面向产品工程化的混合动力客车控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对能源紧缺问题,以及越来越庞大的城市交通燃油消耗,寻求发展一种低能耗的技术已是急迫的任务。在这种背景下,融合传统燃油汽车和纯电动汽车优点的混合动力汽车成为当今应用前景最广泛的低排放、低能耗汽车。作为一种新型的多能量源城市客车与其他车辆的运行工况相比,具有行驶工况相对固定、平均车速低、载荷多变、高油耗高排放等显著特点,应用混合动力技术实现节能减排更具现实意义。
     作为电动汽车的共性关键技术与核心部件,整车控制技术水平直接影响电动汽车整车的动力性、安全性及经济性。目前,国外在电动汽车整车控制器(VCU)开发领域趋于成熟,控制策略成熟度高,整车节能效果良好,控制器产品也通过市场检验证实了其可靠性。国内在整车控制领域与国外还有较大差距,开发多处于功能性开发、节能效果差、缺少足够的测试验证手段以及批量生产管理工具等不足,缺乏面向产品工程化的系统化开发经验。
     本文的研究工作是克服以上整车控制系统的不足,面向较为紧迫的控制系统产品工程化开发工作,内容涉及整车建模、能量管理策略开发及测试、工况标定,以及整车批量生产时的下线管理,是一个涉及面较广、较复杂的问题。论文全文包含以下六个方面的内容:
     1、通过分析混合动力客车整车控制产业化存在的问题,结合查阅大量的国内外文献资料,梳理了并联混合动力客车控制系统关键技术,确定了论文的研究内容,分析了该问题研究的现状和研究的意义。
     2、本文基于商业化仿真软件CRUISE,开展了混合动力客车仿真平台的建模研究,重点开展了CRUISE平台车辆数学建模及处理方法研究,建立了CRUISE-SIMULINK联合的正向仿真平台,为减小仿真与实车的误差,通过与真实试验数据对比分析修正了仿真平台模型从特性及参数,该仿真平台提供了混合动力整车控制及能量管理策略前期验证环境,并为后期的整车性能标定提供理论依据。
     3、本文开展了面向工程的混合动力客车整车控制策略研究。在分析整车工作模式的基础上,根据工程约束下的能量管理策略需求,结合产品工程化、模块化要求,在充分分析和研究稳态模式和瞬态模式的能量管理策略基础上,提出了基于规则的多模式分层逻辑规则能量管理策略。
     4、混合动力客车系统复杂性导致了整车控制策略测试与验证的难度,为保证混合动力客车在出厂控制系统的可靠性和安全性,本文根据整车控制开发的不同阶段验证需要,开展了从离线仿真、硬件在环仿真、台架试验及整车试验等系统测试与验证研究,满足了产品化控制策略开发可靠性、安全性及开发周期的要求,这些研究为一汽混合动力客车出厂品质提供了保障。
     5、本文基于参数模块化和平台化思想,采用基于CAN总线的CCP协议,针对混合动力客车标定需求开发了标定系统。在标定的过程中,采用离线标定(仿真)与在线标定(实车)相结合的先进标定手段,针对实际运行工况开展了大量整车性能标定研究,尤其是针对城市工况解决运行过程中的油耗较高等问题,通过标定取得了较好的效果(以昆明城市工况为例,实现节油5%),此项研究成果推动了一汽混合动力客车产业化推广。
     6、根据混合动力客车产品化生产及运行维护需要,开发了功能完备的整车下线检测系统及远程监控系统,所开发的EOL系统大大节约混合动力客车下线时间,提高了生产效率及降低了混合动力客车出厂时的故障率,远程监控系统可以实时监测混合动力客车示范运行状态,提高了面向公交的远程诊断及服务能力。
     本文是国家863计划电动汽车重大专项“一汽解放牌混合动力客车新型整车技术开发”及“解放牌中度混合动力客车产业化技术攻关”研究内容的组成部分。论文的研究是面向混合动力汽车整车控制系统产品化实践。为进一步提高混合动力客车整车控制策略的技术成熟度,突破国外技术垄断,形成具有自主知识产权的产品核心竞争能力,更好地满足用户的需求并适应市场需要,进而实现其大规模产业化发展提供技术支持。
     论文的创新之处在于基于模块化、平台化开发思想,采用先进的控制系统现代开发方法,实现了测试环境模型搭建、整车能量管理策略开发、控制策略的硬件在环测试、整车标定系统及整车下线检测系统的系统化开发,同时所开发并实际应用的整车下线检测系统,在混合动力汽车生产管理领域属国内首创。
With energy crisis and the increasingly large fuel consumption in the department ofurban transportation, it is an urgent work to develop low energy consumption technology. Inthis context, hybrid electric vehicle which combines the advantages of conventional vehicleand electric vehicle is the most promising low-power and low-emission vehicle nowadays.Compared with other vehicles, urban bus has notable features of relatively fixed drivingconditions, low average velocity, various load, high fuel consumption and high emissions. Soapplication of hybrid technology to achieve energy conservation has more practicalsignificance.
     As a common key technology and core component of electric vehicles, the technicallevel of vehicle control system has a direct impact on the power performance, safety and fueleconomy of electric vehicles. At present, the field of development of electric vehicle controlsystem (VCU) abroad tends to be mature that the control strategy is with high maturity,vehicle energy saving performance is notable and the reliability of controller product isconfirmed through market test. There is still a big gap in the field of vehicle controllingbetween domestic and foreign in many aspects such as mostly functional development, badenergy saving effect, the lack of verification and testing instruments, the lack of managementtools for mass production and the lack of experience in developing engineering productionoriented system. The research work of this paper is to overcome the above deficiencies ofvehicle control systems, especially in the urgent task of developing engineering productionof control system. This thesis relates to vehicle modeling, development and test of energymanagement strategy, bench test and vehicle validation, condition calibration and themanagement of vehicle off assembly line in mass production, which covers a wide range andcontain much complexity. The full paper contains the following six aspects.
     1. Through analyzing the problem exiting in the industrialization of vehicle controlsystem for hybrid bus, combined with consulting amounts of literature data at home andabroad, this paper sorts out the key technology of parallel hybrid bus control system,determines the research contents, and analyzes the research situation and researchsignificance of this problem.
     2. Simulation platform for hybrid electric bus modeling was studied based oncommercial simulation software CRUSE,and the vehicle mathematical modeling andtreatment methods were focused on. A forward simulation platform combined CRUSE andSIMULINK was established. In order to eliminate errors between simulation and real vehicletest, the characteristic and parameters of simulaton platform were modified by analysisingthe difference between simulation results and corresponding real vehicle test data. A basic functional verification environment for early rapid control strategy development of hybridelectric bus or energy management was formed.
     3. In this paper, an engineering-oriented control strategy for hybrid electric bus has beenstudied. After analyzing all work modes of hybrid electric bus, the energy managementstrategy was developed based on rule-based multi-mode layered logic rule. And the energymanagement strategy was optimized through bench test and vehicle test.
     4. The complexity of hybrid bus system has led to the difficulty of the testing andverification of vehicle control strategy. In order to ensure the reliability and security ofhybrid control system, According to mutative requirement of different stages in the entirevehicle control system development, the offline simulation, HIL simulation and real vehicletest have been carried out in this paper. The requirements of the reliability of product controlstrategy development and the development cycle have been met. And all the researchprovides a quality guarantee for FAW hybrid electric bus.
     5. Based on the parameters modular and platform concept, the HCU calibration systemfor the hybrid electric bus is developed with CCP protocol. A CANape calibration tool wasused to complete the calibration research on hybrid electric bus, especially against the highfuel consumption in the city cycle. And the result of calibration shows performancepromotion with5%reduction of fuel consumption, which will push forward theindustrialization of FAW hybrid electric bus.
     6. Under the needs of hybrid bus production and operational maintain, a fully functionalvehicle end of line (EOL) detection system and remote monitoring system have beendeveloped. And the EOL system will significantly save the time wasted in hybrid bus off theassembly line, improve production efficiency and reduce the failure rate of the hybrid buses.The remote monitoring system can be real-time monitoring of the hybrid bus demonstrationrun state, which evidently improves bus-oriented remote diagnostics and service capabilities.
     This article is part of the research content of electric vehicle major specific projects‘Development of the new vehicle technology of FAW JieFang hybrid bus’ and ‘Research ofthe industrialization technology of JieFang moderate hybrid bus’.The study of this article isfor productization practice of hybrid vehicle control system. In order to further improve thetechnical maturity of the hybrid bus control strategy, to break the technology monopoly offoreign countries, to format core competitiveness of production with proprietary intellectualproperty rights, to better meet the needs of consumers and market, so as to provide technicalsupport of realizing large-scale industrialization development.
     The innovation of this article is, based on the developing thought of modularization andplatformization, using the advanced control system developing methods to realize buildingof test environment model, development of the vehicle energy management strategy,hardware-in-the-loop test of the control strategy, systematic development of the vehiclecalibration system and vehicle off-line test system, and the vehicle off-line test system which is developed and applied to reality for the first time in the field of hybrid productionmanagement in China.
引文
[1]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].长春:吉林大学,2005
    [2]曾小华.混合动力客车节能机理与参数设计方法研究[D].长春:吉林大学,2006.
    [3]陈清泉,孙逢春.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [4]颜增品.世界电动汽车用电池技术的发展现状[J].世界汽车,1997(10):5-7
    [5] Anotoni Szumanowski.陈清泉,孙逢春译.混合电动车辆基础[M].北京:北京理工大学出版社.
    [6]童毅.并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学,2004.
    [7]初亮.混合动力总成的控制算法和参数匹配研究[D].长春:吉林大学,2002.
    [8]田冬,田光宇,陈全世等.混合动力电动汽车动力选性策略分析[J].汽车工业研究,2001(2):17-20.
    [9] Hybrid Electric Vehicle program,Web site: http://www.ott.doe.gov/hev.
    [10] Review of the Research Program of the Partnership for a New Generation of Vehicles:Sixth Report.
    [11]熊伟威.混联式混合动力客车能量优化管理策略研究[D].上海交大,2009.
    [12] Delprat S, Guerra T M, Rimaux J. Optimal control of a parallel powertrafrom globaloptimization to real time control strategy [A]. Proceedings of the18th InternationalElectric Vehicle Symposium [DB/CD], Berlin, Germany: World Electric VehicleAssociation,2001.
    [13] Baumann B M, Washington G, Glenn B C, et al. Mechatronic design and control ofhybrid electric vehicles [J]. IEEE/ASME Transactions on Mechatronics,2000,5(1):58-72.
    [14] Ehsani M, Gao Yimin, Butler K L. Application of electrically peaking hybrid (ELPH)propulsion system to a full-size passenger car with simulated design verification.IEEE Transactions on Vehicular Technology,1999,48(6):1779-1787.
    [15] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-timeoptimization of fuel economy and emissions. SAE Paper2000-01-1543,2000
    [16] Bruno Jeanneret, Tony Markel. Adaptive Energy Management Strategy for Fuel CellHybrid Vehicles. SAE Paper2004-01-1298,2004.
    [17] Wagener A., Korner C., Seger P. et al. Cost function based adaptive energymanagement in hybrid drivetrains[C]. Proceedings of the18th International ElectricVehicle Symposium, Berlin, Germany,2001.
    [18] Paganelli G, Santin J-J, Guerra T M, et al. Conception and control of parallel hybridcar powertrain[C]. Proc of the15th International Electric Vehicle Symposium,Brussels, Belgium,1998.
    [19] Pierluigi Pisu, Giorgio Rizzoni. A Comparative Study of Supervisory ControlStrategies for Hybrid Electric Vehicles[J]. IEEE TRANSACTIONS ON CONTROLSYSTEMS TECHNOLOGY, VOL.15, NO.3, MAY2007Conversion andManagement2002,43:1953-1968.
    [20] Chau K T, Wong Y S. Overview of power management in hybrid electric vehicles [J].Energy Conversion and Management2002,43:1953-1968.
    [21] Pu Jinhuan, Yin Chengliang and Zhang Jianwu, Optimal control of fuel economy inparallel hybrid electric vehicles [J]. Proceedings of the institution of MechanicalEngineers, Part D: Journal of Automobile Engineering,2007,221(10):1097-1106.
    [22] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-timeoptimization of fuel economy and emissions [DB/OL]. SAE Paper2000-01-1543,2000.
    [23] Galdi V, Ippolito L, Piccolo A, et al. Multiobjective optimization for fuel economyand emissions of HEV using the goal-attainment method [A]. Proceedings of the18thInternational Electric Vehicle Symposium [DB/CD]. Berlin, Germany: World ElectricVehicle Association,2001.
    [24] Jalil N, Kheir N A, Salman M. A rule-based energy management strategy for a serieshybrid vehicle [C]. Proceedings of the American Control Conference, Albuquerque,New Mexico, USA: IEEE,1997.689-693.
    [25]胡红斐,黄向东,罗玉涛,等.一种混联式瞬时优化监控策略的研究[J],中国机械工程,2006,17(6):649-653.
    [26] Schouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybridvehicles [J]. IEEE Transactions on Control Systems Technology,2002,10(3):460-468.
    [27] Schouten N J, Salman M A, Kheir N A. Energy management strategies for parallelhybrid vehicles using fuzzy logic [J]. Control Engineering Practice,2003,11(2):171-177.
    [28] Amir Poursamad, Morteza Montazeri. Design of genetic-fuzzy control strategy forparallel hybrid electric vehicles [J]. Control engineering practice,2008,16(7):861-873.
    [29]周磊,罗禹贡,杨殿阁,等.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报,2007,43(4):125-131.
    [30] SALMASI F R. Control Strategies for Hybrid Electric Vehicles: Evolution,Classification, Comparison, an Future Trends [J]. IEEE Transactions onVehicular Technology,2007,56(5):2393-2403.
    [31]李从心,张欣,张良,等. PHEV动力总成控制器硬件在环仿真系统的研究.北方交通大学学报,2004,28(1):91-94.
    [32]谢起成,王冬,田光宇.混合动力电动汽车(HEV)动力系统试验台的模块化设计研究[J].交通运输工程学报,2001,1(2):32-36.
    [33] Monsma, W., Application of Hardware in the Loop Simulation to Chassis ControlSoftware Verification, SAE Technical Paper2009-01-0445,2009.
    [34]池建军,吕彩琴,王孝.电控发动机标定系统开发的关键技术[J].柴油机设计与制造,2006,3(14):337-340.
    [35]陈阵辉.基于CCP协议标定混合动力车整车控制器[D].上海:上海交通大学,2007.
    [36]胡嘉.电容式混合动力轿车整车标定系统的研究与开发[D].南京:南京航空航天大学,2009.
    [37]张彤,朱磊,王存磊.混合动力轿车多能源管理系统标定试验[J/OL].机械工程学报,2009,45(2):页码范围缺失.
    [38]秦贵和,梅近人,窦乔.基于CCP的机械自动变速器控制单元标定系统[J].计算机工程与应用,2006(08):100-102.
    [39]于海威.电控汽油机标定系统及试验设计方法研究[D].硕士学位论文,浙江大学,2006.
    [40] Kim Lemon.Introduction T0CAN Calibration Protoco1.Version2.0,VectorCANtech Inc.2003.
    [41] Yoshihiro KflwRse Takanao Suzuki.Denso and ETAS Collaborate on EuropeanProjects,Denso Corporation,2003.
    [42] James Allan W.Calibration Development with Production Intent Electronic ControlUnits,Delphi Deleo Electronics Systems.SAE2000W0rld Congress.2000.
    [43]李雅博,张俊智,甘海云等.基于CCP协议的HEV用ECU标定系统设计[J].汽车工程,2004,26(4):375-378
    [44]李军.汽车使用性能与检测技术[M].北京:人民交通出版社,2002,2.
    [45]田光宇,彭涛,林成涛,陈全世,混合动力电动汽车关键技术[J].汽车技术,2001(1):8-11.
    [46]余春暄,张明杰,段建民.混合动力汽车的在板故障诊断系统研究[J].机械与电子,2008(6):39-42.
    [47]张翔.电动汽车建模与仿真的研究[D].合肥工业大学博士后研究工作报告.2004.
    [48] Chan-Chiao Lin, Zoran Filipi et al. Integrated, Feed-Forward Hybrid Electric VehicleSimulation in SIMULINK and its Use for Power Management Studies. SAE Paper,2001-01-1334.
    [49]邹渊,孙逢春,王军,何洪文.电动汽车用仿真软件技术发展研究[J].机械科学与技术,2004,23(7):761-764.
    [50]王庆年,刘志茹,王伟华,曾小华,混合动力汽车正向建模与仿真[J].汽车工程,2005,27(4):392-398.
    [51]童毅,欧阳明高.前向式混合动力汽车模型中传动系建模与仿真[J].汽车工程,2003,25(5):419-423.
    [52] Aymeric R, PHILS S, Maxime P. Validation Process of a HEV System AnalysisModel: PSAT. Special Publication1607, Warrendale, PA: SAE Press,2001.
    [53]王子才,仿真科学的发展及形成[J].系统仿真学报.2005(6):9-12.
    [54]李君,喻凡,殷承良,张建武.混合仿真技术在车辆电子控制系统快速开发中应用[J].汽车工程.2001,23(5):306-310.
    [55]何洪文,孙逢春,余晓江.车辆动力-传动系性能仿真的方法研究[J].北京理工大学学报.2002,22(5):582-586.
    [56]王行仁,文传源,李伯虎等.我国系统建模与仿真技术的发展[J].系统仿真学报,2009,21(21).
    [57]王行仁.建模与仿真的发展和应用[N].科技导报,2007(2).
    [58]曾小华,王庆年,王伟华,初亮.基于ADVISOR软件的双轴驱动混合动力汽车性能仿真模块开发[J].汽车工程,2003(5):424-427.
    [59]黄贤广,何洪文.混合动力车辆动力系统建模与仿真[J].车辆与动力技术,2008(2):43-48.
    [60]王加雪.双电机混合动力系统参数匹配与协调控制研究[D].长春:吉林大学,2011.
    [61] Wang jiaxue, Wang qingnian, Zeng xiaohua. Forward Simulation Model PrecisionStudy for Hybrid Electric Vehicle[C]. IEEE ICMA2009.
    [62]郭孔辉.汽车操纵动力学[M].吉林科学技术出版社.1991.
    [63]金启前.混合动力客车试验与评价问题研究[D].长春:吉林大学,2006.
    [64] Paganelli G, Guerra T M, Delprat S, et al. Simulation and assessment of powercontrol strategies for a parallel hybrid car [J]. Proceedings of the institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,2000,214(7):705-717.
    [65]赵克刚,黄向东,罗玉涛.混联式混合动力电动汽车动力总成的优化匹配与监控[J],汽车工程,2005,27(2):146-150.
    [66]田光宇,彭套,林成涛,陈全世.混合动力电动汽车关键技术[J].汽车技术,2002,(1):8-11.
    [67] Seiler J, Schroder D. Hybrid vehicle operating strategies [A]. Proceedings of the15thInternational Electric Vehicle Symposium [DB/CD]. Brussels, Belgium: WorldElectric Vehicle Association,1998.
    [68] Jalil N, Kheir N A, Salman M. A rule-based energy management strategy for a serieshybrid vehicle [C]. Proceedings of the American Control Conference, Albuquerque,New Mexico, USA: IEEE,1997.689-693.
    [69] Chau K T, Wong Y S. Overview of power management in hybrid electric vehicles [J].Energy Conversion and Management2002,43:1953-1968.
    [70] Sciarretta A, Guzzella L. Control of hybrid electric vehicles [J]. IEEE ControlSystems Magazine2007,4:60-70.
    [71] Pisu P, Rizzoni G. A comparative study of supervisory control strategies for hybridelectric vehicles [J]. IEEE Transactions on Control Systems Technology2007,15(3):506-518.
    [72] Salmasi F R. Control strategies for hybrid electric vehicles: evolution, classification,comparison, and future trends [J]. IEEE Transactions on Vehicular Technology2007,56(5):1393-2404.
    [73] Masude T. Analysis of a Diesel-Electric Hybrid System for a Delivery Truck. EVS-13,Osaka, Japan,1996.
    [74]万沛霖.电动汽车的关键技术[M].北京:北京理工大学出版社,1998.
    [75] Rahman Z, Butler K L, Ehsani M. A comparison study between two parallel hybridcontrol concepts [DB/OL]. SAE Paper2000-01-0994,2000.
    [76] Ehsani M, Gao Yimin, Butler K L. Application of electrically peaking hybrid (ELPH)propulsion system to a full-size passenger car with simulated design verification [J].IEEE Transactions on Vehicular Technology,1999,48(6):1779-1787.
    [77] Kimura A, Abe T, Sasaki S. Drive force control of a parallel-series hybrid system [J].JSAE Review,1999,20(3):337-341.
    [78] Seiler J, Schroder D. Hybrid vehicle operating strategies [A]. Proceedings of the15thInternational Electric Vehicle Symposium [DB/CD]. Brussels, Belgium: WorldElectric Vehicle Association,1998.
    [79] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for realtimeoptimization of fuel economy and emissions [C]. SAE paper No.2000-01-1543.
    [80] PHILSlips A M, Jankovic M, Bailey K E. Vehicle system controller design for ahybrid electric vehicle[C]. In: Proceedings of IEEE International Conference onControl Applications, Anchorage, AK, USA, Dec.25-29,2000. p.297-302.
    [81] Zhang R, Chen Y. Control of hybrid dynamical systems for electric vehicles [C]. In:Proceedings of American Control Conference, Arlington, VA, USA, June25-27,2001.4:2884-2889.
    [82]荆新超,敖国强,朱建新,杨林,卓斌.混合动力汽车动力总成硬件在环仿真系统开发[J].模拟技术,2006.
    [83] Jaikamal, V., Model-Based ECU Development–An Integrated MiL-SiL-HILSApproach, SAE Technical Paper2009-01-0153,2009.
    [84] HU Jianjun,ZHAO Yusheng,QIN Datong. Hardware-inloop Simulation of HEVSystem Based on CAN [J].China Mechanical Engineering,2008,19(3):300-304.
    [85] FAZAL U,KUANG M,CZUBAY J,et al. Derivation and Experimental Validationof a Power-split Hybrid Electric Vehicle Model [J]. IEEE Transactions onVehicular Technology,2006,55(6):1731-1747.
    [86] LIU Zhiru,WANG Qingnian,ZENG Xiaohua. Study and Development of theIn-the-loop Simulation Platform for HEV Control Hardware [J]. AutomobileTechnology,2006(3):22-25.
    [87] Zhao, Y., Srinivasaiah, S., Yan, Z., Chen, Y. et al.,“Vehicle System Control SoftwareValidation for the Dual Drive Hybrid Powertrain,” SAE Int. J. Engines2(1):774-784,2009.
    [88]李国岫,张欣,宋建锋.并联式混合动力电动汽车动力总成控制器硬件在环仿真[J].中国公路学报,2006,19(1):108-112.
    [89]朱磊,袁银南,周健豪,陈诗,陈笃红.并联混合动力控制系统硬件在环仿真平台研究[J].车用发动机,2008,6:45-48.
    [90]胡嘉.电容式混合动力轿车整车标定系统的研究与开发[D].南京:南京航空航天大学,2009.
    [91]秦贵和,梅近人,窦乔.基于CCP的机械自动变速器控制单元标定系统[J].计算机工程与应用,2006(08):100-102.
    [92]池建军,吕彩琴,王孝.电控发动机标定系统开发的关键技术[J].柴油机设计与制造,2006,3(14):337-340.
    [93] Delic Ibukic A, Hummels D M. Continuo us digital calibration of pipeline A/Dconverters Delic Ibukic[J]. IEEE Transactions,2006,55(4):1175-1185.
    [94] Kim Lemon.Introduction T0CAN Calibration Protoco1.Version2.0,VectorCANtech Inc.2003
    [95] Yoshihiro KflwRse Takanao Suzuki.Denso and ETAS Collaborate on EuropeanProjects,Denso Corporation,2003
    [96] James Allan W.Calibration Development with Production Intent Electronic ControlUnits,Delphi Deleo Electronics Systems.SAE2000W0rld Congress.2000
    [97]张彧,冯辉宗,岑明,等.基于CCP协议汽车电控单元标定系统的设计[J].车用发动机,2007,6(3):59-63.
    [98]丁圣彦,罗峰,孙泽昌.基于CCP协议利用CANape进行电控单元标定[J].电子技术应用.2005,31(12):12-15.
    [99]林跃.车辆下线检测系统的开发[J].汽车技术,2007(4):13-15.
    [100]余春暄,张明杰,段建民.混合动力汽车的在板故障诊断系统研究[J].机械与电子,2008(6):39-42.
    [101]周文华,管建华,刘巨江,等.柴油机电控高压共轨喷油系统EOL解决方案[J].汽车工程,2007,29(9):749-752.
    [102]覃正,蒋志云,吴南,等.电控柴油机EOL系统工艺建设的研究[J].柴油机,2008,30(4):8-11.
    [103]管建华.柴油机电控高压共轨系统EOL解决方案[D].杭州:浙江大学,2007.
    [104]文皓.便携设备在整车CAN总线下线检测中的研究与开发[D].太原:中北大学,2011.
    [105]蒋治成等.东风商用车整车检测制造技术研究与应用[C].见:2007中国汽车工程学会年会论文集.北京:机械工业出版社,2007.8:802-806.
    [106]蔡健.关于反力式滚筒制动试验台检测制动力的探讨[J].交通标准化,2004,(5):52-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700