氧化钒光伏特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钒因具有受热辐射后电阻变化的特性,是微测辐射热计用的热敏电阻的理想材料。此外,基于氧化钒光学带隙横跨可见与红外双波段(0.5 eV~2.24 eV)的理论,提出氧化钒薄膜可以作为光伏探测器光吸收层的想法。
     通过对半导体光学常数提取方法的总结,确定了氧化钒光学带隙的测定方案。利用椭偏仪测量拟合氧化钒光学带隙:Ⅰ,氧化钒层选用Relaxed-Lorentz模型进行拟合,结合Tauc外推法得到氧化钒光学带隙为0.1 eV;Ⅱ,氧化钒层选用Tauc-Lorentz模型进行拟合,得到两个光学带隙:一个是可见波段,1.9488 ev,解释了氧化钒薄膜在可见波段有吸收这一现象;一个是红外波段,0.1 ev,与Relaxed-Lorentz模型结合Tauc理论得到的光学带隙相符。该结论为氧化钒薄膜应用于光伏器件提供了有力的实验依据。
     为得到反常氧化钒薄膜,研究了退火温度和退火时间对薄膜方阻值的影响实验结果表明:Ⅰ,随着退火温度的升高,氧化钒薄膜的方阻值呈现下降趋势。这是由于退火温度的升高促进了薄膜中晶粒间界处的缺陷消亡的程度,使得晶粒更加致密,从而导致薄膜方阻值下降。Ⅱ,随着退火时间的升高,氧化钒薄膜的方阻值呈现升高趋势。这是由于氧化钒薄膜随退火时间的增长,氧化程度增强。钒氧化物随着钒价态的升高,方阻值呈上升趋势。
     采用反应磁控溅射方法在K9玻璃衬底上制备氧化钒薄膜并对其进行特定条件的退火处理。室温时,通过KEYTHLEY4200半导体特征测试系统,选用二端测试模型测得,300℃退火180s的氧化钒薄膜在可见光照情况下呈现反常光伏效应。利用X射线光电子能谱(XPS)对薄膜进行分析,结果表明,光伏效应氧化钒薄膜表层形成了一层以V~(5+)为主,同时含有V~(4+)的混合相氧化钒薄膜(VOX)活性层,该层体现出光伏效应。通过紫外可见分光光度计UV1700测得该薄膜在可见光波段380 nm~1100 nm有明显的光吸收,并利用“Dember”理论和场制表面电压理论对其光生电压的机制给出分析。
     基于氧化钒在可见和红外双波段的光吸收性质,提出将其应用到MSM-PD光伏探测器件中的想法,并就氧化钒薄膜应用于光伏器件提出整体设计思路和制备工艺。
     本文结论对于氧化钒应用到光伏探测器中的可行性及其应用前景具有相当的指导意义。
The enhanced characteristic, that the resistance changes while being radiated, makes vanadium oxide widely used optical material. Besides, it is supposed that vanadium oxide could be the absorption layer applied into photovoltaic devices, due to the fact that its optical band gap covers from infrared to visible light region.
     By summarizing the general methods of obtaining optical parameters of semiconductor, the concrete measurement design for optical band gap of vanadium oxide was determined by using Spectroscopic Ellipsometry: I, combining with Tauc theory, Relaxed-Lorentz model was applied for fixing vanadium oxide layer and the measurement result reveals that the optical band gap of vanadium oxide is 0.1ev. II. By applied Tauc-Lorentz model for fixing vanadium oxide layer, the results tell that there are two band gaps, one is 1.9488ev which can give the reasonable explanation that vanadium oxide layer’s absorption in the visible light region; another is 0.1ev that coincides with the result of the former measurement. The conclusion of the optical band gap of vanadium oxide provides a powerful proof for its application in the photovoltaic devices.
     In order to achieve anomalous photovoltaic effect vanadium oxide thin film, the influence of annealing treatments’parameters, annealing temperature and annealing time, were extensively studied. The results reveal the sheet resistance decrease with the annealing temperature increases and the annealing time decrease respectively. Due to the fact that the defects between the interfaces of crystallites disappear with the temperature increases and the thin film becomes denser, the sheet resistance of vanadium oxide decreases. Due to the fact that a small amount of the oxygen was remain in annealing furnace, with the annealing time increase, the degree of oxidation of vanadium element increase, inducing the sheet resistance increase.
     Oxide vanadium thin films were deposited on K9 glass substrates by reactive magnetron sputtering method. After being annealed under special conditions, photovoltaic effect of oxide vanadium thin film was observed by KEYTHLEY 4200 semiconductor characterization system at room temperature when the film is exposed on visible light environment. We have investigated the oxide vanadium thin films by X-ray photoelectron spectroscopy (XPS) and the results show that the surface of the photovoltaic oxide vanadium thin film was an active layer which contained V~(5+) in majority and V~(4+) in minority. The photovoltaic mechanism was studied and explained by UV1700 and the theory of“Dember”effect and electric field induced surface voltage.
     Due to the property that oxide vanadium thin films could absorb visible and infrared light, a creative thought was proposed that oxide vanadium thin films could apply to photovoltaic devices as light absorb layer. In this paper, the device structure and manufacture steps were explicated designed.
     The conclusion provides a forceful evidence for oxide vanadium thin film’s application in the photovoltaic devices.
引文
[1]江月松.光电技术与实验.北京:北京理工大学出版社.
    [2] E.H.罗德里克.金属半导体接触.科学出版社.1984.6第1版.
    [3]程开福.PtSi肖特基势垒红外焦平面阵列器件的发展与应用.电子元器件用,2002,4(10),35~37.
    [4]邵传芬,史常忻.双面Schottky势垒型GaAs粒子探测器特性.半导体学报,2000,21(8),792~797.
    [5]徐倩.金属与TiO2肖特基接触的制备及其性能研究[硕士论文].吉林:吉林大学2006.6.
    [6]薛舫时.金属/氮化物肖特基势垒和欧姆接触研究进展.固体电子学研究与进展,2004,24(2),147~157.
    [7]高晖,邓宏,李燕.ZnO肖特基势垒紫外探测器.发光学报,2005,26(1),135~137.
    [8]王义玉,叶文,王彬,红外探测器.兵器工业出版社.2005.8
    [9]张发生,李欣然.Mo/4HSiC肖特基势垒二极管的研制.半导体报,2007,28(3),435~438
    [10]袁宁一,李金华,林成鲁.溶胶-凝胶VO2薄膜转换特性研究.物理学报,2002,51(4),852~856.
    [11] Jiang S J, Ye C B, Khan M S R, et al. Evolution of thermochromism during oxidation of evaporated vanadium[J]. Applied Optics, 1991, 30(7), 847~851
    [12]真空蒸发法制备氧化钒薄膜的研究硅酸盐通报.2005,vol 1:17~24
    [13] Greenberg C B. Undoped and doped VO2 films grown from VO(OC3H7)3[J]. Thin Solid Films,1983,110:73
    [14] Yasutaka T, Masaaki K, Hiroyuki H, et al. Preparation of VO2 films by organometallic chemical vapor depositon and dip-coating[J]. J Mater Sci, 1989,24:192
    [15]王海方,李毅,蒋群杰,俞晓静,胡双双,武斌,张虎,黄毅泽,张伟.脉冲激光沉积法制备二氧化钒薄膜的研究进展[J].激光与光电子学进展. 2009. 49~53
    [16] Yin D C, Xu N K, Zhan J Y, et al. High quality vanadium dioxide films prepared by an inorganic sol-gel method[J].Mater Res Bul, 1996,31:335
    [17]杨朝邦,王文生.薄膜物理与技术.成都:电子科技大学出版社,60~84
    [18]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,41~69
    [19] C.H.Griffiths,H.K.Eastwood. Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide[J]. Journal of Applied Physics. 1974,45(5):2201~2206.
    [20]刘新福,杜占平,李为民.半导体测试技术原理及应用.北京:冶金工业出版社
    [21]王建祺,吴文辉,冯大民.电子能谱学引论.北京:国防工业出版社, 38~73
    [22]沈学础,半导体光谱和光学性质,第二版,北京,科学出版社,2002,p22.
    [23] R.M.A.阿查姆,N. M.巴夏拉.椭圆偏振测量术和偏振光.[M]北京:科学出版社,1986
    [24]吴瑾光.近代傅里叶变换红外光谱技术及应用.北京,科学技术文献出版社.
    [25]李丹.聚苯自组装复合膜的制备及功能特性:博士学位论文.成都:电子科技大学.
    [26] Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon. J. Phys. E: Sci. Instrum. 1984.Vol. 17. 896~903
    [27] Swanepoel. R. J. Phys. E: Sci.Instrum. 1984. vol 19. 1214~1222.
    [28] I. Chambouleyron, S. D. Ventura, E. G. Birgin, and J. M. Martínez. Optical constants and thickness determination of very thin amorphous semiconductors films. J. Appl. Phys. 92,(2002). 3093 ~3102.
    [29] S. H. Wemple and M. DiDomenico, Jr. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B3, 1338~1351 (1971).
    [30] S. H. Wemple. Refractive-Index Behavior of Amorphous Semiconductors and Glasses.Phys. Rev. B7,3767~3777 (1973).
    [31] M. F. Tabet and W. A. McGahan. Use of artificial neural networks to predict thickness and optical constants of thin films from reflectance data.Thin Solid Films 370(1-2),122~ 127(2000).
    [32] J. C. G. de Sande, A. Rodríguez, and T. Rodríguez. Spectroscopic ellipsometry determination of the refractive index of strained Si1?xGex layers in the near‐ infrared wavelength range (0.9–1.7μm).Appl. Phys. Lett. 67, 3402~3404 (1995).
    [33] H. Y. Joo, H. J. Kim, S. J. Kim, and S. Y. Kim, Spectrophotometric analysis of aluminum nitride thin films. J. Vac. Sci. Technol. A , Vol 17,No.3. 862~870 (1999).
    [34] H. Selhofer and R. Müller. Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses. Thin Solid Films 351, 180~183 (1999).
    [35] A. Poruba, A. Fejfar, Z. Reme?, J. ?pringer, M. Van??ek, J. Ko?ka, J. Meier, P. Torres, and A. Shah. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J. Appl. Phys.88, 148 ~157(2000).
    [36] S. Adachi. Optical dispersion relations in amorphous semiconductors. Phys. Rev. B 43, 12316~12321 (1991).
    [37] A. R. Forouhi and I. Bloomer. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 34, 7018~7026 (1986).
    [38] G. E. Jellison, Jr. and F. A. Modine. Parameterization of the optical functions of amorphousmaterials in the interband region.Appl. Phys. Lett. 69, 371~373 (1996).
    [39] A. B. Djuri?i?, Y. Chan, and E. H. Li. Progress in the room temperatureoptical functions of semiconductors. J.Mat. Sci. and Eng. R 38(6), 237~293 (2002).
    [40] Jiao.L,Chen.I,Collins.R.W. An improved analysis for band edge optical absorption spectra in hydrogenated amorphous silicon from optical and photoconductivity measurements. Appl.Phys.Lett.1998,72(9),1057~1059.
    [41] N.kumara, S.B.krupanidhi, K.B.R.varmaStructural. Ferroelectric and optical properties of Bi2VO5.5 thin films deposited on platinized silicon {(100) Pt/TiO2/SiO2/Si} substrates. Appl. Phys. A 91, 693–699 (2008)
    [42] H.Arwin, J.Martensson, and R.Jansson,“Line-shape analysis of ellipsometric spectra on thin organic films”. Applied Optics, vol.31,no.31:6707~6715,(1992).
    [43] J. Starkiewicz, L. Sosnowski, and O. Simpson, Nature, Lond. 158, 28 (1946).
    [44] B. Goldstein and L. Pensak. High‐ Voltage Photovoltaic Effect. J. Appl. Phys. 30, 155 ~161(1959).
    [45] H. Kallmann, B. Kramer, E. Haidenmanakis, W. J. McAleer, H. Barkemeyer, and P. I. Pollak. Photovoltages in Silicon and Germanium Layers. J. Electrochem. Soc. Volume 108, Issue 3, 247~251 (1961).
    [46] U. Pal, S. Saha, A. K. Chaudhuri, and H. Banerjee. The anomalous photovoltaic effect in polycrystalline zinc telluride films. J. Appl. Phys. 69, 6547~6555 (1991).
    [47] M. D. Uspenskii, N. G. Ivanova, and I. E. Malkis, Sov. Phys.- Semicond. 1, 1059 (1968).
    [48] E. I. Adirovich and L. M. Gol'Dshtein, Sov. Phys. Dokl. 9, 795 (1965).
    [49] H. Reuter and H. Schmitt, J. Appl. Phys. 77, 3209 (1995).
    [50] Levi Aharoni, Hadar, Azulay. Doron, Millo. Oded, Balberg. Isaac. Anomalous photovoltaic effect in nanocrystalline Si/SiO2 composites. Applied Physics Letters 92 (11): 112109(2008).
    [51] J. I. Pankove. Optical Processes in Semiconductors. Dover Publications.(1975).
    [52] H. R. Johnson, R. H. Williams, and C. H. B. Mee.J. Phys. D Appl. Phys. 8, 1530 (1975).
    [53] V. M. Lyubin and G. A. Fedorova, Sov. Phys. Dokl. 135, 1343 (1960).
    [54] S. M. Ryvkin, Photoelectric Effects in Semiconductors, Consultants Bureau, New York, p296(1964).
    [55] J.W.Houston and R.D.Bland. Relationships Between Sputter Cleaning Parameters and Surface Contamination, J.Appl.Phys. 1973,Vol.44:2504
    [56] P.Burggraaf,Sputtering’s Task:Metallizing Holes, Semiconductor Int.28,1990.12
    [57]胡明,梁既然,吴淼,吕宇强,韩雷,刘志刚.非制冷红外探测器用高TCR氧化钒薄膜制备研究.红外与激光工程.第36卷,增刊. (2007.6):54~58
    [58] Kronik L ., Shapira Y .. Surface photovoltage techniques: theory, experiment, and applications Surf. Sci. Rep.[J],1999, 37: 1—206
    [59] B.S.Sokolovsky. Photovaltaic effect in graded-band-layers with intrinsic type of conductivity. Proc. SPIE. 1997, 3182: 250~254
    [60] WANGDe Jun(王德军), JIANG Lei(江雷),LIPing(李萍) a1..Chem.J.Chinese Universities (高等学校化学学报) [J].1991,l2 (4):541—542
    [61]董翔.氧化钒工艺稳定性及其与金属接触特性研究[硕士论文].成都:电子科技大学2009.5.
    [62]史常忻.金属-半导体-金属光电探测器.上海交通大学出版社.2000.
    [63]李蓓.肖特基二极管相关材料生长及器件研究.[硕士论文].杭州:浙江大学,2003.
    [64] Jun Zhou, Yudong Gu, Youfan Hu, Wenjie Mai, Ping-Hung Yeh Gang Bao, Ashok K. Sood, Dennis L. Polla, and Zhong Lin Wang. Gigantic Enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett [J]. 2009,vol 94,issue 19: 191103-1~ 191103-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700