br J Pharmacol.2005,146:189-197.
    18.Shang Y, Wu Y, Yao S, et al. Protective effect of erythropoietin against ketamine-induced apoptosis in cultured rat cortical neurons:involvement of PI3K/Akt and GSK-3 beta pathway [J]. Apoptosis.2007,12:2187-2195.
    19.Wang C, Anastasio N, Popov V, et al. Blockade of N-methyl-D-aspartate receptors by phencyclidine causes the loss of corticostriatal neurons [J]. Neuroscience.2004, 125:473-483.
    20.Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme [J]. Circulation.1995, 91:2703-2711.
    21.Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis [J].Am J Pathol.1995,147:251-266.
    22.Devlin AM, Clark JS, Reid JL, et al. DNA synthesis and apoptosis in smooth muscle cells from a model of genetic hypertension [J]. Hypertension.2000,36:110-115.
    23.Morgan CJ, Muetzelfeldt L, Curran HV. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing:a 1-year longitudinal study [J]. Addiction.2010,105:121-133.
    24.Taffe MA, Davis SA, Gutierrez T, et al. Ketamine impairs multiple cognitive domains in rhesus monkeys [J]. Drug Alcohol Depend.2002,68:175-187.
    25.Hayashi H, Dikkes P, Soriano SG. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain [J]. Paediatric Anaesthesia.2002, 12:770-774.
    26.刘毓和,吴新民,杜敏逸.咪唑安定、异丙酚和氯胺酮对老年大鼠认知功能的影响[J].中华麻醉学杂志.2006,26:315-317.
    27.王贤裕,田玉科,杨辉.腹腔重复注射小剂量氯胺酮术后镇痛对趾部切口术大鼠认知功能的影响[J].中华麻醉学杂志.2005,25:205-207.
    28.黄陈平,林林,宋明芬,等.氯胺酮对大鼠学习记忆功能及海马神经元的影响[J].毒理学杂志.2007,21:187-189.
    29.林林,黄陈平,方周溪,等.多次氯胺酮麻醉对大鼠学习记忆的影响[J].安徽医药,2006,10(7):490-491.
    30.Hance AJ, Winters WD, Quam DD, et al. Catalepsy induced by combinations of ketamine and morphine:potentiation, antagonism, tolerance and cross-tolerance in the rat [J]. Neuropharmacology.1989,28:109-116.
    31.MacLennan FM. Ketamine tolerance and hallucinations in children [J]. Anaesthesia. 1982,37:1214-1215.
    32.Dillon P, Copeland J, Jansen K. Patterns of use and harms associated with non-medical ketamine use [J]. Drug Alcohol Depend.2003,24;69:23-28
    33.Cho HS, D'Souza DC, Gueorguieva R, et al. Gueorguieva R Absence of behavioral sensitization in healthy human subjects following repeated exposure to ketamine [J]. Psychopharmacology (Berl).2005,179:136-143.,
    34.Duschek S, Schandry R. Deficient adjustment of cerebral blood flow to cognitive activity due to chronically low blood pressure [J]. Biol Psychol.2006,72:311-317.
    35.Springer JE, Nottingham SA, McEwen ML, et al. Caspase-3 apoptotic signaling following injury to the central nervous system [J]. Clin Chem Lab Med.2001, 39:299-307.
    36.Cowan CM, Roskams AJ. Caspase-3 and caspase-9 mediate developmental apoptosis in the mouse olfactory system [J]. J Comp Neurol.2004,474:136-48.
    37.Isenmann S, Stoll G, Schroeter M, et al. Differential regulation of Bax, Bcl-2, and Bcl-Ⅹ proteins in focal cortical ischemia in the rat [J]. Brain Pathol.1998,8:49-62; discussion 62-3.
    38.Scallet AC, Schmued LC, Slikker W Jr, et al. Developmental neurotoxicity of ketamine:morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons [J]. Toxicol Sci.2004,81:364-70.
    39.Zhang X, Paule MG, Newport GD, et al. A minimally invasive, translational biomarker of ketamine-induced neuronal death in rats:microPET Imaging using 18F-annexin V [J]. Toxicol Sci.2009,111:355-61.
    40.蒋娟,汪萌芽,胡凤玉,等.氯胺酮对离体海马神经元的浓度相关性作用[J].皖南医学院学报,2002,21:244-246.
    41.Lee ST, Wu TT, Yu PY, et al. Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway [J]. Br J Anaesth.2009,102:80-89.
    42.Miller AA, Budzyn K, Sobey CG. Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention [J]. Clin Sci (Lond).2010,119:1-17.
    43.Lassegue B, Griendling KK. NADPH oxidases:functions and pathologies in the vasculature [J]. Arterioscler Thromb Vasc Biol.2010,30:653-661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700