扣件式钢管高大模板支撑架稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扣件式钢管脚手架和模板支撑架因其装拆方便、通用性强、承载力大、整体刚度好等优点而被广泛使用,占脚手架使用总量的70%左右。但现场施工中该支撑体系失稳导致模板坍塌事故频发,已成为施工中易引发群体伤亡的重大危险源之一,提高该体系的安全可靠性成为建筑行业的一个重要课题。
     本文首先列举了近年来发生的重大脚手架和模板支撑架安全事故,分析了事故原因和预防措施,以现场调研为基础,总结了模板支架在设计和搭设过程中常忽视的一些问题和有安全隐患的地方。总结了目前的扣件式模板支架计算模型、荷载与荷载组合、现场实测以及足尺试验研究的研究成果,为后面的研究提供思路和方法。
     借助SAP2000建立模型,分析高大模板支撑体系的竖向剪刀撑、水平剪刀撑、扫地杆搭设、扫地杆高度、钢管壁厚、节点半刚性、及搭设高度等构造因素在体系几何尺寸不变的情况下对其屈曲承载力的影响。发现:竖向剪刀撑单向设置时,其设置方法对架体承载力影响很小,竖向剪刀撑双向设置时,其设置方法对架体承载力影响很大;架体承载力钢管壁厚的影响较大;架体高度的增加、扫地杆高度的增加以及扣件拧紧力矩的减小都是降低架体承载力的因素,双向设置扫地杆对架体稳定有重要作用。借助SAP2000,对架体在承受一定水平荷载作用下的位移和内力进行了分析,考虑设置剪刀撑和不设置剪刀撑两种搭设情况以及6种节点拧紧力矩,总结了剪刀撑设置与否和节点刚度的不同对节点和杆件的内力和位移的影响。根据分析计算结果,提出高支模体系设计和施工中应注意的问题和建议。
     对某非标准模板支架进行了现场检测,分析施工中横杆、立杆的应力变化,发现施工中横杆和立杆经历了复杂的应力变化,在不设置剪刀撑时局部杆件承受较大弯矩,在设计支架时应重视剪刀撑设置。
The fasten-style tubular steel scaffolding and falsework system is widely used in building construction in China because they are convenient/versatile/high carrying capacity/good overall stiffness and relatively inexpensive. It's said that they composite 70 percent of overall scaffold used in China. However, at the same time, instability phenomenon of that support system occurs from time to time, engendering template accidents happened frequently and that has now become one of the major sources of dangerous which can easily lead to group casualties in building construction. How to improve security and reliability of the system has been a new topic of the construction industry.
     Firstly, the dissertation enumerated the safety accidents of scaffolds in recent years and analyzed the reasons which cause these accidents, concluded the means to avoid the happening of these accidents. On the base of investigating the spot , Some problems which are easily ignored and easily become hazards are summarized. The dissertation also concluded the study fruit of scaffold and falsework both at home and aboard, the study fruit include computation models/ load and load combination/ on-site measurement and full-scale test, which is very useful for the following study.
     Making use of SAP2000 finite element analysis software, and analyses the mechanism deeply that how the factors effect the bearing capacity of buckling when the physical dimension is unchanged. The constitution factors of the supporting structure for tall and large formwork include lateral crossing struts/ viterical crossing struts/ the setting ways of floor members/ the hight of floor members/ steel tube thickness /semi-rigid/ and structure hight. It is found: vertical crossing struts is not important to bearing capacity of falsework when vertical crossing struts is setted in single direction of two lateral directions, but is an sensitive element when vertical crossing struts is setted in both of two lateral directions. Floor member and steel tube thickness are important elements to bearing capacity of falsework. The bearing capacity of buckling reduces when the hight of the structure or floor member increases or node stiffness reduces, the completeness of the floor members is important to the structure. The internal force and displacement of the nodes and elements have been discussed. According to the analyzing of the calculating result, the paper puts forward some suggestion and problems about the supporting structure for tall and large formwork during the design and the construction, which the designers and the constructors can refer to.
     By on-site examination for construction are researched formwork support .The rule of internal force variation of support poling and level pole in the construction are researched. The results show that poling and level pole experiences complex stress variation in the construction process without bridging, and some elements are under high bending moment without bridging .So the arrangement of bridging should be paid more attention to when carrying on the formwork support design.
引文
[1]刘家彬等.扣件钢管架支模的安全性[J].施工技术, 2002, 3:10-12
    [2]许得水编译.英国临时设施工程设计计算.建筑技术, 1989. 2 (3).
    [3] Peng J. L.Chen W. F. and Chan S. L. Structrual modeling and analysis of scaffold systems. Advances in Steel Structures, Hong Kong, 1996, 251-256.
    [4] Godley M. H. R and Beale R. G. Sway stiffness of scaffold structures. The Structural Engineer, 1997, 75, No. 1,4-12.
    [5]余宗明.新型脚手架的结构原理及安全使用[M].北京.中国铁道出版社. 2001
    [6]魏涛,张伟星.钢管脚手架整体结构计算[J].建筑安全2009年第10期
    [7]杜荣军.扣件式钢管脚手架的设计与计算.建筑技术, 1987. 8.
    [8] JGJ 130-2001,建筑施工扣件式钢管脚手架安全技术规范[S]
    [9]徐崇宝,黄宝魁,潘景龙等.双排扣件式钢管脚手架工作性能的理论分析与实验研究[J].哈尔滨建筑工程学院学报, 1989, 22(2):38-55.
    [10]尹德生.钢管支架节点转动刚度的测定方法[J],实验力学, 1994, 9 (4)
    [11]岳峰.超高层建筑附着整体升降钢管脚手架风荷载及极限承载力研究[D].同济大学建筑工程学院, 2002.
    [12]敖鸿斐,李国强.双排扣件式钢管脚手架的极限稳定承载力研究[J],力学季刊, 2004, 25(6))
    [13]杜荣军.混凝土工程模板与支架技术[M].北京:机械工业出版社, 2004.
    [14] Yue F, Yuan Y, Li G Q. Wind Load on Integral-Lift Scaffolds for Tall Building Construction [J]. Journal of Stmctural Engineering, ASCE, 2005, 131(5): 816-824.
    [15]袁雪霞,金伟良,鲁征,刘鑫,陈天民.扣件式钢管支模架稳定承载能力研究[J].土木工程学报2006, 39(5)
    [16]邹翔,吕凤梧,黄鸿祺.双排扣件式钢管脚手架的可靠度分析[J].施工技术, 2007.33(33)
    [17] GB50204-92.混土结工程施工及验收规范[s]
    [18]张传敏,方东平,耿东川等.钢筋混凝土结构施工活荷载现场调查与统计分析[J].工程力学, 2002, 19(5): 62-66.
    [19]王森军.混凝土结构扣件式钢管高支撑架的动态晌应分析[D].浙江工业大学硕士学位论文,2007
    [20]周铁峰,侯基行,章雪峰.混凝土结构扣件式模板支撑体系数值分析[J].山西建筑, 2006, 32(6): 72-73.
    [21]舒文超,李华明.钢管扣件高大模板支撑系统设计及实测分析[J].施工技术, 2006,35(7):50-52.
    [22]李维滨,刘桐,郭正兴.扣件式钢管模板支架试验研究,建筑技术开发, 2004年l月
    [23]鲁征.扣件式脚手架及模板支架施工期安全性分析.浙江大学申请硕士学位论文, 2005
    [24]胡长明.扣件联接钢结构的试验及其理论研究. [D].西安建筑科技大学博士论文, 2008.
    [25] Hongbo Liu, Qiuhong Zhao, Xiaodun Wang, Ting Zhou, Dong Wang, Jie Liu , Zhihua Chen. Experimental and analytical studies on the stability of structural steel tube and coupler scaffolds without X-bracing [J], Engineering Structures, 2010, 32:1003-1015
    [26] Hanes M, Hindson D.Structural Behaviour of Load Bearing Falsework [J]. Proceedings of the Institution of Civil Engineers. (London). Part1- Design&Constluction, 1979, 65 (2)
    [27] Yu W K, Chung K F, Chan S L. Structural Instability of Multi-Storey Door-Type Modular Steel Scafflods [J]. Engineering Structures, 2004, 26 (7): 867-881
    [28] Weesner L B, Jones H L Experinental and Analytical Capacity of Frame Scaffolding [J]. Engineering Structures, 2001.23(6): 592-599.
    [29] Peng J L, Chan S L, Wu C L. Effects of Geometrical Shape and Incremental Loads on Scaffold Systems [J]. Journal of Constructional Steel Research, Elsevier Science Direct, 2007, 63: 448-459.
    [30] Peng Jui-Lin. Stability Analyses and Design Recommendations for Practical Shoring Systems During Construction [J]. Journal of Construction Engineering and Management,ASCE,2002, 128(6): 536-544.
    [31] Peng J L, Pan A D, Chen W F Approxinate Analysis Method for Modular Tubular Falsework [J].Journal of Structural Engineering, A SCE. 2001, 127(3): 256-263.
    [32]曹英波.建筑施工安全事故统计分析. [J].安全生产.2010年5月
    [33]袁雪霞.建筑施工模板支撑体系可靠性研究[D].杭州:浙江大学,2006.
    [34]胡凯山.扣件式钢管模板支撑架结构力学性能研究[D].浙江大学申请工学硕士学位论文.2007.5
    [35]赵玉章等.我国模板脚手架工程安全事故的现状和对策.建筑技术[J]. 2008(7):492-495
    [36]周继忠,蔡雪峰,张士元.扣件钢管脚手架高大模板支撑安全事故分析与控制[J]福建工程学院学报, 6(2):17-24
    [37]潘德恩,彭瑞麟.钢管脚手架支撑结构类型及破坏模式之探讨[J].建筑钢结构进展. 2002. 4(4):18-23
    [38]浙江省建设厅关于加强承重支撑架施工管理的暂行规定[EB].浙建建[2003] 37号, 2003-03-25.
    [39]徐凤枝.刚性及半刚性平面钢框架的二阶效应分析(D).合肥工业大学硕士学位论文. 2002.4
    [40]丁洁民,沈祖炎.一种半刚性节点的实用计算模型[J].工业建筑,l992(ll):29-32.
    [41]吴文军,陈军明等.节点刚度对钢框架力学性能的影响分析[J].广西工学院学报,2007(12): 20-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700