光壁面超声速燃烧室点火及火焰稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超燃冲压发动机作为大气层内高超声速飞行的最佳动力装置,超声速燃烧室的综合性能至关重要。光壁面超声速燃烧室壁面没有凹槽等高热流部件,有利于冷却流道设计,中心燃烧组织方式进一步降低了平均热流。燃烧稳定过程中采用的支板能够增强燃料的掺混,缩短燃烧距离,降低燃烧室的长度。已研究的光壁面超声速燃烧室模型一般都采用氢气作为燃料,而真正飞行器在飞行马赫数Ma=4-7范围内一般都采用液态航空煤油,其反应时间的延长会使得光壁面超声速燃烧室内的燃烧组织面临较大的困难。本文致力于解决液态煤油在光壁面超声速燃烧室的点火及火焰稳定问题,主要研究内容如下:
     首先设计制作了一种小型高焓气流发生器并将之安装在光壁面超声速燃烧室的壁面上,利用高焓气流发生器形成的常驻火焰来点火和维持燃烧稳定。点火过程中借助了空气节流,通过改变节流空气压力和节流空气的作用时间来控制点火过程中的节流强度。研究发现不同的节流强度会在燃烧室内形成四种不同的点火模式:稳定模式、不起动模式、不稳定模式和熄火模式。研究分析了不同当量比下点火模式的分布规律,给出了基于这种燃烧组织方式燃烧室的稳定点火边界。研究结果证明利用常驻火焰可以在光壁面超声速燃烧室内实现煤油的稳定燃烧。
     进一步的研究中将小型高焓气流发生器镶嵌在了喷油支板内形成火箭支板,直接在支板尾部形成常驻火焰。实验测试了两种火箭羽流条件下的点火结果:一种条件下火箭支板喷射高温燃气,另一种条件下火箭支板只喷射氧气。研究结果发现当火箭支板只喷射氧气时更适合光壁面超声速燃烧室的点火和燃烧稳定。基于此设计出了补氧支板结构,通过在支板尾部直接注入氧气,将支板尾部低速区拉长,加快燃料反应速度,成功地在高速冷气流中形成了稳定的火焰。研究发现采用补氧支板时,支板尾部火焰的存在并不意味着燃烧室整体燃烧的建立,整体燃烧需要氧气流量达到一定程度才能够触发。
     进一步研究了基于补氧支板的光壁面超声速燃烧室燃烧组织特性,发现采用补氧支板,大大拓宽了燃烧室的燃烧稳定边界,在当量比ER=0.19的条件下依然能够保证燃烧的稳定,并且点火冲击小。随着当量比的增加,燃烧过程会出现热阻塞,燃烧室内会出现亚声速区。研究中根据燃烧室内亚声速区所占比例的不同,将燃烧室内的燃烧模态分为三种:超燃模态、亚燃模态和过渡模态。研究发现不同燃烧模态下的火焰传播过程截然不同,当燃烧室出现热阻塞时,整体燃烧建立过程有明显的阶段性,火焰传播方向与燃烧室气体流动方向相反,而在超燃状态下整体燃烧火焰快速建立,不存在火焰逆流传播现象。
     研究发现当光壁面超声速燃烧室的整体燃烧建立以后,维持整体燃烧所需要的氧气量要明显小于整体燃烧建立所需要的氧气量,并且随着当量比的增加,维持燃烧所需要的氧气量变得越来越少。基于此规律,研究给出了燃烧过程中氧气供应方案的优化思路:点火阶段采取大氧气流量供应,而燃烧稳定阶段则采取小氧气流量供应,这样有助于降低飞行器在实际飞行过程中氧气的携带量。文章研究了支板上不同燃料喷射集中度对燃烧室压力分布的影响,发现改变支板上的燃料喷射集中度主要影响支板尾部附近区域的压升,对燃烧室尾部的影响不大。
     最后,为了进一步降低燃烧室热防护压力,提出了一种支板/壁面组合燃料喷射方法。初步研究发现将支板喷射的煤油转移到壁面喷射之后,燃烧特性会受到影响。但是通过优化支板/壁面燃料喷射比例,在保证燃烧效果相近的前提下,能够使燃烧室壁面的温度在一定区域内显著降低。研究表明这种燃料喷注方式还能够满足宽马赫数下多点燃料喷射的需求,壁面注入的燃料能够很好地参与到燃烧反应中去,但需注意燃料的喷射位置和喷射方向。
Scramjet is the best propulsion device for the hypersonic vehicle within the atmosphere and the overall performance of its key component combustor is very important. A flush wall combustor is usually take the strut as the flame holder, the combustion start in the center of the combustor, avoid direct contact with the combustion zone, heat load of the wall is reduced. Meanwhile the flush wall is favorable to the cooling channel design. Due to the enhancement of the strut fuel injection, the burning length can be shortened which means a relative shorter aircraft length. All these advantages help to improve the scramjet performance. But most research related to the flush wall supersonic combustor take the hydrogen as the fuel, if using kerosene, the relative long reacting time will greatly increase the difficulty to the combustion organization. This paper has tried to solve this problem and the main contents are as follows:
     First, a Micro Hot Gas Generator (MHGG) is designed and mounted on the combustor wall and combustion is to be realized by this permanent flame generated by this MHGG. During the ignition process, air throttling is introduced for ignition auxiliary. By changing the throttling air pressure and acting time, different throttling intensity can be controlled and led to four ignition modes. Too intense of the throttling will cause a un-start phenomenon while too weak of the throttling cannot get stable ignition. The law of the ignition mode distribution under different ER and the stable ignition boundary are gotten via analyzing a large number experiment data. This research has proved the feasibility of stable combustion in a flush wall supersonic combustor by the permanent flame.
     Further research has combined the MHGG with the fuel injection strut forming a strut-jet structure, based on this structure, permanent flame is moved the strut back. Two kinds of jet flow are tested: on is high temperature burned gas and the other is pure oxygen. It is discovered that the pure-oxygen plume is more suitable for the global ignition in the flush wall combustor and an oxygen pilot combustion strategy is then developed. Based on this, an oxygen-pilot strut is proposed. With the help of oxygen injection, low speed zone at the strut back is enlarged and the reaction speed is increased, then stable local flame is realized at the back of the strut in the high speed cold air flow. Based on this oxygen pilot strut, local flame at the strut back is not mean global combustion in the flush wall supersonic combustor; global combustion cannot be triggered until the oxygen mass flow rate reaches a certain level.
     The paper has investigated the organization characteristics, based on this oxygen pilot strut, stable combustion can be realized in a wide range of ER in the flush wall supersonic combustor, even at a low ER=0.19. Mean while, the ignition process is much steadier compared with the air throttling way. With the increase of ER, thermal choking will occur which means subsonic combustion zone in the combustor. Base on the proportion of the subsonic zone combustion modes can be divided to three kinds: supersonic combustion mode, dual combustion mode and subsonic combustion mode. It is discovered that, under different combustion mode, the flame transition process is totally different. When thermal choking occurs in the combustor, the global combustion is developed from back to front, this counter flow flame transition phenomenon does not happen in the supersonic mode.
     When global combustion is founded, the oxygen mass flow rate need to sustain the combustion is much lower than needed during the ignition process; based on this discovery, the optimization program of oxygen supply during the combustion process is given: large oxygen flow rate during the ignition stage and low oxygen flow rate during the stable combustion stage. This can reduce the load of the aircraft during the real flight process. The paper also investigated the influence of the fuel injection concentration to the combustion process. It is discovered the main area affected by the fuel injection concentration is in the strut nearby area, not so obvious at the rear part of the combustor.
     Finally a strut/wall combined fuel injection strategy is proposed. Experiment results show that, combustion process in the flush wall supersonic combustor will be affected if the fuel from the strut is moved to the wall. However, by optimizing the fuel proportion between the strut and the wall, the wall temperature can be noticeable reduced without affecting the combustion process seriously. Meanwhile, this strut/wall combined fuel injection strategy can also meet the multi-points fuel injection requirement at the other flight Mach number. To guaranty the combustion performance, the wall injection should pay attention to the injection location and direction.
引文
[1] Casalino L, Pastrone D. Optimization of Hybrid Sounding Rockets forHypersonic Testing. Journal of Propulsion and Power,2012,28(2):405-411.
    [2] E. T. Curran. Scramjet Engines: The First Forty Years. Journal ofPropulsion and Power.2001,17(6):1138-1148.
    [3] Ronald S. A Century of Ramjet Propulsion Technology Evolution. Journalof Propulsion and Power,2004,20(1):27-58.
    [4] Ferlemann S, McClinton C, Rock K, Voland R. Hyper-X Mach7ScramjetDesign, Ground Test and Flight Results. AIAA Paper2005-3322.
    [5] Marshall L, Bahm C, Corpening G, Sherrill R. Overview with Results andLessons Learned of the X-43A Mach10Flight. AIAA Paper2005-3336.
    [6] Joseph M. Hank, James S. Murphy etc. The X-51A Scramjet Engine FlightDemonstration Progaram. AIAA Paper,2008-2540
    [7] http://www.aviationweek.com/Article.aspx?id=/article-xml/awx_05_02_2013_p0-575769.xml.
    [8] A. S. Roudakov, V. L. Semenov etc, Future Flight Test Plans of an Axi-symmetric Hydrogen-Fueled Scramjet Engine on the HypersonicFlying Laboratory. AIAA Paper,96-4572.
    [9] A. S. Roudakov, V L. Semenov etc. Recent Flight Test Results of the JointCIAM-NASA Mach6.5Scramjet Flight Program. NASA TP-1998-206548.1998.
    [10] R. T. Voland, A. H. Auslender etc. CIAM/NASA Mach6.5ScramjetFlight and Ground Test. AIAA Paper99-4848.
    [11] A. S. Roudakov, V L. Semenov etc. The Prospects of Hypersonic EnginesIn-flight Testing Technology Development. AIAA Paper,2001-1807.
    [12] V. V. Kislykh, A.A. Kondralov etc. The Program for the ComplexInvestigation of the Hypersonic Flight Laboratory (HFL)"IGLA" in thePGU of TSNIIMASH. AIAA Paper,2001-1875.
    [13] F. Falempin, L. Serre. The French PROMETHEE Program Status in2000.AIAA Paper,2000-3341.
    [14] L. Serre, F. Falempin. The French PROMETHEE Program onHydrocarbon Fueled Dual mode Ramjet Status in2001. AIAA Paper2001-1871.
    [15] F. Falempin, L. Serre. Promethee-The French Military HypersonicPropulsion Program. AIAA Paper,2003-6950.
    [16] F. Heitmeir, R. Lederer etc. German Hypersonic Technology Program Air-breathing Propulsion Activities. AIAA Paper,92-5057.
    [17] S. Weingartner. SANGER-The Reference Concept of the Germanhypersonic Technology Program. AIAA Paper,93-511.
    [18] A. Paull, H. Alesi. Etc. The HyShot Flight Program and how it wasdeveloped. AIAA Paper,2002-4939.
    [19] A. D. Gardner, K. Hannemann etc. Ground Testing of the HyShotSupersonic Combustion Flight Experiment in HEG and Comparison withFlight Data. AIAA Paper,2004-3345.
    [20] Kobayasbi S. Japanese Spaceplane Program Overview. AIAA Paper,95-6002.
    [21] T. Mitani. T. Hiraiwa etc. Comparison of Scramjet Engine Performance inMach6Vitiated and Storage-Heated Air. Journal of Propulsion and Power,1997,130(5):635-642.
    [22]刘伟雄,谭宇等.激波风洞超燃发动机实验初步研究.第十届全国激波与激波管学术讨论会.2001.
    [23]乐嘉陵,胡欲立,刘陵.双模态超燃冲压发动机研究进展.流体力学实验与测量.2000,14(1):1-12.
    [24] Y Gong, L. J. Guo etc. Experimental Studies on H2/Air SupersonicCombustion. AIAA Paper,96-4512.
    [25]张新宇,陈立红等.超燃冲压模型发动机实验设备和实验技术.力学进展.2003.33(4):491-498.
    [26] Gu Hongbin, Chen Lihong etc. Experimental Investigation on CouplingCharacteristics of Cavity Flame holder and Strut jet. AIAA Paper,2012-5961.
    [27]刘兴洲,刘敬华,王裕人等.超声速燃烧实验研究.推进技术.1993
    [28]刘兴洲.中国超然冲压发动机研究回顾.推进技术.2008
    [29] Ding Meng, Liu Weidong etc. Experimental Study on CombustionCharacteristics in a Kerosene-Fueled Scramjet. AIAA Paper,2009-7361.
    [30]梁剑寒,王承尧.超燃发动机激波增强混合的数值模拟.空气动力学报.1999..
    [31]刘陵,唐明.氢气超声速燃烧非定常过程数值模拟.推进技术.1996.
    [32]刘欧子,胡欲立,蔡元虎等.超音速燃烧凹槽火焰稳定的研究动态.推进技术.2003.
    [33]刘敬华,凌文辉等.设置空腔的超声速燃烧室流场数值模拟.推进技术.2000.
    [34] Wen Bao, Qingchun Yang etc. Experimental Study on DynamicCharacteristics of Combustion Mode Transition. AIAA Paper,2013-3973.
    [35] Jiang Qing, Wen Bao etc. Comparision during a Scramjet RegenerativeCooling and Recooling Cycle. Jouranal of Thermophysics and HeatTransfer,2012,26(4),612-618
    [36] Juntao Chang, Leiwang, Baowen etc. Novel Oscillatory Patterns ofHypersonic Inlet Buzz. Journal of Propulsion and Power.2012,12(),1214-1221
    [37] Waltrup, P. J., Liquid Fueled Supersonic Combustion Ramjets: AResearch Prospective of the Past, Present and Future. Journal ofPropulsion and Power, Vol.8, No.6,1987, pp.515–524.
    [38] Tshkoff, J.M., Drummond, J. P., Edwards, T., and Nejad, A. S., FutureDirection of Supersonic Combustion Research: Air Force/NASAWorkshop on Supersonic Combustion. AIAA Paper,97-1017.
    [39] J. A. Schetz, F. S. Billig. Penetration of Gaseous Jets Injected into aSupersonic Stream. Journal of Spacecraft and Rockets.1966,3(11):1658-1665.
    [40] E. J. Fuller, R. B. Mays, R. H. Thomas, J. A. Schetz. Mining Studies ofhelium at High Supersonic Speeds. AIAA Journal.1992,30(9):2234-2243.
    [41] M. R. Gruber. A. S. Nejda. T. H. Chen. J. C. Dutton. Miffing andPenetration Studies of Sonic jets in a Mach2Free stream. Journal ofPropulsion and Power.1995,11(2):315-323.
    [42] S. H. Lee. H. B. Kim. T. Mitani. Mixing and Combustion Augmentationsof Transverse Injection in Scramjet Combustor. AIAA Paper,2001-0384.
    [43] R. B. Mays, R. H. Thomas, J. A. Schetz. Low Angle Injection into aSupersonic Flow. AIAA Paper,89-2461.
    [44] D. J. Bayley, R. J. Hartfield. Experimental investigation of AngledInjection in a Compressible Flow. AIAA Paper,95-2414.
    [45] A. Takakage, F. Hideo, M. Junji. Experimental Investigation of InclinedHydrogen Injection into a Supersonic Flow. AIAA Paper,99-4915.
    [46] M. R. Gruber, A. S. Nejda. J. C. Dutton. Circular and Elliptical TransverseInjection into a Supersonic Cross flow-The Role of Large-Scale Structures.AIAA Paper,95-2150.
    [47] G S. Elliott, A. Mosedale etc. The Study of a Transverse Jet in aSupersonic Cross-Flow Using Molecular Filter Based Diagnostics. AIAAPaper,97-2999.
    [48] M. J. Barber, L. A. Roe, J. A. Schetz. Simulated Fuel Injection Through aWedge-Shaped Orifice into Supersonic Flow. AIAA Paper,95-2559.
    [49] S. Tomioka, L. S. Jacobsen, J. A. Schetz. Angled Injection ThroughDiamond Shaped Orifices into a Supersonic Stream. AIAA Paper,2001-1762.
    [50] S. Tomioka. L. S. Jacobsen. J. A. Schetz. Sonic Injection from DiamondShaped Orifices into a Supersonic Cross flow. Journal of Propulsion andPower.2003,9(1):104-114.
    [51] J. C. McDaniel, G Gauba etc. Combustion of Hydrogen in Mach2AirUsing an Upswept Ramp Fuel Injector: A Test Case for CFD Validation.AIAA Paper,94-2521.
    [52] G Gauba, H. Haj-Hariri, J. C. McDaniel. Numerical and ExperimentalInvestigation of Hydrogen Combustion in a Mach2Air Flow with anUpswept Ramp Fuel Injector. AIAA Paper,95-2562.
    [53] R. J. Hartfield, S. D. Hollo, J. C. McDaniel. Experimental Investigation ofa Supersonic Swept Ramp Injector Using Laser-Induced IodineFluorescence. Journal of Propulsion and Power.1994,10(1):129-135.
    [54] J. M. Donobue, J. C. McDmiel, H. Haj-Hariri. Experimental andNumerical Study of Swept Ramp Injection into a Supersonic Flow field.AIAA Journal.1994,32(9):1860-1867.
    [55] D. R. Eklund, S. D. Stouffer, G B. Northam. Study of a SupersonicCombustor Employing Swept Ramp Fuel Injectors. Journal of Propulsionand Power.1997,3(6):697-704.
    [56] T. M. Abdel-Salam, S. N. Tiwari etc. Effects of Ramp Side Angle inSupersonic Mining. Journal of Propulsion and Power.2003,41(6):1199-1201.
    [57] S. K. Cox, R. P. Scbetz, R. W Walters. Vortical Interactions Generated byan Injector Array to Enhance Miffing in Supersonic Flow. AIAA Paper,94-0708.
    [58] S. K. Cox, M. R. Gruber. Effects of Spanwise Injector Spacing on MixingCharacteristics of Aero Dynamic Ramp Injectors. AIAA Paper,98-2780.
    [59] Wei Baoxi, Xuxu etc. Study on Integrated Aero ramp Injector/Gas-PilotFlame in a Supersonic Combustor. Journal of Propulsion and Power.2012,28(3):486-495.
    [60] R. P. Fuller, P. K. Wu etc. Comparison of Physical and Aerodynamic Ramps as Fuel Injectors in Supersonic Flow. Journal of Propulsion andPower.1998,14(2):135-145.
    [61] D. R. Eklund, M. R. Gruber. Study of a Supersonic Combustor Employingan Aerodymanic Ramp Pilot Injector. AIAA Paper,99-2249.
    [62] M. R. Gruber, J. Donbar etc. Performance of an Aerodymanic Ramp Fuel Injector in a Scramjet Combustor. AIAA Paper,2000-3708.
    [63] Jason C. Dpster and Paul I. King etc, Numerical Simulation of EthyleneInjection from In-stream Fueling pylons. AIAA paper,2008-2518
    [64] Jason C. Dpster and Paul I. King etc, Experimental Investigation of Airand Methane Injection from In-stream fueling pylons. AIAA Paper,2008-4501
    [65] Jason C. Dpster and Paul I. King etc, In-stream Hypermixer Fuelingpylons in supersonic Flow, Journal of Propulsion and Power,2009,25(4),885-901
    [66] Chung-Jen Tam, Kuang-Yu Hsu, etc, Fuel/Air Mixing Characteristics ofStrut Injections for Scramjet Combustor Applications. AIAA Paper,2008-6925
    [67] Capt Matthew G. Bagg, Dr Robet Greendyke, Computational Analysis ofStrut Induced Mixing in a Scramjet. AIAA Paper,2009-1253
    [68] Kuang-Yu Hsu, Campbell D. Carter, Mark R. Gruber, Mixing study ofStudy Injectors in Supersonic Flows, AIAA Paper2009-5226
    [69] Masatoshi Kodera, Tetsuji Sunami, etc, Numerical study on theSupersonic Mixing Enhancement Using Stream wise Vortices, AIAAPaper,2002-5117
    [70] Tetsuji Sunami, Masatoshi Kodera, Experimental Study of Strut Injectorsin a Supersonic Combustor Using OH-PLIF, AIAA Paper,2005-3304.
    [71] Bao, W., Zong, Y., Chang, J., Cui, T. Effects of Strut Swept Angle on theDrag of Scramjet. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,226(G4),455-466.
    [72] V. L. Semenov, O. N. Romankov, D. V. Wie. The Investigation ofOperation Domain of Strut Fuel Feed System for Model ScramjetCombustor. AIAA Paper,98-1514
    [73] T.Mathre, K.C.Lin, and P. Kennedy, Liquid JP-7Combustion in aScramjet Combustor, AIAA Paper,2000-3581
    [74] G. Yu, J. G. Li, X.Y. Chang, L.H. Chen, Fuel Injection and FlameStabilization In a Liquid Kerosene Fueled Supersonic Combustor. Journalof Propulsion and Power.2003,19(5),885-893.
    [75] G. Yu, J. G. Li, J. R. Zhao etc, An experimental study of kerosenecombustion in a supersonic model combustor using effervescentatomization, Proceedings of the Combustion Institute,30(2005),2859-2866.
    [76] Viacheslav A. Vinogradov, Yuri M. Shikhman, Experimental research ofpre-injected methane combustion in high speed subsonic air flow, AIAAPaper,2003-6940.
    [77] V. A. Vinogradov, Y. M. Shikhman etc. Review of Fuel Pre-injectinoStudies in a High Speed Airflow. AIAA Paper,2006-1030.
    [78] M. B. Colket. Scramjet Fuels Autoignition Study. Journal of Propulsionand Power.200117(2):315-323.
    [79]朱炀烨,刘二伟,刘建文,徐胜利.不同当量比煤油气溶胶自点火现象初步实验研究.第十五届全国激波与激波管学术会议论文.2010
    [80]董建明,刘小勇等.超燃冲压模型发动机自由射流实验研究.2003年高超声速技术研讨会.2003.
    [81]丁猛,余勇等.碳氢燃料超燃冲压发动机点火技术实验.推进技术.2004,25(6):566-569.
    [82] Sadatake Tomikka, Kenji Kudo, Kanenori Kato, etc, Auxiliary Injectionfor Combustion Augmentation of G/G Plume in a RBCC Combustor.AIAA Paper,2005-4284
    [83] Sergey, O. Macheret, Mikhail N, Shneider, Richard, B. Miles. EnergyEfficiency of Plasma-Assisted Combustion in Ram/Scramjet Engines.AIAA Paper,2005-5371
    [84] Sergey, B. Leonov etc. Experiments on Plasma-Assisted Combustion inM2Hot Test-Bed PWT-50H. AIAA Paper,2008-1359
    [85] Klimov A, Bityurin V. etal. External and Internal Plasma-AssistedCombustion. AIAA Paper,2004-1014
    [86] Scott G., Lance J etc. Geometric Studies of Anodes for Use with Low-Power, water-cooled Plasma Torches Part B: The Effects of Geometry onIgnition Potential. AIAA Paper,2003-833
    [87] A. Klimov, V. Bityurin etc. Optimization of Plasma Assisted Combustion.AIAA Paper,2002-2250
    [88] Takita, K., Masuya, G., Sato, T., Ju, Yiguang. Effects of Addition ofRadicals Supplied by Plasma Torch on Burning Velocity. AIAA Paper,1999-2247
    [89] Ainan Bao, GuoFeng Luo etc. On the Mechanism of Ignition of PremixedCO-Air and Hydrocarbon-Air Flows by Non equilibrium RF Plasma,AIAA Paper,2005-1197
    [90] Sergey B Leonov and Dmitry A Yarantsev. Plasma-induced ignition andplasma-assisted combustion in high-speed flow. PLASMA SOURCESSCIENCE AND TECHNOLOGY.2007,16.132–138.
    [91] Plasma-Assisted Combustion of Gaseous Fuel in Supersonic Duct, IEEETransactions on Plasma Science.2006,34(6),
    [92] Hyungrok Do, Seong-kyunIm, etc. Plasma assisted flame ignition ofsupersonic flows over a flat wall. Combustion and Flame,157(2010),2298–2305
    [93] Hyungrok Do, Mark A. Cappelli, M. Godfrey Mungal. Plasma assistedcavity flame ignition in supersonic flows. Combustion and Flame,157(2010),1783–1794
    [94] Junya Watanabe,Naoyuki Abe, Kenichi Takita. Effect of a Rearward-Facing Step on Plasma Ignition in Supersonic Flow. Journal of Spacecraftand Rocket2009,46(3),561-567
    [95] Kenichi Takita,Ryuta Ohashi, Naoyuki Abe. Suitability of C2-,C3-Hydrogen fuels for Plasma Ignition in High-Speed flows. Journal ofPropulsion and Power,2009,25(3),565-570
    [96] Koichi Murakami, Aya Nishikawa, Kenichi Takita, Goro Masuya. IgnitionCharacteristics of Hydrocarbon Fuels by Plasma Torch in Supersonic Flow.AIAA Paper,2003-6939
    [97] Igor B. Matveev, Svetlana A. Matveeva, Evgeniy Y. Kirchuk. Plasma FuelNozzle as a Prospective Way to Plasma-Assisted Combustion. IEEETRANSACTIONS ON PLASMA SCIENCE.2010,38(12).
    [98] M. Geratein and P.R.Choudhury, Use of Silane/Methane Mixtures forScramjet Ignition, AIAA Paper,84-1407
    [99] N.A.Morris, R.G.Morgan, A.Paul etc, Silane as an Ignition aid inScramjets, AIAA Paper,87-1636.
    [100] A. Koichi, Hayashi, Kenji Sugimoto etc, Ignition Mechanism of ScramjetFuel Using Silane, AIAA Paper,88-0437.
    [101] Vinogradov V. A., Kobigsky, S. A., and Petrov, M. D. ExperimentalInvestigation of Kerosene Fuel Combustion in Supersonic Flow. Journal ofPropulsion and Power,1995,11(1),130–134.
    [102] Yu. G etc. Investigation of Kerosene Combustion Characteristics withPilot Hydrogen in Model Supersonic Combustors, Journal of Propulsionand Power,2001,17(6),1263-1272
    [103] Gruenig C, Avrshkov V etc. Self-ignition and Supersonic Reaction ofPylon–Injected Hydrogen Fuel. Journal of Propulsion and Power.2000,16(1):35-40.
    [104] Gruber M. R, Donbar J etc. Newly developed direct-connect high enthalpysupersonic combustion research facility. Journal of Propulsion and Power.2001,17(6),1296-1304
    [105] Vigor Yang, Jian Li, and Jeong Yeol Cho. Ignition Transient in anEthylene Fueled Scramjet Engine with Air Throttling Part I: Non-Reactingflow Development and Mixing. AIAA Paper,2010-409.
    [106] Vigor Yang, Jian Li, and Jeong Yeol Choi. Ignition Transient in anEthylene Fueled Scramjet Engine with Air Throttling Part II: Ignition andFlame Development. AIAA Paper,2010-410.
    [107] Lance S. Jacobsen, Campbell D. Carter etc. Plasma Assisted Ignition inScramjets. Journal of Propulsion and Power.
    [108] Dimotakis, P. E. Turbulent free shear layer mixing and combustion. High-Speed Flight Propulsion Systems,1991,265-340.
    [109] Owens, M. G., Segal, C, and Auslander, A. H. Effects of mixing schemeson kerosene combustion in a supersonic airstream. Journal of Propulsionand Power,1997,13(4)525–531.
    [110] Viacheslav A. Vinogradov, Yuri M. Shikhman. Experimental Research ofPre-Injected Methane Combustion in High Speed Subsonic Airflow. AIAAPaper,2003-6940
    [111] V A. Vinagradov, V Gracbev, M. D. Petrov. Experimental Investigation of2-D Dual Mode Scramjet with Hydrogen Fuel at Mach4-6. AIAA Paper,90-5269.
    [112] V Vinagradov, S. Kobigsky, M. Petrov. Experimental Investigation ofLiquid Carbon Hydrogen Fuel Combustion in Chanel at SupersonicVelocities. AIAA Paper,92-3429.
    [113] V A. Vinagradov. S. A. Kobigsky.M. D. Petrov. ExperimentalInvestigation of Kerosene Fuel Combustion in Supersonic Flow. Journal ofPropulsion and Power.1995,11(1):130-134
    [114] M. R. Gruber. R. A. Baurle. T. Matbur. K.-Y Hsu. Fundamental Studiesof Cavity-Based Flameholder Concepts for Supersonic Combustors.Journal of Propulsion and Power.2001,17(1):146-153.
    [115] T. Mathur, G Streby etc. Supersonic Combustion Experiments with aCavity Based Fuel Injector. AIAA Paper,99-2102.
    [116] T. Mathur, K.-C. Lin etc. Liquid JP-7Combustion in a ScramjetCombustor. AIAA Paper,2000-3581.
    [117] PanYu, DingMeng, Liang jian-han. Investigation on drag of cavity flameholder in scramjet. Journal of Propulsion Technology,2009
    [118] Sun Mingbo, Liang Jianhan. Numerical study on mass exchange characterof cavity flame holders for scramjet application. Journal of Theoreticaland Applied Mechanics,2007
    [119]丁猛.基于凹腔的超声速火焰稳定技术研究.国防科学技术大学博士论文.2005
    [120] K. Y. Hsu, C. D. Carter, M. R. Gruber etc, Experimental Study of Cavity-Strut Combustion in Supersonic Flow, Journal of Propulsion an Power,2010,26(6),1237-1246.
    [121] Tetsuji Sunami, Atsuo Murakami etc, Mixing and Combustion ControlStrategies for Efficient Scramjet Operation in Wide Rang of Flight MachNumbers. AIAA Paper,2002-5116.
    [122] Tetsuji Sunami, Philippe Magre, Alexandre Bresson etc, ExperimentalStudy of Strut Injectors in a Supersonic Combustion Using OH-Plif. AIAAPaper,2005-3304.
    [123] A. Brandstetter, S. Rocci Denis, H.-P. Kau, etc. Flame Stabilization inSupersonic Combustion. AIAA Paper,2002-5224.
    [124] Takeshi Niioka, Kenichi Terada etc. Flame Stabilization Characteristics ofStrut Divided into Two Parts in Supersonic Airflow. Journal of Propulsionand Power.1995,11(1),112-116.
    [125] Koichi Murakami, Aya Nishikawa etc, Ignition Characteristics ofHydrocarbon Fuels by Plasma Torch in Supersonic Flow. AIAA Paper,2003-6939.
    [126] Aristides M. Bonanos, Joseph A. Schetz etc, Dual-Mode CombustionExperiments with an Integrated Aeroramp-Injector/Plasma-Torch Igniter.Journal of Propulsion and Power.2008,24(2),267-273.
    [127] M.R. Gruber, R.A. Baurle etc. Fundamental studies of Cavity-BasedFlameholder Concepts for Supersonic Combustors. Journal of Propulsionand Power,2001,17(1),146-153.
    [128] Kuo-Cheng Lin, Kevin Jackson etc. Acoustic Characterization of anEthylene Fueled Scramjet Combustor with a Cavity Flame holder. Journalof Propulsion and Power.2010,26(6):1161-1170.
    [129] Kennedy P, Donbar J, Trelewicz J, Gouldstone C, Longtin J. Heat FluxMeasurements in a Scramjet Combustor Using Direct Write Technology.17th AIAA International Space Planes and Hypersonic Systems andTechnologies Conference,2011, AIAA-2011-2330.
    [130] Ueda S, Takegoshi M, Kouchi T. Evaluation of Heat-flux on ScramjetEngine Wall in Mach6Flight Condition. IAC-06-C4.5.4,2006.
    [131] Melvin. J. Bulman, Adam Siebenhaar. Combined Cycle Propulsion:Aerojet Innovations for practical Hypersonic Vehicles. AIAA Paper,2011-2397
    [132] Masuya, G., Komuro, T., and Ohwaki, K., Ignition and CombustionPerformance of Scramjet Combustors with Fuel Injection Struts. Journal ofPropulsion and Power,11(2),1995,301–307.
    [133] Sadegh Tabejamaat, hideaki Kobayashi etc. Numerical an ExperimentalStudies of Injection Modeling for Supersonic Flame-holding. Journal ofPropulsion and Power,2005,21(3),504-511.
    [134] G. Winterfeld. On processes of turbulent exchange behind flame holders.Tenth Symposium (international) on Combustion.1965,10(1),1265-1275.
    [135] M. Bouchz, Emmanuel Saunier etc. Advanced Carbon/Carbon InjectionStrut for Actual Scramjet. AIAA Paper,96-4567.
    [136] Emmanuel Dufour, M. Bouchz. Computational Analysis of a Kerosene-Fueled Scramjet. AIAA Paper,2001-1817.
    [137] P. Manna, Ramesh Behera and Debasis Chakraborty, Liquid Fueled Strut-Based Scramjet Combustor Design: A Computational Fluid DynamicsApproach. Journal of Propulsion and Power,2008,24(2),274-281.
    [138] Ramya P. Hande, A.G. Marathe. A Computational Study on SupersonicCombustion with Struts as Flame holder
    [139] R. O. Foelsche, C. Y. Tsai etc, Experiments on a RBCC Ejector Scramjetwith Integrated, Staged Secondary Fuel Injection. AIAA Paper,99-2242.
    [140] Sadatake Tomikka, Kenji Kudo, Kanenori Kato, etc, Auxiliary Injectionfor Combustion Augmentation of G/G Plume in a RBCC Combustor.AIAA Paper,2005-4284
    [141] Sara Rocci-Denis, Dominic Maier and Hans-Peter Kau., Staged Injectionin a Dual-Mode Combustor for an Air-Breathing Engine. AIAA Paper,2008-2632.
    [142] Sirka Fuhrmann, Andreas Hupfer etc. Investigations on Multi-StageSupersonic Combustion in a Model Combustor. AIAA Paper,2011-2332.
    [143] Heiser, W. H., and Pratt, D. T., Hypersonic Airbreathing Propulsion,AIAA Education Series, AIAA,Washington, D.C.,1994.
    [144] J.L. Wagner, K.B. Yuceil etc. Experimental Investigation of Unstart in anInlet/Isolator Model in Mach5Flow. AIAA Journal2009,47(6),1528-1542
    [145] Unsteady Behaviors of a Hypersonic Inlet Caused by Throttling in ShockTunnel, AIAA Journal,2013,51(10),2485-2492
    [146] Turin JJ, Huebler J. American Gas Association. Report No.I.G.R.-61Arlington: VA,1951.
    [147] Lewis B, Vonelbe. G. Combustion Flames and Explosions of Cases. NewYork: Academic Press,1987.
    [148] McDaniel K, Edwards J. Three Dimensional Simulation of ThermalChoking in a Model Scramjet Combustor. AIAA Paper,2001-0382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700