雷帕霉素在大鼠移植心脏血管病中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:移植心脏血管病(Cardiac allograft vasculopathy,CAV)是影响心脏移植病人长期存活的主要障碍。经血管内超声(Intravascular ultrasonography,IVUS)显示,心脏移植1年后,58%的病人出现血管内膜增生,移植3年后,75%的病人可发现有CAV。其特征性病理学变化为弥漫性、同心圆状的纤维性内膜增厚。由于CAV弥漫性病变的特点以及病变常常累及到远端血管,目前唯一有效的治疗方法是再次心脏移植。但由于心脏供体短缺,临床上难以实施。在对各种可能延缓CAV发生的药物研究中,虽然3-羟-3甲-戊二酰辅酶A(HMG-CoA)还原酶抑制剂、血管紧张素转换酶抑制剂或血管紧张素受体阻滞剂、抗氧化剂(VitC和VitE)、钙通道阻滞剂、肝细胞生长因子和全反式维甲酸(atRA)等药物有助于延缓CAV的发生,但作用有限。CAV的发病机制目前认为是免疫和非免疫因素共同介导的内皮激活,触发血管内膜增生及平滑肌细胞迁移和增殖的结果。预防CAV形成的最佳方法就是应用一种有抗血管内膜增生及抗平滑肌细胞迁移和增殖作用的强效免疫抑制剂。传统应用的免疫抑制剂如钙调节素抑制剂、强的松及嘌呤类生物合成抑制剂在预防CAV方面效果不明显。吗替麦考酚酯(MMF)在预防CAV的发生方面作用也有限。雷帕霉素(Rapa,又名西罗莫司)是一种强效的免疫抑制剂,同时又是一种增殖信号抑制剂,具有极好的抑制血管平滑肌细胞和新生血管内膜过度增殖的作用。大量临床研究报道雷帕霉素涂层支架在预防冠状动脉支架植入后血管再狭窄方面的效果良好。但雷帕霉素在预防和治疗CAV方面的作用如何有待进一步研究。细胞周期素依赖性激酶抑制蛋白P27kiP1是血管平滑肌细胞(VSMC)增生的重要抑制因子之一。体外实验证实雷帕霉素可通过增加P27kiP1的表达来调控细胞生长周期过程。整合素αvβ3在内皮细胞迁移过程中起着重要作用,是组织因子和细胞因子诱导平滑肌细胞增生过程中所必需的。血小板衍化生长因子(PDGF)是平滑肌细胞重要的有丝分裂原,在诱导平滑肌细胞增殖过程中起着重要作用。然而P27Kip1、整合素αvβ3 mRNA、PDGF-A mRNA在移植心脏血管组织中的表达情况及雷帕霉素对其表达有何影响尚不清楚,
Background Cardiac allograft vasculopathy(CAV) is a significant obstacle to improving outcomes in heart transplant recipients. Intravascular ultrasonography, a more sensitive technique, detects intimal thickening in up to 58% of patients at 1 year posttransplant and detects CAV in 75% of patients at 3 years. The predominant feature of CAV is a diffuse,concentric fibrous intimal hyperplasia that appears along the entire length of the affected arteries. The diffuse,obliterative nature of CAV means that changes to vascular architecture are nonreversible. Once established, the only effective treatment for the condition is retransplan-tation, but it is infrequently performed because of the limited supply of suitable organs.Because of the paucity of effective therapies for CAV, attention has been directed most toward disease prevention. Although use of 3-Hydroxy-3-methyllglutaryl coenzyme A reductase inhibitors, angio-tensin-converting enzyme inhibitors or angiotensin receptor blockers, antioxidant vitamins C and E, calcium channel blocker and all-trans retinoic acid have some effects on retarding the progression of CAV, but long-term outcomes are needed to determine whether these benefits are sustainable. Because vasculopathy is the end result of both immune- and nonimmune-mediated endothelial activation that triggers smooth muscle cell proliferation, preventing its development may best be accomplished by using an immunosuppressive drug with potent antiproliferative and antimigrative effects on vascular smooth muscle cells(VSMCs). Traditionally used immunosuppressive agents such as calcineurin inhibitors (CNIs), corticosteroids, and purine biosynthesis inhibitors have hitherto shown little efficancy for preventing CAV, mycophenolate mofetil may havs some efficacy in this regard. Nevertheless, it is clear that better treatment options for prevention of CAV are required. Rapamycin (Rapa,Sirolimus) combine effective immunosuppression with antiprolife-
引文
[1] Hertz MI, Taylor DO, Trulock EP,Boucek MM, Mohacsi PJ, Edwards LB,al. The registry of the International Societyfor Heart and Lung Transplantation: nine -teenth official report -2002. J Heart Lung Transplant ,2002;21:950-70
    [2] Danny Ramzy, MD,Vivek Rao, MD, PhD,et al. Cardiac allograft vasculo-pathy: a review. Can J Surg, 2005,48(4):319-327
    [3] Adranda JM Jr, Hill J. Cardiac transplant vasculopathy. Chest, 2000, 118(6): 1792-800
    [4] Aranda JM Jr, Pauly DF, Kerensky RA, et al. Percutaneous coronary intervention versus medical therapy for coronary allograft vasculopathy: one center's experience. J Heart Lung Transplant, 2002, 21:860-866
    [5] Takano Y, Currier JW, Yeatman LA, et al. Cutiting balloon angioplasty for cardiac transplant vasculopathy. J Heart Lung Transplant ,2002,21:910-913
    [6] Kobashigawa JA, Katznelson S, Laks H, et al: Effect of pravastatin on out-comes after cardiac transplantation. N Engl J Med ,1995, 333: 621-627
    [7] Richter MHC, Richter HR, Olbrich HG, et al. Two good reasons for an angiotensin- II type 1 receptor blockade with olsartan after cardiac transplantation. Reduction in incidence and severity of transplant vasculopathy. Trans int, 2003, 16:26-32
    [8] Kobayashi J, Crawford SE, Backer CI,etal. Captopril reduces graft coronary artery disease in a rat heterotopic transplant model. Circulation, 1993,88(5): 286- 290
    [9] Fang JC, Kinlay S, Beltrame J, et al. Effect of vitamins C and E on progression of transplant-associated arteriosclerosis. a randomized trial. Lancet, 2002, 359:1108- 1113
    [10] Atkinson JB, Wudel JH, Hoff SJ, etal. Amlodipine reduces graft coronary artery disease in rat heterotopic allografts . J Heart Lung Transplant, 1993, 12(6): 1036- 1043
    [11] Kosaka C,Sasaguri T,Komiyama Y,et al.All-trans retinoic acid inhibits vascular smooth muscle cell proliferation targeting multiple genes for cyclins and cyclin- dependent kinase. Hypertens Res,2001,24(5):579-588
    [12] Kobashigawa J, Miller L, Renlund D, et al: A randomizedactive-controlled trial of mycophenolate mofetil in heart transplantrecipients. Transplantation 66:507, 1998
    [13] Pethig K, Heublein B, Wahlers T, Dannenberg O, Oppelt P, Haverich A: Mycophenolate mofetil for secondary prevention of cardiac allograft vasculopathy: influence on inflammation andprogression of intimal hyperplasia. J Heart Lung Transplant, 2004, 23: 61
    [14] Margaret L. Schwarze, MD, Stuart L. Houser, MD, Ashok Muniappan, MD, et al. Effects of Mycophenolate Mofetil on Cardiac Allograft Survival and Cardiac Allograft Vasculopathy in Miniature Swine. Ann Thorac Surg, 2005; 80: 1787-93
    [15] Kobashigawa J: Further analysis of the intravascular ultrasound(IVUS) data from the randomized mycophenolate mofetil(MMF) trial in heart transplant recipients. Data presented at the 24th Annual Meeting of the ISHLT, San Francisco, Calif, USA, April 2004
    [16] Schofer J, Schluter M, Gershlick AH, et al. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, ran-domized controlled trial(E-SIRIUS). Lancet, 2003, 362: 1093-1099
    [17] Schampaert E, Cohen EA, Schluter M, et al. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries(C-SIRIUS). J Am Coll Cardio, 2004, 43: 110-1115
    [18] 韩雅玲,王效增,荆全民,等.雷帕霉素洗脱支架治疗多支冠状动脉病变的临床研究.中国循环杂志,2005,20(2):86—89
    [19] Boehm M, Nabel EG. Cell cycle and cell migration: new pieces to the puzzle. Circulation, 2001, 103: 2879-2881
    [20] Sun J, Marx SO, Chen HJ, et al. Role for P27kip1 in vascular smooth muscle cell migration. Circulation, 2001, 103: 967-2972
    [21] Tremoli E, Camera M, Toschi V, et al. Tissue factor in atherosclerosis. Atherosclerosis, 1999, 144: 273-83
    [22] Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoa-gulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenecity. Circulation, 1999, 99: 348-53
    [23] Mawtari K, Liu B, Kent KC. Activation of integrin receptors isrequired for growth factor-induced smooth muscle cell dysfunction. JVasc Surg, 2000, 31: 375-81.
    [24] Roberts MS, Woods AJ, S haw PE, et al. ERK1 associates with alpha v beta 3 integdn and regulates cell spreading on vitronectin [J]. J Biol Chem, 2003, 278(8): 1975-1985
    [25] Borges E, Jan Y, Ruoslahti E. Platelet derived growth factor receptor and vascular endothelial growth factor receptor 2 bind to the integrin through its extracellular domain [J]. J Biol Chem, 2000, 275(51): 39867-39873
    [26] Russell ME, Wallace AF, Hancock MH, et al. Upregulation of cytokines asso-ciated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation, 1995, 59: 572-8
    [27] Mohamad H. Yamani, MD, Carolina S. Masri, MD, et al. The role of vitronectin receptor α v β 3and tissue factor in the pathogenesis of transplant coronary vasculopathy. J Am Coll Cardiol, 2002, 39: 804-10
    [28] Labarrere CA. Anticoagulation factors aspredictors of transplant-associated coronary artery disease. J Heart Lung Transplant, 2000, 19: 623-33
    [29] Gamba A, Mammana C, Fiocchi R, IameleL, Mamprin F. Cyclosporine and graft coronary artery disease after heart transplantation. Compr Ther, 2000, 26: 121-6
    [30] Ono K, Lindsey ES. Improved technique of heart transplantation in rat. J Thoracic Cardiol Surg, 1969, 57(2): 225
    [31] 张明奎,胡建国,杨进福,等.大鼠异位心脏移植术的改进及并发症原因分析.湖南医科大学学报,2003,28(2):194—198
    [32] Armstrong AT, Strauch AR, Starling RC, et al. Morphometric analysis of neointimal formation in murine cardiac allografts. Transplantation, 1997, 63(7): 941-947
    [33] Subramanian SV, Orosz CG, Strauch AR. Vascular smooth muscle α-actin expression as an indicator of parenchymal cell reprogramming in cardiac allograft. Transplantation, 1998, 65(12): 1652-1656
    [34] Marx SO, Marks AR. The develoment of rapamycin and its application to stent restenosis. [J]. Circulation, 2001, 104(11): 8521
    [35] Kahan BD. The limitations of calcineurin and mTOR inhibitors: new directions for immunosuppressive strategies. Transplant Proc, 2002, 34(1): 130-3
    [36] Poon M, Badimon JJ, Fuster V. Overcoming restenosis with sirolimus: from alphabet soup to clinical reality. Lancet, 2002, 359(9306): 619-22
    [37] Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest, 1996, 98(10): 2277-83
    [38] Morris RE, Cao W, Huang X, Gregory CR, Billingham ME, Rowan R, Shorthouse RA Rapamycin (Sirolimus) inhibits vascular smooth muscle DNA synthesis in vitro and suppresses narrowing in arterial allografts and in balloon-injured carotid arteries: evidence that rapamycin antagonizes growth factor action on immune and nonimmune cells. Transplant Proc, 1995, 27(1): 430-1
    [39] Gallo R, Padurean A, Jayaraman T, Marx S, Roque M, Adelman S, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation, 1999, 99(16): 2164-70
    [40] Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PW. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation, 2001, 104(17): 2007-11
    [41] 赵亮,王长希,陈立中,等.雷帕霉素和他汀类药物对移植物慢性血管病变的作用.中华实验外科杂志,2005,22(2):222—223
    [42] Yun JJ, Fischbein MP, Hillel L, et al. Early and late chemokine production correlates with cellular recruitment in cardiac allograft vasculopathy. Transplantation, 2000, 69(12): 2515-2524
    [43] Schmid C, Heemann U, Azuma H, Tilney NL. Rapamycin inhibits transplant vasculopathy in long-surviving rat heart allografts. Transplantation, 1995, 60(7): 729-33
    [44] Poston RS, Billingham M, Hoyt EG, Pollard J, Shorthouse R, Morris RE, Robbins RC. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation, 1999, 100(1): 67-74
    [45] Ikonen TS, Gummert JF, Hayase M, Honda Y, Hausen B, Christians U, Berry GJ, Yock PG, Morris RE. Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in non-human primates. Transplantation, 2000, 70(6): 969-75
    [46] Cao W, Mohacsi P, Shorthouse R, Pratt R, Morris RE. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation, 1995, 59(3): 390-5
    [47] Dambrin C, Klupp J, Birsan T, et al: Sirolimus(rapamycin) monotherapy prevents graft vascular disease in nonhuman primaterecipients of orthotopic aortic allografts. Circulation, 2003,107:2369
    [48] Ikonen TS, Gummert JF, Serkova N, Hayase M, Honda Y, Kobayase Y, Hausen B, Yock PG, Christians U, Morris RE.Efficacies of sirolimus (rapamycin) and cyclosporine in allograft vascular disease in non-human primates: trough levels of sirolimus correlate with inhibition of progression of arterial intimal thickening. Transpl Int,2000,13 Suppl 1:S314-20
    [49] Pham SM, Shears LL, Kawaharada N, Li S, Venkataramanan R, Sehgal S.High local production of nitric oxide as a possible mechanism by which rapamycin prevents transplant arteriosclerosis. Transplant Proc, 1998,30(4):953-4
    [50] Mancini D, Pinney S, Burkhoff D, et al: Use of rapamycinslows progression of cardiac transplantation vasculopathy. Circulation, 2003,108:48
    [51] Keogh A, Richardson M, Ruygrok P, et al: Sirolimus in denovo heart transplant recipients reduces acute rejection and preventscoronary heart disease at 2 years. A randomized clinical trial. Circulation, 2004,110:2694
    [52] Shanahan CM, Weissberg PL. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Aterioscler Thromb Vasc Biol,1998,18(3):333-338
    [53] Schwartz SM, DeBlois D, O'Brien RM. The intimal: soil for atherosclerosis and restenosis. Circ Res, 1995,77:445-465
    [54] Bochaton-Piallat ML,Ropraz P. Gabbiani F,et al. Phenotypic heterogeneity of rat arterial smooth muscle cell clones: implications for the development of experimental intimal thickening. Arterioscler Thromb Vasc Biol,1996,16:815-820
    [55] Thyberg J. Phenotypic modulation of smooth muscle cells during formation of neointimal thickening following vascular injury. Histol Histopathol,1998,13(3):871 -891
    [56] Fouty BW,Grimison B,Fagan KA,et al. p27(kipl) is important in modulating pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol. 2001, 25 (5):652-658
    [57] Chen DH,Krasmski K,Chen DF,et al. Downregulation of cyclin-dependent kinase activity in vascular smooth muscle cell by p27kip1,an inhibitor of neointima formation in the rat caroid artery [J]. J Clin Invest, 1997,99:2334-2341
    [58] Marks AR.Rapamycin:Signaling in vascular smooth muscle. Transplantation Proceedings, 2003,35(Suppl 3A),231s-233s
    [59] LIU Wen-shu,ZHANG Ru-hui,GE Xi-yuan,et al. Immunohistochemistry analysis of protein p27kipl in oral squamous cell carcinoma. Journal of Jilin University (Medicine Edition). 2004,30(2): 247-249
    [60] SUN Guo-hong,WANG Yan, et al. Protein expression of CyclinD1 and CDK4 in carcinoma of the tongue. J Clin Stomatol, 2005, 21,(8):471 —473
    [61] Ruediger C, Dullaeus B, Michael J,et al. Cell cycle progression: new therapeutic target for vascular proliferative disease. Circulation, 1998,9882-9889
    [62] Farley J, Smith LM, Darcy KM, et al. CyclinE expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: A Gynecologic Oncology Group study [J]. Cancer Res,2003,63(6):1235 —1241
    [63] Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs),growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs) [J].Oncogene,1995,11(2):211-219
    [64] Kwon TK, Nagel JE, Buchholz MA, et al. Characterization of the murine cyclin-dependent kinase inhibitor gene p27kip1. Gene,1996,180(1-2):113-120
    [65] Sherr CJ. Cancer cell cycle. Science, 1996,274:1672-1677
    [66] Fukumoto S, Koyama H, Hosoi M, et al. Distinct role of cAMP and cGMP in the cell cycle control of vascular smooth muscle cells. Circ Res, 1999,85: 985-991
    [67] Roque M, Reis ED, Cordon-Cardo C, et al. Effect of p27 deficiency and Rapamycin on intimal hyperplasia: in vivo and in vitro studies using a p27 knockout mouse model. Lab Invest, 2001,81:895-903
    [68] Fukumoto S, Nishizawa Y, Hosoi M, et al. Protein kinase C delta inhibits the proliferation of vascular smooth muscle cells by suppressing G1 cyclin expression. J Biol Chem, 1997,272:13816-13822
    [69] Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation, 1999,99:2164-2170
    [70] Owens CK. Regulation of differentiation of vascular smooth muscle cells [J]. Physio Rev, 1995,75:487-513
    [71] Marina A, Clukhova, Alexander E, et al. Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldsmon, and actin expression [J]. Proc Natl Acad Sci USA, 1998,85: 9542-9546
    [72] Bonneton C, Sibarita JB, Thiery JP. Relationship between cell migration and cell cycle during the intiation of epithelial to fibroblastoid transition. Cell Montil Cytoskeleton. 1999,43:288-295
    [73] Tanner FC, Boehm M, Akyurek LM, et al. Differential effects of the cyclin-dependent kinase inhibitors p27kip1,p21,and p16Ink4 on vascular smooth muscle cell proliferation. Circulation,2000,101:2022-2025
    [74] Sherr CJ. Cancer cell cycles. Science, 1996,274:1672-1677
    [75] Ruygrok P N, Muller D W, Serruys PW. Rapamycinin cardiovascular medicine. Intern Med J, 2003, 33:103-109
    [76] Fingar DC, Salama S, T sou C, etal. Mammalian cell size is controlled by mTOR and its down stream targets S6K1 and 4EBP/eIF4E. Genes Dev, 2002, 16:1472-1487
    [77] Stawowy P ,B laschke F, Kilimnik A, etal. Proprotein convertase PC5 regulation by PDGF-BB involves PI3-Kinase/p70s6-Kinase activation in vascular smoothmuscle cells. Hypertension, 2002, 39: 399-404
    [78] Abranham R T, Wiederrecht G J. Immunopharmacology of rapamycin. Annu Rev Immunol,1996,14:483-510
    [79] Hashemol hosseini S, Nagamine Y, Morley S, etal. Rapamycin inhibition of the G1 to S transition is mediated by effets on Cyclin D1 mRNA and proterin stability. J Biol Chem, 1998, 273: 14424-14429
    [80] Kaiura TL, Itoh H,Kubaska SM,et al. The effect of growth factor-s,cytokines,and extracellular matrix proteins on fibronectin production in human vascular smooth muscle cells [J]. J Vasc Surg,2000,31(3):577-584
    [81] Horton MA. The alpha v beta 3 integrin "vitronectin receptor". Int J Bio-chem Cell Biol ,1997,29:721-5
    [82] Morla AO, Mogford JE. Control of SMC proliferation and phenotype by integrin signaling through focal adhesion kinase [J]. Biochem Biophys Res Commun, 2000, 272(1):298-302
    [83] Boudreau NJ, Jonesa PL. Extracellular matrix and integrin signaling:the shape of things to come [J]. Biochem J,1999,339(3):481-488
    [84] Kawai T, Seki M, Hiromatsu K, et al. Selective diapedesis of Th1 cells induced by endothelial cell RANTES. J Immunol, 1999,163:3269-3278
    [85] Zhao XM, Yeoh TK, FristWH, et al. Induction of acidic fibroblast growth factor and full-length platelet-derived growth factor expression in human cardiac allografts. Analysis by PCR, in situ hybridization,and immunohistochemistry. Circulation, 1999, 90 (2):677-685
    [86] Hachida M, Zhang X, Liu H, et al. Association between the degree of platelet-derived growth factor-A chain mRNA expression and coronary arteriosclerosis in the transplanted heart. Heart Vessels, 1998,13(1): 24—29
    [87] Mancini MC, Even JE. Role of platelet-derived growth factor in allograft vasculopathy. Annal of Surgery, 2000,231(5):682-688
    [88] Sihvola RK, Tikkanen JM, Krebs R, et al. Platelet-derived growth factor receptor inhibition reduces allograft arteriosclerosis of heart and aorta in cholesterol-fed rabbits. Transplantation,2003,75(3):334-339
    [89] Koskinen P, Sihvola R, Myllarniemi M, et al. Prevention of cardiac allograft arteriosclerosis by protein-tyrosine kinase inhibitor selective for platelet-derived growth factor receptor. Transplant Proc,1999,31(l-2):102
    [90] Wada Y, Fujimori M, Suzuki J. Egr-1 in vascular smooth muscle cell proliferation in response to allo-antigen. J Surg Res,2003,115(2):294-302
    [91] Klugherz B, L lanos G, Lieu alien W, etal. Stent-based delivery of sirolinus for the prevention of restenosis. J Am Coll Cardiol, 2000,35:58-58.
    [92] Suehiro K, Plow EF. Ligand recognition by alpha v beta 3 integrins. Keio J Med, 1997;,46: 111-4
    [93] Kirchhofer D, Grzesiak J, Pierschbacher MD. Calcium as a potential physiological regulator of integrin-mediated cell adhesion [J]. J Biol Chem, 1991, 266:4471
    [94] Brooks PC, Montgomery A MP, Rosenfeld M, et al. Integrin alpha-v/ beta-3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels [J]. Cell, 1994,79:1157
    [95] Miranti CK, Brugge JS. Sensing the environment a historical perspective on integrin signal transduction [J]. Nat Cell Biol,2002,4(4):83-90
    [96] Vinogradova O, Vaynberg J, Kong X, et al. Membrane-mediated structural transitions at the cytoplasmic face during integrin activation [J]. Proc Natl Acad Sci US A,2004,101(12):4094-4099
    [97] Tremoli E, Camera M, Toschi V, et al. Tissue factor in atherosclerosis. Atherosclerosis, 1999,144:273-83
    [98] Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenecity. Circulation, 1999,99:348-53
    [99] Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994,77:477-8
    [100] Damsky CH, Hic D. Integrin signaling -it's where the action is [J]. Curr Opin Cell Biol,2002,14(5):594-602
    [101] Comoglio PM, Boccaccio C, Trusolino L. Interactions between growth factor receptors and adhension molecules breaking the rules [J]. Curr Opin Cell Biol,2003, 15(5):565-571
    [102] Schneller M, Vuri K, Ruoslahti E. Alpha v beta3 integrin associates with activated insulin and PDGF beta receptors and potentiates the biological activity of PDGF [J]. EMBO J, 1997,16(18):5600-5607
    [103] Giancotti FG, Tarone G . Positional control of cell fate through joint integrin /receptor protein kinase signaling [J]. Annu Rev Cell Dev Biol, 2003, 19: 173-206
    [104] Oshima K, Ruhul Am in AR, Suzuki A, et al. SHPS-1, a multifunctional transmembrane glycoprotein [J]. FEBS Lett,2002,519(1-3):1-7
    [105] Ivankovic-Dikic I, Gronroos E, Blaukat A, et al. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins [J]. Nat Cell Biol,2000,2(9): 574-581
    [106] Eliceiri BP, Puente XS, Hood JD,et al . Sre-mediated coupling of focal adhension kinase to integrin alpha v beta 3 in vascular endothelial growth factor signaling [J]. J Cell Biol, 2002,157(1):149-160
    [1] Costanzo MR, Naftel DC, Prizker MR, et al. Heart transplant coronary artey disease detected by coronary angiography: a multiinstitutional study of pre-operative donor and rectipient risk factor. J Heart Lung Transplant ,1998, 17:744-753
    [2] Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on out-comes after cardiac transplantation. N Engl J Med ,1995, 333: 621-627
    [3] Libby P, Zhao DXM. Allograft arteriosclerosis and immune-driven angiogen-esis. Circulation ,2003,107:1237-1239
    [4] Avery RK. Cardiac allograft vasculopathy. N Engl Jmed, 2003, 349:829-830
    [5] Ltescu S, Tung TCM, Burke EM, et al. An immunological algonthm to predict risk of high-grade rejection in cardiac transplant recipients. Lancet ,1998, 352:263-270
    [6] Valentine H, RickenbackerP, Kemna M, et al. Metabolic abnormalities character- istic of dysmetabolic syndrome predict the development of transplant coronary artery disease: a prospective study. Circulation ,2001,103:2144-2152
    [7] Costanzo-Nordin MR. Cardiac allograft vasculopathy: relationship with acute cellular rejection and histocompatibility. J Heart Lung Transplant ,1992, 11:S90-103
    [8] Hillebrands JL, Klatter FA, Rozing J. Origin of vascular smooth muscle cells and the role of circulating stem cells in transpalant arteriosclerosis. Arterioscler Thromb Vasc Biol ,2003, 23:380-387
    [9] Labarrere CA, Nelson DR, Miller SJ, et al. Value of serum-soluble intercellular adhesion molecule-1 for the noninvasive risk assessment of transplant coro-nary artery disease, posttransplant ischemic events, and cardiac graft failure. Circulation ,2000, 102:1549-1555
    [10] Reed EF, Hong B, Ho E, et al. Monitoring of soluble HLA alloantigens and anti-HLA antibodies identifies heart allograft recipients at risk of transplant associated coronary artey disease. Transplantation ,1996, 61:556-572
    [11] Yamani MH, Starling RC, Young JB, et al. Acute vascular rejection is asso-ciated with up-regulation of vitronectin receptor (av β 3), increased expression of tissue faclor, and activation of the extracellular matrix metalloproteinase induction system. J Heart Lung Transplant ,2002,21:983-989
    [12] Yamani MH, Tuzcu M, Starling RC, et al. Myocardial ischemic injury after heart transplantation is associated with upregulation of vitonectin receptor (av β 3), activation of the matrix metalloproteinase induction system, and subsequent development of coronary vasculopthy. Circulation, 2002,105:1955-1961
    [13] Yamani MH, Masri CS, Ratliff NB, et al. the role of vitonectin receptor (av β 3)and tissue factor ing the pathogenesis of transplant vasculopathy. J Am Coll Cardiol, 2002,39:804-810
    [14] Yamani MH, Ratliff NB, Starling RC, et al. Quilty lesions are associated with increased expression of vitonectin receptor (av β 3)and subsequent devel-opent of coronary vasculopathy. J Heart Lung Transplant ,2003, 22:687-690
    [15] Libby P, Salomon Rn, Payne DD, et al. Functions of vascular wall cells related to development of tansplantation-associated coronary arteriosclerosis. Transplant Proc, 1989,21:3677-3684
    [16] Matwari K, Liu B, kent KC. Activantion of integrin receptors is required for growth factor-induced smooth muscle cell dysfunction. J Vasc Surg, 2000, 31:375-381
    [17] Lemstrom KB, krebs R, Nykanen Al, et al. Vascular endothelial growth factor enhances cardiac allograft arteriosclerosis. Circulation ,2002, 105:2524-2530
    [18] Zhao XM, Hu Y, Miller GG, et al. Association of thrombospondin-1 and Cardiac allograft vasculopathy in human cardiac allografts. Circulation, 2001, 103: 525-531
    [19] Gao SZ, Alderman EL, Schroeder JS, et al. Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J Am Coll Cardiol, 1988, 12:334-340
    [20] Nykanen Al, Krebs R, Saaristo A, et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation, 2003, 107:1308-1314
    [21] Tsai F Marelli D, Bresson J, et al: Use of hearts transplanted from donors with atraumatic intracerebral bleed. J Heart Lung Transplant, 2002, 21:623-628
    [22]Yamani MH, Starling RC, Cook DJ, et al. Donor spontaneous intracerebral hemorrhage is associated with systemic activation of matrix metalloprotein-ase-2 and matrix metalloproteinase-9 and subsequent development of coro-nary vasculopathy in the heart transplant recipient. Circulation, 2003, 108: 1724-1728
    [23] Bendeck MP, Zempo N, Clowes AW, et al. Smooth muscle cell migration and matrix metalloproteinase expression after arteial injury in the rat. Circ Res ,1994, 75:539-545
    [24] Yamani MH, Haji SA, Staring RC, et al. Myocardial ischemjc-fibrotic injury after human heart transplantation is associated with increased progression of vasculopathy, decreased cellular rejection and poor lond-term outcome. J Am Coll Cardiol ,2002, 39:970-977
    [25] Ferri C, Properzi G, Tomassoni G, et al. Pattems of myocardial endothelin-1 expression and outcome after cardiac transplantation. Circulation,2002, 105:1768-1771
    [26] Ventura HO, Mehra MR. C-reactive protein and cardiac allograft vasculopathy: is inflammation the critical link? J Am Coll Cardiol ,2003,42:483-485
    [27] Calabro P, Willerson JT, Yeh ETH. Inflammatory cytokines stimulate C-reactive protein production by human coronary artery smooth muscle cells, Circulation, 2003, 108: 1930-1932
    [28] Ridker PM, Buring JE, Shih J, et al. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation, 1998, 98:731-733
    [29] Labarrere CA, Lee JB, Nelson DR, et al. C-reactive protein, arterial endothlial activation and development of transplant coronary artery disease: a prospective study. Lancet, 2002, 360:1462-1467
    [30] Eisenberg MS, Chen HJ, Warshofsky MK, et al. Elevated levels of plasma C-reactive protiin are associated with decreased graft survival in cardiac transplant recipients. Circulation, 2000,102:2100-2104
    [31] Labarrere CA, Nelson DR, Faulk WP. Endothelial activation and development of coronary artery disease in transplanted human hearts. JAMA,1997,278: 1169-1175
    [32] Szmitko PE, Wang CH, Weisel RD, et al. New markers of inflammation and endothelial cell activation: part 1. Circulation ,2003, 108:1917-1923
    [33] Perrault LP, Malo O, Bidouard JP, et al. Inhibiting the NO pathway with intra- coronary L-NAME infusion increases endothelial dysfunction and intimal hyperpla- sia after heart transplantation. J heart Lung Transplant, 2003,22:439- 451
    [34] Hillebrands JL, Klatter FA, van den Hurk BM, et al. Origin of neointimal endothelium and alpha actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest ,2001,107:1411-1422
    [35] Shimizu K, Sugiyama S, Aikawa M, et al. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopa-thy. Nat Med ,2001, 7:738-741
    [36] Simper D, Wang S, Deb A, et al. Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant arteriosclerosis. Circulation ,2003, 107: 143-149
    [37] Horiguchi K, Kitagawa-Sakakida S, Sawa Y, et al. Selective chemokine and receptor gene expressions in allografts that develop transplant vasculopathy. J Heart Lung Transplant, 2002, 21:1090-1100
    [38] Kao J, Kobashigawa J, Fishbein MC, et al. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation, 2001, 104:653-657
    [39] Tsutsui H, Ziada KM, Schoenhagen P, et al. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation, 2001, 104:653-657
    [40] Wong C, Ganz P, Miller L, et al. Role of vascular remodeling in the pathogenesis of early transplant coronary artery disease: a multi-center prospective intravascular ultrasound study. J Heart Lung Transplant ,2001, 20:385-392
    [41] Tsutsui H, Schoenhagen P, Ziada KM, et al. Early constriction or expansion of the extemal elastic membrane area determines the late remodeling response and cumulative lumen loss in transplant vasculopathy: an intravascular ultrasound study with 4-year follow-up. J Heart Lung Transplant, 2003,22:519-525
    [42] Glagov S, Weisenberg E, Zanins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med, 1987, 316:1371-1375
    [43] McGiffin DC, Savunen T, Kirkin JK, et al. Cardiac transplant coronary artery disease: a multivariable analysis of pretransplantation risk factors for disease develop ment and morbid events. J Cardiovasc Surg, 1995, 109:1081-1089
    [44] Luyt CE, Drobinski G, Dorent R, et al. Prognosis of moderate coronary artery lesions in heart transplant patients. J Heart Lung Transplant ,2003, 22:130-136
    [45] Mehra MR, Ventura HO, Uber PA, et al. Is all intimal proliferation created equal in cardiac allograft vasculopathy? The quantity-quality paradox. J Heart Lung Transplant, 2003, 22:118-123
    [46] Gao SZ, Hunt SA, Aldeman EL, et al. Relation of donor age and preexisting coronary artery disease on angiography and intracoronary ultrasound to later development of accelerated allograft coronary artery disase. J Am Coll Cardiol, 1997, 29:623-629
    [47] Grauhan O, Patzurek J, Hummel M, et al. Donor-transmitted coronary athero- sclerosis. J Heart Lung Transplant ,2003, 22:568-573
    [48] Ramasubbu K, Schoenhagen P, Balghith MA, et al. Repeated intravascular ultrasound imaging in cardiac transplant recipients does not accelerate transplant coronary artery disease. J Am Coll Cardiol, 2003,41:1739-1743
    [49] Fang JC, Kinlay S, Wexberg P, et al. Use of the thrombolysis in myocardial infarction frame count for the quantitative assessment of transplanl-associated arteriosclerosis. Am J Cardiol ,2000, 86:890-892
    [50] Konig A, Spes CH, Schiele TM, et al. Coronary Doppler measurements do not predict progression of cardiac allograft vasculopathy, analysis by serial intracoronary Doppler, Dobutamine stress echocardiography, and intracoronary ultrasound. J Heart Lung Transplant ,2002, 21:902-905
    [51] Treasure CB, et al. Loss of the coronary microvascular response to acetylcholine in cardiac transplant patients. Circulation, 1992, 86:1156-1164
    [52] Nitenberg A,et al. Effects of time and previous acute rejection episodes on coronary vascular reserve in human heart transplant recipients. J Am coll Cardiol, 1992,20:1333-1338
    [53] Vekshtein VI, et al. Myocardial ischemia: pathogenic role of disturbed vaso-motion and endothelial dysfunction in coronary atherosclerosis. Circulation, 1990, 82: 2068-2074
    [54] Hollenberg SM, Klein LW, Parrillo JE, et al. Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circul- ation ,2001, 104:3091-3096
    [55] Derumeaux G, et al. Assessment of the progression of cardiac allograft vasculo- pathy by dobutamine stress echocardiography. J Heart Lung Transplant. 1998,17:259-267
    [56] Lewis JF, et al. Dobutamine echocardiography for prediction of ischemic events in heart transplant recipients. J Heart Lung Transplant. 1997, 16:390-393
    [57] Spes CH, Klauss V, Mudra H, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy. A comparison with coronary angiography and intravascular ultrasound. Circulation ,1999,100:509-515
    [58] Dandel M, Hummel M, Muller J, et al. Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation, 2001, 104(suppl1):1184-1191
    [59] Muehling OM, Wilke NM, Panse P, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol ,2003,42:1054-1060
    [60] Barbir M, et al. The prognostic significance of non-invasive cardiac tests in heart transplant recipients.Eur Heart J. 1997,18:692-696
    [61] Hummel M, et al. Electron-beam computed tomography in heart surgery. Radiologe, 1998,38(12):1045-53
    [62] Ventura HO, et al. Coronary artery imaging with intravascular ultrasound in patients following cardiac transplantation.Transplantation. Transplantation, 1992, 53: 216-219
    [63] St Goar FG, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of "angiographically silent" intimal thickening. Circulation, 1992, 85: 979-987
    [64] Mehra MR, et al. The impact of mode of donor brain death on cardiac allograft vasculopathy: an intravascular ultrasound study. J Am Coll Cardiol, 2004, 43(5):806-10
    [65] Mehra MR, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol, 2005, 45(9): 1532-7
    [66] Aranda JM JR, Hill J. Cardiac transplant vasculopathy. Chest, 2000, 118: 1792- 1800
    [67] Aranda JM Jr, Pauly DF, Kerensky RA, et al. Percutaneous coronary intervention versus medical therapy for coronary allograft vasculopathy: one center's experience. J Heart Lung Transplant, 2002, 21:860-866
    [68] Takano Y, Currier JW, Yeatman LA, et al. Cutiting balloon angioplasty for cardiac transplant vasculopathy. J Heart Lung Transplant ,2002,21:910-913
    [69] Marx SO, Marks AR. Bench to bedside. The development of rapamycin and its application to stent restenosis. Circulation ,2001,104:852-855
    [70] Mancini D, Pinney S, Burkhoff D,etal. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation,2003,108(1):48~53
    [71] Wenke K, Meiser B, Thiery J, et al. Simvastatin initiated early after heart trans-plantation. 8-year prospective experience. Circulation ,2003, 107: 93-97
    [72] Palinski W, Tsimikas S. Immunomodulatory effects of statins: mechanisms and potential impact on arteriosclerosis. J Am Soc Nephrol,2002,13(6): 1673-1681
    [73] Maggard MA,Ke B, Wang T,etal. Effects of pravastatin on chronic rejection of rat cardiac allografts. Transplantation, 1998,65(2): 149-155
    [74] Kobashigawa JA, Katznelson S, Laks H,etal. Effects of pravastatin of outcome after cardiac transplantation. N Engl J Med,1995,333(10):621~627
    [75] Katznelson S, Wang XM,Chia D,etal. The inhibitory effects of pravastatin on natural killer cell activity in vivo and on cyto-toxic Tlymphocyte activity in vitro. J Heart Lung Transplant, 1998,17(4):335~340
    [76] Wenke K, Meiser B, Thiery J,etal. Simvastatin reduces graft vessel disease and mortality after heart transplantation: a four-year randomized trial. Circulation, 1997, 96(5): 1398-1402
    [77] Weis M, Pehivanli S, Meiser B, et al. Simvastatin treatment is associated with improvement in coronary endothelial function and decreased cytokine activation in patients after heart transplantation. J Am Coll Cardiol, 2001, 38:814-818
    [78] Hognestad A, Endresen K, Wergeland R, et al. Plasma C-reactive protein as a marker of cardiac allograft vasculopathy in heart transplant recipients. J Am Coll Cardiol ,2003,42:477-482
    [79] Kalznelson S, Huang XM, Chia D, et al. The inhibitory effects of pravastatin on natural killer cell activity in vivo and on cytoxic T lymphocyte activity in vitro. J Heart Lung Transplant, 1998, 17:335-40
    [80] Katznelson S, Huang XM, Chia D, et al. The inhibitory effects of pravastatin on natural killer cell activity in vivo and on cytotoxic T lymphocyte activity in vitro. J Heart Lung Transplant ,1998,17:335-340
    [81] Kwak B, Mulhaupt F, Myit S, et al. Statins as a newiy recognized type of immunomodulator. Nat Med ,2000, 6:1399-1402
    [82]ehra MR, Uber PA, Vivekananthan K, et al. Comparative beneficial effects of simvastatin and pravastatin on cardiac allograft rejection and survival. J Am Coll Cardiol ,2002,40:1609-1614
    [83] Richter MHC, Richter HR, Olbrich HG, et al. Two good reasons for an angiotensin- II type 1 receptor blockade with olsartan after cardiac transplantation. Reduction in incidence and severity of transplant vasculopathy. Trans int, 2003, 16:26-32
    [84] YangZ, Arnet U, Segesser L,etal. Different effects of angiotensin-converting enzyme inhibition in human arteries and veins. J Cardiovasc Pharmacol, 1993, 22 (Supp110): S17-S22
    [85] Kobayashi J, Crawford SE, Backer CI,etal. Captopril reduces graft coronary artery disease in a rat heterotopic transplant model. Circulation, 1993,88(5): 286- 290
    [86] Furukawa Y, Matsumori A, Hirozane T,etal, Angiotensin receptor antagonist TCV2116 reduces graft coronary artery disease and preserves graft status in a murine model:a comparative study with captopril. Circulaion, 1996,93(2): 333- 339
    [87] Mehra MR, Ventura HO, Smart FW, etal. An intravascular ultrasound study of the influence of angiotensin-converting enzyme inhibitors and calcium entry blockers on the development of cardiac allograft vasculopathy. Am J Cardiol, 1995, 75(12): 853-854
    [88] Fang JC, Kinlay S, Beltrame J, et al. Effect of vitamins C and E on progression of transplant-associated arteriosclerosis. a randomized trial. Lancet,2002, 359: 1108-1113
    [89] Schroeder JS, Gao SZ, Aldeman EL, et al. A preliminary study of diltiazem in the prevention of coronary artery disease in heart transplant recipients. N Enel J Med, 1993,328:164-170
    [90] Atkinson JB, Wudel JH, Hoff SJ, etal. Amlodipine reduces graft coronary artery disease in rat heterotopic allografts. J Heart Lung Transplant, 1993,12(6): 1036- 1043
    [91] Ambrosio A, Giacomini E, Camponeschi B,etal. Diltiazem modulates monokine production in human mixed lymphocyte culture. Transplantation, 1998, 65(10): 1411-1413
    [92] Schroeder JS, Gao SZ, Alderman EL, etal. A preliminary study of diltiazem in the prevention of coronary artery disease in heart transplant recipients. N Engl J Med, 1993,328(3):164~170
    [93] Noll G, Buhler FR, Yang Z,etal. Different potency of endothelium-derived relaxing factors against thromboxane, endothelin, and potassium chloride in intra-myocardial porcine coronary arteries. J Cardiovasc Pharmacol, 1991,18(1): 120- 126
    [94] Betz E, Weiss HD, Heinle H,etal. Calcium antagonists and atherosclerosis. J Cardiovasc Pharmacol, 1991,18(Suppl 10):S71 ~S75
    [95] Takami H, Backer CL, Crawford SE, Mavroudis C, etal. Diltiazem preserves direct vasodilator response but fails to suppress intimal proliferation in rat allograft coronary disease. J Heart Lung Transplant,1996,15(1):67~77
    [96] Belitsky P, Gulanikar A, He G,etal. Effect of immunosuppression on chronic rejection in the rat aortic allograft model. Transplant Proc,1993,25(1):935
    [97] Poston RS, Billingham M, Hoyt EG,etal. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation, 1999,100(1): 67~ 74
    [98] Schmid C, Heeman U, Azuma H, et al. Rapamycin inhibits transplant vasculopathy in long-surviving rat heart allograft. Transplantation, 1995,60(7): 729-733
    [99] Keogh A,Richardson M,Ruygrok P, et al. Sirolimus in de novo heat transplant recipients reduces acut rejection and prevents coronary heart disease at 2 years. A randomized clinical trial. Circulation, 2004,110:2694
    [100] Nair RV, Morris RE. Immunosuppression in cardiac transplantation: a new era in immunopharmacology. Curr Opin Cardiol,1995,10(2):207~217
    [101] Weis M, Scheidt W. Cardiac allograft vasculopathy: A review. Circulation, 1997, 96(6): 2069-2077
    [102] Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac transplant recipients. N Engl J Med, 2003, 349:847-858
    [103] Nair RV, Morris RE. Immunosuppression in cardiac transplantation: a new era in immunopharmacology. Curr Opin Cardiol,1995,10(2):207~217
    [104] Humiston DJ, Taylor AG, Kfours D,etal. Mycophenolate mofetil: history and introduction into clinical heart transplantation. Cardiovasc Eng, 1997, 2(1): 198-203
    [105] Raisanen-Sokolowski A, Myllarniemi M, Hayry P. Effect of mycophenolate mofeil on allograft arteriosclerosis. Transplant Proc, 1994, 26 (6) : 3225
    [106] Kobashigawa J, Miller L, Renlund D, etal. Arandomized active-controlled trial of mycophenolate mofetil in heart transplant recipients: Mycophenolate mofetil investigators. Transplantation, 1998, 66(4): 507~515
    [1] Napoli KL,Taylor PJ. From beach to bedside: history of the development of sirolimus. Ther Drug Monit,2001,23(5):559-86
    [2] Abranham R T, Wiederrecht G J. Immunopharmacology of rapamycin. Annu Rev Immunol,1996,14:483-510
    [3] Ruygrok P N, Muller D W, Serruys PW. Rapamycinin cardiovascular medicine. Intern Med J, 2003, 33:103-109
    [4] Poston RS, Billingham M, Hoyt EG,etal. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation, 1999,100(1): 67-74
    [5] Schmid C, Heeman U, Azuma H,etal. Rapamycin inhibits transplant vasculopathy in long-surviving rat heart allograft. Transplantation, 1995,60(7): 729-733
    [6] Mancini D, Pinney S, Burkhoff D,etal. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation,2003,108(1):48~53
    [7] McMahon L P, Choi K M, Lin T A, etal. The rapamycin-binding domain governs substrate selectivity by mammalian targer of rapamycin. Mol Cell Biol, 2002,22: 7428-7438
    [8] Kahan BD, Camardo JS .Rapamycin: clinical results and future opportunities. Transplantation,2001,23:1181 -93
    [9] Fingar D C, Salama S, T sou C, etal . Mammalian cell size is controlled by mTOR and its down stream targets S6K1 and 4EBP/eIF4E. Genes Dev, 2002, 16: 1472-1487
    [10] Kahan BD.Sirolimus: a comprehensive review. Expert Opin Pharmacother, 2001,2(11): 1903-17
    [11] Stawowy P ,B laschke F, Kilimnik A, etal. Proprotein convertase PC5 regulation by PDGF-BB involves PI3-Kinase/p70s6-Kinase activation in vascular smooth muscle cells. Hypertension, 2002, 39: 399-404
    [12] Hashemol hosseini S, Nagamine Y, Morley S, etal. Rapamycin inhibition of the G1 to S transition is mediated by effets on Cyclin D1 mRNA and proterin stability. J Biol Chem, 1998,273: 14424-14429
    [13] Sigal NH, Dumont FJ. Cyclosporin A, FK506 and Rapamycin: Pharmac- ological probes of lymphocyte signal transduction. Annu Rev Immunol, 1992,10:519
    [14] MacDonald A.Improving tolerability of immunosuppressive regimens. Trans- plantation, 2001, 72(12 Suppl):S105-12
    [15] Ferraresso M,Tian L,Ghobrial R,Stepkowski SM,Kahan BD. Rapamycin inhibits production of cytotoxic but not noncytotoxic antibodies and preferentially activates T helper 2 cells that mediate long-term survival of heart allografts in rats. J Immunol, 1994,153(7):3307-18
    [16] Schmidbauer G,Hancock WW,Wasowska B,Binder J,PADBERG w, Kupiec- Weglinski JW. Rapamycin abrogates accelerated rejection in sensitized rats by selectively suppressing intragraft cell activation, adhesion/binding properties, and modulating serum alloantibody responses. Transplant Proc,1995,27(1):427-9
    [17] Stepkowski SM, Tian L,Napoli KL,Ghobrial R,Wang ME,Chou TC,Kahan BD. Synergistic mechanisms by which sirolimus and cyclosporin inhibit rat heart and kidney allograft rejection. Clin Exp Immunol,1997,108(1):63-8
    [18] Fryer J,Yatscoff RW,Pascoe EA,Thliveris J. The relationship of blood concentrations of rapamycin and cyclosporine to suppression of allograft rejection in a rabbit heterotopic heart transplant model. Transplantation. 1993,55(2):340-5
    [19] Baran DA,Galin ID,Gass AL. Current practices: immunosuppression induction, maintenance, and rejection regimens in contemporary post-heart transplant patient treatment. Curr Opin Cardiol,2002,17(2): 165-70
    [20] Vu MD, Qi S,Xu D, Wu J, Fitzsimmons WE, Sehgal SN, Dumont L, Busque S,Daloze P,Chen H. Tacrolimus (FK506) and sirolimus (rapamycin) in combination are not antagonistic but produce extended graft survival in cardiac transplantation in the rat. Transplantation, 1997,64(12): 1853-6
    [21] Radovancevic B, El-Sabrout R,Thomas C,Radovancevic R,Frazier OH, Van Buren C. Rapamycin reduces rejection in heart transplant recipients. Transplant Proc, 2001,33(7-8):3221-2
    [22] Pham SM, Qi XS, Mallon SM, Kaplon RJ, Bauerlein EJ, Katariya K, Sequeira RF, Bolooki H, Rosenkranz E, Loo AF, Lee PC, Jimenez J, Salerno TA .Sirolimus and tacrolimus in clinical cardiac transplantation. Transplant Proc, 2002,34(5): 1839-42
    [23] Vu MD, Qi S, Xu D,Wu J, Peng J,Daloze P,Sehgal S, Leduc B, Chen H. Synergistic effects of mycophenolate mofetil and sirolimus in prevention of acute heart, pancreas, and kidney allograft rejection and in reversal of ongoing heart allograft rejection in the rat. Transplantation, 1998,66(12): 1575-80
    [24] Chen H, Wu J,Xu D,Luo H, Daloze PM. Reversal of ongoing heart, kidney, and pancreas allograft rejection and suppression of accelerated heart allograft rejection in the rat by rapamycin. Transplantation, 1993, 56(3):661-6
    [25] Jain A, Khanna A, Molmenti EP, Rishi N, Fung J. Immunosuppressive therapy. Surg Clin North Am, 1999,79(1): 59-76
    [26] Sindhi R, Webber S, Venkataramanan R, McGhee W, Phillips S, Smith A, Baird C, Iurlano K, Mazariegos G, Cooperstone B, Holt DW, Zeevi A F. Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. Transplantation,2001,72(5): 851-5
    [27] Straatman LP, Coles JG. Pediatric utilization of rapamycin for severe cardiac allograft rejection. Transplantation,2000,70(3):541-3
    [28] Snell GI, Lewey BJ, Chin W, Kotsimbos AT, Whitford H, Williams TJ, Richardson M. Rescue therapy: a role for sirolimus in lung and heart transplant recipients. Transplant Proc,2001,33(1-2): 1084-5
    [29] Haddad H, MacNeil DM, Howlett J, O'Neill B. Sirolimus, a new potent immuno- suppressant agent for refractory cardiac transplantation rejection: two case reports. Can J Cardiol, 2000,16(2):221-4
    [30] Yu X, Carpenter P, Anasetti C.Advances in transplantation tolerance. Lancet, 2001,357(9272):1959-63
    [31] Chen H, Xu D, Wu J, Daloze Prolongation of hamster to rat xenograft survival by rapamycin. Transplant Proc, 1992,24(2):715-6
    [32] Yatscoff RW, Wang S, Keenan R, Chackowsky P, Lowes N, Koshal A.Efficacy of rapamycin, RS-61443 and cyclophosphamide in the prolongation of survival of discordant pig to rabbit cardiac xenografts. Can J Cardiol, 1994, 10(7): 711-6
    [33] Smiley ST, Csizmadia V, Gao W, Turka LA, Hancock WW. Differential effects of cyclosporine A, methylprednisolone, mycophenolate, and rapamycin on CD154 induction and requirement for NFkappaB: implications for tolerance induction. Trans- plantation, 2000,70(3):415-9
    [34] Kahan BD. The limitations of calcineurin and mTOR inhibitors: new directions for immunosuppressive strategies. Transplant Proc, 2002,34(1):130-3
    [35] Poon M, Badimon JJ, Fuster V.Overcoming restenosis with sirolimus: from alphabet soup to clinical reality. Lancet, 2002,359(9306):619-22
    [36] Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest,1996, 98(10): 2277- 83
    [37] Morris RE, Cao W, Huang X, Gregory CR, Billingham ME, Rowan R, Shorthouse RA. Rapamycin (Sirolimus) inhibits vascular smooth muscle DNA synthesis in vitro and suppresses narrowing in arterial allografts and in balloon-injured carotid arteries: evidence that rapamycin antagonizes growth factor action on immune and nonimmune cells. Transplant Proc, 1995,27(1):430-1
    [38] Gallo R, Padurean A, Jayaraman T, Marx S, Roque M, Adelman S, Chesebro J, Fallon J, Fuster V, Marks. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation, 1999,99(16) :2164-70
    [39] Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PWSustained suppression of neointimal proliferation by sirolimus- eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation, 2001, 104(17):2007-11
    [40] Behrendt D, Ganz P, Fang JC.Cardiac allograft vasculopathy. Curr Opin Cardiol,2000,15(6):422-9
    [41] Johnson DE, Gao SZ, Schroeder JS, DeCampli WM, Billingham ME.The spectrum of coronary artery pathologic findings in human cardiac allografts. J Heart Transplant, 1989,8(5):349-59
    [42] Kobashigawa J: Further analysis of the intravascular ultrasound(IVUS) data from the randomized mycophenolate mofetil(MMF) trial in heart transplant recipients. Data presented at the24th Annual Meeting of the ISHLT, San Francisco, Calif, USA,April 2004
    [43] Kobashigawa J, Miller L, Renlund D, et al: A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation, 1998, 66:507
    [44] Pethig K, Heublein B, Wahlers T,Dannenberg O, Oppelt P,Haverich A: Mycophenolate mofetil for secondary prevention of cardiac allograft vasculopathy: influence on inflammation and progression of intimal hyperplasia. J Heart Lung Transplant, 2004,23:61
    [45] Schmid C, Heemann U, Azuma H, Tilney NL. Rapamycin inhibits transplant vasculopathy in long-surviving rat heart allografts.Transplantation, 1995, 60(7): 729- 33.
    [46] Poston RS, Billingham M, Hoyt EG, Pollard J, Shorthouse R, Morris RE, Robbins RC. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation, 1999,100(1):67-74.
    [47] Ikonen TS, Gummert JF, Hayase M, Honda Y, Hausen B, Christians U, Berry GJ, Yock PG, Morris RE. Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in non-human primates. Transplantation, 2000, 70(6): 969-75
    [48] Cao W, Mohacsi P, Shorthouse R, Pratt R, Morris RE. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation, 1995,59(3):390-5
    [49] Ikonen TS, Gummert JF, Serkova N, Hayase M, Honda Y, Kobayase Y, Hausen B, Yock PG, Christians U, Morris RE. Efficacies of sirolimus (rapamycin) and cyclosporine in allograft vascular disease in non-human primates: trough levels of sirolimus correlate with inhibition of progression of arterial intimal thickening. Transpl Int,2000,13 Suppl 1:S314-20
    [50] Pham SM, Shears LL, Kawaharada N, Li S, Venkataramanan R, Sehgal S. High local production of nitric oxide as a possible mechanism by which rapamycin prevents transplant arteriosclerosis. Transplant Proc, 1998,30(4):953-4
    [51] Matsumoto Y, Hof A, Baumlin Y, Muller M, Hof RP. Differential effect of cyclosporine A and SDZ RAD on neointimaformation of carotid artery allografts in apolipoprotein E-deficient mice. Transplantation , 2003,76:1166
    [52] Cole OJ, Shehata M, Rigg KM. Effect of SDZ RAD ontransplant arteriosclerosis in the rat aortic model. Transplant Proc, 1998,30:2200
    [53] Schuurman HJ, Pally C, Weckbecker G, Schuler W, BrunsC. SDZ RAD inhibits cold ischemia-induced vascular remodeling. Transplant Proc , 1999,31:1024
    [54] Dambrin C, Klupp J, Birsan T, et al. Sirolimus(rapamycin) monotherapy prev- ents graft vascular disease in nonhuman primaterecipients of orthotopic aortic allografts. Circulation, 2003,107:2369
    [55] Mancini D, Pinney S, Burkhoff D, et al. Use of rapamycinslows progression of cardiac transplantation vasculopathy. Circulation, 2003,108:48
    [56] Keogh A, Richardson M, Ruygrok P, et al. Sirolimus in denovo heart transplant recipients reduces acute rejection and preventscoronary heart disease at 2 years. A randomized clinical trial. Circulation, 2004,110:2694
    [57] Ambrosi P, Garcon D, Riberi A, Habib G, Barlatier A, Kreitmann B, Rolland PH, Bouvenot G, Luccioni R, Metras D. Association of mild hyperhomocysteinemia with cardiac graft vascular disease. Atherosclerosis, 1998,138(2):347-50
    [58] Lewis RM, Verani RR, Vo C, Katz SM, Van Buren CT, Radovancevic B, Kerman RH, Frazier OH, Kahan BD. Evaluation of chronic renal disease in heart transplant recipients: importance of pretransplantation native kidney histologic evaluation.J Heart Lung Transplant, 1994,13(3):376-80
    [59] Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group.Lancet, 2000, 356(9225): 194-202
    [60] Massy ZA. Hyperlipidemia and cardiovascular disease after organ transplantation. Transplantation, 2001, 72 (6 Suppl):S 13-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700