岩质路堑边坡柔性支护结合厚基材生态防护技术试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对山区风化岩质路堑边坡易产生崩塌、坠落、坡面冲刷及坡顶堆积失稳等工程问题,依托河北省大广公路蒙冀界至承德段高速公路建设工程,选取K96+265~K96+450段岩质路堑边坡开展了柔性支护结合厚基材生态防护技术室内试验研究,以期为实际工程提供参考和依据。
     1)通过岩石的室内物理力学性质试验,得到其崩解指数为43.03%,天然、烘干和饱水状态下的单轴抗压强度分别为27.61MPa、23.68MPa和1.23MPa,粘聚力为1.52MPa,结果表明该岩体属于软质岩,易风化失稳。
     2)通过钢丝网拉伸性能试验,得到双绞合钢丝网和HEA钢绳网的抗拉强度分别为453.2MPa和1973.2MPa,弹性模量分别为0.85GPa和14GPa,延伸率分别为21.3%和25.2%,结果表明钢丝网具有较高的抗拉强度和良好的柔韧性。
     3)通过室内土工试验,分析了用于厚基材的基质土和表层土的物理力学性质。结果表明,两种土质均属于低塑性粉质粘土。通过厚基材的无侧限抗压强度试验以及室内模拟试验,确定了厚基材各种材料的最佳掺配比例为土∶水泥∶肥料∶纤维∶保水剂=90.997%∶6%∶1%∶2%∶0.003%,同时确定护坡基材平均厚度不低于8cm,生长基材的厚度为2cm。
     4)根据现场调查、室内试验结果和相关文献资料,确定了试验路段所采用的柔性支护方案为:主锚杆+纵横向支撑绳+钢绳网+双绞合钢丝网,并用Φ8mm钢丝绳进行缝合,使钢绳网块紧贴坡面。经验算得到,挂网后边坡的安全系数F '=2.13,相对于未挂时提高了53.3%,说明挂网极大地提高了边坡的稳定性。
     5)通过总结分析柔性支护系统和厚基材生态防护施工工艺,提出了相应的施工注意事项和施工质量管理要求。
     总之,本文的研究结果为柔性支护技术推广应用积累了经验,可供同类工程参考。
According to the engineering problems such as collapse, rockfall, slope wash,deposit instability on top of slope and etc in the weathered rock cut slope of mountainarea, and relying on the construction project of expressway from the border betweenInner Mongolia and Hebei to Chengde City in Daguang Highway, the section ofK96+265~K96+450for rock cut slope was selected to develop the laboratory researchon technology of flexible retaining with thick substrate ecological protection in orderto provide a reference and basis for the actual project.
     1) Through the laboratory tests of physical and mechanical properties of therock, the slaking index is43.03%, the uniaxial compressive strength under the state ofnatural, drying, water-saturated are27.61MPa,23.68MPa and1.23MPa, respectively,and the cohesion is1.52MPa. The results show that the rock belongs to the soft rock,and it is easy to weathering instability.
     2) Through the tests of tensile performances for the steel wire mesh, the tensilestrength, the elastic moduli and the elongation rates of the double twisted steel wiremesh and the wire net of HEA are453.2MPa and1973.2MPa,0.85GPa and14GPa,21.3%and25.2%, respectively. The results show that the steel wire mesh is higher intensile strength and well in flexibility.
     3) Through the laboratory tests of the soils, the physical and mechanicalproperties were analyzed for the substrate soil and the surface soil of thick substratematerial. The results show that the both soils belong to low plastic silty clay. Throughthe tests of unconfined compressive strength and indoor simulation for the thicksubstrate, the optimum mix ratio of the thick substrate was determined as soil:cement: fertilizer: fiber: water retaining agent=90.997%:6%:1%:2%:0.003%.The average thickness of the slope protection substrate is not less than8cm, and thethickness of the growing base material is2cm.
     4) According to the field investigation, the laboratory tests and the relativeliteratures, the flexible retaining scheme in the trial road section was determined as:main anchor+longitudinal and horizontal supporting rope+steel wire net+doubletwisted steel wire mesh, and the system is stitched with the steel rope of Φ8mm and tomake the steel rope blocks close to the slope. The checking calculation was putforward to obtain the safety coefficient as F'=2.13after hanging the systems, and the safety coefficient increases by53.3%for without hanging the system. It indicatesthat the hanging has greatly improved the slope stability.
     5) The corresponding construction considerations and the construction qualitymanagements were put forward in accordance with the summarization and analysis ofconstruction technique for flexible retaining system and thick substrate ecologicalprotection.
     In summary, the researches can accumulate the popularization experiences forthe flexible retaining technology and provide a reference for the similar projects.
引文
[1]林红梅.辉煌60年:中国公路通车总里程60年增长45倍[N].新华通讯社2009-08-16.
    [2]韩炜.公路边坡综合防护设计研究[东南大学硕士学位论文][D].南京:东南大学,2010.
    [3]李庆斌.柔性防护系统(TPS2型)在边坡防护中的应用[S].铁道标准设计,2007,(11):19-20.
    [4]陈洪波.路基边坡地质灾害防治技术信息系统[长安大学硕士论文][D].西安:长安大学,2007.
    [5]阳友奎,贺咏梅.斜坡坡面地质灾害SNS柔性防护系统概论[J].地质灾害与环境保护,2000,11(2):121-125.
    [6]阳友奎,贺咏梅.坡面地质灾害钢丝绳网柔性防护系统[J].路基工程,2000,(4):35-39.
    [7]阳友奎,姜瑞琪. SNS柔性防护技术及其与传统边坡防护方法之比较[J].工程地质学报,2002,(10增刊):354-363.
    [8]阳友奎,贺咏梅,彭伟.崩塌落石灾害及其SNS柔性防护[J].西南公路,2003,(1):16-19.
    [9]张俊云,李绍才,周德培.岩石边坡植被护坡技术[J].路基工程,2000,(5):1-3.
    [10]周德培,李绍才.岩石生态护坡研究简介[J].水土保持通报,2000,20(4):35-38.
    [11]周辉.生态与工程设施对边坡灾害的早期防范研究[重庆大学硕士论文][D].重庆:重庆大学,2006.
    [12] Baets S De, Poesen J, Gysse ls G, et al. Effects o f grass roots on the erodibilityof topsoils during concentrated flow [J]. Geom or phology,2006,76(1-2):54-67.
    [13] Tekleha imanot Z, Jarv is P G, Ledger D C. Rain fall interception and boundarylayer conductance in relation to tree spacing [J]. Journal of Hydrology(Amsterdam),1991,123(3-4):261-278.
    [14] Herw itz S R. Raindrop impact and water flow on the vegetative surfaces of treesand the effects on stem flow and through fall generation [J]. Earth SurfaceProcesses and Landforms,1987,(12):425-432.
    [15] Waldron, L J, S Dakessin. Soil Reinforcement by roots: calculation of increasedsoil shear resistance from root property [J]. Soil science,1981,132(6):427-435.
    [16] Wu, T H, W P Mckinell, D N Swanston. Strength of tree roots and landslide onPrince of Wales Island, Alaska [J]. Canadian Geotechnical Journal,1979,16(1):19-33.
    [17] Milena Holmgren Scheffer. EL Nino as window of opportunity for the restorationof degraded arid ecosystems [J]. Ecosystems,2001,(4):151-159.
    [18] Donald H. Gray, Robbin B. Sotir. Biotechnical stabilization of highway cut slope[J]. Journal of Geotechnical Engineering,1992,118(9):1395-1409.
    [19] Shew bridge, S E, N, Sitar. Deformation characteristics of reinforced sand indirect shear [J]. Journal of Geotechnical Engineering (ASCE),1990,116(GT7):1153-1157.
    [20]周启金.高速公路挖方边坡防护形式的优化组合[山东大学硕士论文][D].济南:山东大学,2007.
    [21]章照宏.斜坡落石灾害及其SNS柔性防护[J].湖南交通科技,2006,32(1):65-69.
    [22]左虎,张雄,孟嘉鹏.主动柔性防护网在护坡工程中的应用[J].湖北水利发电,2008,(5):76-78.
    [23]鲁明威,戴文亭,董建中.延吉至图们高速公路边坡落石柔性防护研究[吉林大学硕士学位论文][D].长春:吉林大学,2008.
    [24]牛天培.浅析危岩边坡落石灾害及SNS主动防护[J].山西建筑,2009,35(32):114-115.
    [25]李学荣. SNS柔性防护系统在危岩边坡在应用[J].长沙大学学报,2007,21(2):50-53.
    [26]马洪勇.公路岩石边坡绿化防护技术分析[J].福建建设科技,2009,(1):33-34.
    [27]吴卫华. SNS柔性防护网在公路边坡中的应用[J].黑龙江交通科技,2007,(6):11-12.
    [28]张光明,杨晓华.垫邻高速公路破碎岩体高边坡生态防护技术研究[长安大学硕士学位论文][D].西安:长安大学,2010.
    [29]杨如安,查旭东.岩质边坡挂网喷锚植草技术研究[长沙理工大学硕士学位论文][D].长沙:长沙理工大学,2006.
    [30]王晓梅,陈建平,周云艳,等.厚层基材植物防护在红色粉砂岩边坡的应用[J].公路交通科技,2010,27(2):152-158.
    [31]周德培,张俊云.植物防护工程技术[M].北京:人民交通出版社,2003.
    [32]杨焕辉,赵明华,刘小平.生态防护加固岩质边坡的机理分析及应用[J].中南公路工程,2007,32(1):47-50.
    [33]朱海丽,毛小青,倪三川,等.植被护坡研究进展与展望[J].中国水土保持,2007,(4):26-29.
    [34]杨亚川,莫永京,王芝芳,等.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996,12(1):31-38.
    [35]宋法明,马友华,胡宏祥.以基材—植被系统为基础的生态护坡技术研究[安徽农业大学硕士学位论文][D].合肥:安徽农业大学,2009.
    [36]胡双双.岩质边坡生态护坡基材研究[武汉理工大学硕士学位论文][D].武汉:武汉理工大学,2006.
    [37]中华人民共和国行业标准.公路工程岩石试验规程(JTG E41-2005)[S].北京:人民交通出版社,2005.
    [38]王纯瑾.岩石力学试验及工程应用[J].贵州地质,1990,7(1):60-63.
    [39]喻勇,肖强国,王法刚.岩体变形模量尺寸效应[J].岩土力学,2003,24(1):47-49.
    [40]杨圣奇,苏承东,徐卫亚.岩石材料尺寸效应的试验和理论研究[J].工程力学,2003,22(4):113-117.
    [41]吴道祥,刘烘杰,王国强.红层软岩崩解性室内试验研究[J].岩石力学与工程学报,2010,29(2):4174-4178.
    [42]柴新军,张卫锋, D. T. Bergado.六边形钢丝网状加筋拉拔特性试验研究[J].路基工程,2009,(3):28-29.
    [43]中华人民共和国行业标准.公路边坡柔性防护系统构件规范(JT/T528-2004)[S].北京:人民交通出版社,2006.
    [44]中华人民共和国行业标准.公路土工试验规程(JTG/E40-2007)[S].北京:人民交通出版社,2007.
    [45]李立寒,张南鹭.道路建筑材料(第四版)[M].北京:人民交通出版社,2004.
    [46]张志清,金江,傅海滨.湿陷性黄土路基物理力学性质试验研究[J].公路交通科技,2006,24(7):48-51.
    [47]赵明华.土力学与基础工程[M].武汉:武汉理工大学出版社,2000.
    [48] Li, T. B. Xu. H. Zhang, R. B. Zhou, X.H. Assessing slope protection methods forweak rock slopes in Southwestern Taiwan [J]. Engineering Geology,2007,91(24):100-116.
    [49] Li, T. B. Xu. H. Study on the ecological protection techniques of steep rock slopein high-cold area [A]. Proceedings of the International Young Scholars'Symposium on Rock Mechanics-Boundaries of Rock Mechanics RecentAdvances and Challenges for the21st Century [C].2008,23(11):895-900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700