食品及生物材料中β-激动剂和β-阻断剂残留检测技术研究及污染评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘦肉精,又称克伦特罗,是一系列β-激动剂,具有促进动物生长和提高瘦肉率的作用,经常被违禁添加在动物饲料中;而另一类化学结构类似的β-阻断剂则用于动物运输过程中,防止动物因应激而造成的突然死亡。食用动物中违禁使用β-激动剂或β-阻断剂会导致其在动物体内的残留,摄入β-激动剂或β-阻断剂残留的动物组织,存在食物中毒的风险或引起潜在的健康危害。β-激动剂和β-阻断剂还是《世界反兴奋剂条例》中规定的禁止在体育赛事中使用的兴奋剂。因此针对β-激动剂和β-阻断剂建立一套快速有效的风险评估预警体系势在必行。本研究建立了由检测、监测、暴露评估以及风险预警的全套技术支撑体系,使得食品安全中亟待解决β-激动剂和β-阻断剂的风险评估预警成为可能。
     主要研究内容及研究结果如下:
     1.动物性食品中β-激动剂及β-阻断剂多组分残留的液相色谱-串联质谱检测方法建立
     经样品制备和检测参数的优化后,分别采用混合型阳离子固相萃取技术和分子印迹(MIP)固相萃取技术进行动物性食品的前处理,以甲醇和含0.1%甲酸的水溶液为流动相,梯度洗脱;采用ESI源正离子模式电离,三级质谱选择离子监测(CRM)模式进行扫描,以9种氘代β-激动剂为内标,建立高效液相色谱-线性离子阱质谱(HPLC-LIT-MS3)测定动物性食品中25种β-激动剂及23种β-阻断剂残留的检测方法。采用AtlantisT3-150 mm(或Supelco Ascentis(?) express Rp-Amide-150 mm)色谱柱进行色谱分离,甲醇和含0.1%甲酸的水溶液为流动相梯度洗脱。测定的线性范围为5~200μg/L,相关系数(r)大于0.99。在动物性食品中两种方法的检出限分别在0.015~0.3μg/kg之间(MCX)和0.001~0.06μg/kg之间。(MIP)。以空白猪肉、猪肝和猪肾样品为代表基质进行了加标回收试验,MCX净化方法的加标水平为5、10、20μg/kg,MIP净化方法的加标水平为1、2、4μg/kg,各化合物的回收率在40.7%~131.9%之间,RSD在0.9%~30.0%,两种方法的精密度及准确度均较好。对阳性样品进行测定,获得良好的确证结果。建立的方法具有很高的灵敏度,而且定性准确、定量可靠,可以用于动物肌肉、肝脏和肾脏组织中β-激动剂和β-阻断剂类药物残留的确证检测。
     2.生物样品中β-激动剂及β-阻断剂残留的液相色谱-串联质谱检测方法建立
     在上述工作基础上,分别采用基质固相分散技术(MSPD)和MIP技术建立了尿液中25种β-激动剂及23种β-阻断剂的HPLC-LIT-MS3测定方法。2种不同的样品前处理技术分别为:(1)MSPD技术:尿液样品以三氯乙酸酸解后离心,上清液经ExtrelutTM硅藻土以乙酸乙酯进行洗脱净化;(2)MIP技术:尿液样品经β-葡萄糖醛酸酶/芳基硫酸酯酶酶解后调pH7.0,直接以混合型β-激动剂及β-阻断剂的MIP固相萃取柱净化。进行了方法学验证试验,各化合物定量的线性范围为5~200μg/L,在尿液中两种方法的检出限分别在0.001~0.13μg/L(MSPD)和0.001~0.06μg/L(MIP)。采用MSPD净化的方法的空白尿液加标水平为5、10和20μg/L,各化合物回收率在38.8%~133.4%之间,RSD在1.5%~38.1%;采用MIP净化的方法的空白尿液加标水平为0.5、1和2μg/L,各化合物回收率在40.4%~125.6%之间,RSD在1.0%~33.3%。以阳性尿液样品验证了方法的实用性。建立的检测方法的灵敏度很高,检测限可达ppt级,而且该方法简便快速,完全能满足人或动物尿液中的β-激动剂和β-阻断剂的定性和定量分析。
     3.北京市动物性食品中β-激动剂和β-阻断剂药物的污染监测及评价
     采用建立的液相色谱-串联质谱法对北京市场采集的94份鸡肉、猪肝和猪肾样品以及北京市2009年总膳食研究的动物性食品混样样品进行了β-激动剂和β-阻断剂残留的监测。在良好的质量控制保证下,1份市场采集的猪肾样品中检出沙丁胺醇,含量为31.38μg/kg。其他样品中均未检出β-激动剂和β-阻断剂残留。表明仍存在对食品动物违禁使用β-激动剂的情况。北京市2009年总膳食样品中未检出β-激动剂和β-阻断剂残留,说明北京市场动物性食品中不含有β-激动剂和β-阻断剂。但鉴于β-激动剂及β-阻断剂均为我国禁止用于食用动物的兽药,其违禁使用时有发生,为确保我国食品的安全性,因此加强动物性食品中禁用β-激动剂和β-阻断剂的多残留监测实属必要。
     4.我国动物性食品中β-激动剂和β-阻断剂的残留状况、溯源分析及膳食安全性评价
     采用建立的液相色谱-串联质谱法,对我国2007年总膳食研究的动物性膳食样品中β-激动剂和β-阻断剂残留进行了检测。在48份动物性膳食混合样品中,有2份样品(江西肉类混样和上海肉类混样)同时检出克伦特罗和莱克多巴胺,克伦特罗的污染水平远高于莱克多巴胺,未检出β-阻断剂的残留。通过溯源分析发现克伦特罗和莱克多巴胺残留主要来源于猪制品-猪肉和猪肝。由此可见,在我国食用动物的饲养中仍存在β-激动剂的违禁使用。以检出的克伦特罗和莱克多巴胺残留量进行膳食暴露评价:克伦特罗全国平均暴露量为0.0827μg/人/天,占ADI的32.8%。莱克多巴胺的全国平均膳食暴露量很低,为0.0055μg/人/天,占ADI的0.009%,因此不会对人体健康产生风险。而对于肉类样品中检出克伦特罗的上海和江西来说,其膳食暴露量较高,分别为0.4764μg/人/天和0.4783μg/人/天,占ADI的189.0%和189.8%,这说明当地居民存在食用β-激动剂和β-阻断剂的健康风险。由克伦特罗的极端暴露量分析可见,极端暴露风险较大的是猪肝制品。由于动物的内脏器官特别是肝脏是β-激动剂如克伦特罗等的体内代谢的主要残留场所,因此为降低β-激动剂和β-阻断剂的健康风险,建议不要一次性大量食用动物内脏。
Clenbuterol, which is well known as a series ofβ-agonists with the promotion of animal growth and improve the lean meat, was often added to animal feed illegally. While some other similar chemicals which areβ-blockers are used for animals during transportation to prevent the animal sudden death by stimulus.β-agonists andβ-blockers are prohibited to be used in food animals which lead to residues in animal food origin, There are also potential health risks through consumingβ-agonists orβ-blockers residual animal tissue. Furthermore,β-agonists andβ-blockers are substances listed on the prohibited list of the World Anti-Doping Code by the World Anti-Doping Agency. Therefore, to establish a rapid and efficient early warning system for risk assessment ofβ-agonists andβ-blockers is imperative. This study sets up a full system to make the risk assessment ofβ-agonists andβ-blockers to be possible.
     The main research works and the main results were listed below:
     1. Determination of multipleβ-agonists andβ-blockers in animal foods using mixed strong cation exchange SPE and MIP SPE as cleanup by HPLC-LIT-MS3.
     Two sets of sample extraction and cleanup techniques were used for the determination of 25β-agonists and 23β-blockers by HPLC-LIT-MS3 in animal origin foods. Samples were acid hydrolyzed and extracted with 5% TCA in water, and then cleaned up using MCX SPE cartridge. Another solution is that samples were extracted by acetronile and then hydrolyzed byβ-glucuronidase/arylsufatase, and cleanup by MIP SPE was followed. Methanol and 0.1% formic acid were used as mobile phases for gradient elution, a Waters Atlantis(?)T3 column or a Supelco Ascentis(?) express Rp-Amide column was used for separation. ESI positive ion scan mode was used with MS3 selective reaction monitor.9β-agonists labeled by the deuterium isotope were used as internal standards for quantification. The linear ranges of 25β-agonists and 23β-blockers were 5~200μg/L, the coefficient of correlation was not less than 0.99, and the limit of detection for the analytes in animal origin food was 0.015~0.3μg/kg for MCX procedure and 0.001~0.06μg/kg for MIP procedure. Blank pork, blank liver and blank kidney were selected as representative matrix for spiked standard recovery test. The recoveries of each compound in the spiked samples were in the range of 40.7%~131.9%, and the relative standard deviations were in the range of 0.9%~30.0%. Incurred samples and positive samples were analysed, and satisfactory resulted were obtained. The developed method is sensitive and specific for the determination ofβ-agonists andβ-blockers in animal foods.
     2.Determination of multipleβ-agonists andβ-blockers in urine using MSPD and MIP SPE as cleanup by HPLC-LIT-MS3.
     Based on the work of part 1, a HPLC-LIT-MS3 for the determination of 25β-agonists and 23β-blockers in urine was established. Techniques of MSPD and MIP were used in the extraction and cleanup procedure. The two approaches were described as followings:(1) MSPD:The urine samples were acid hydrolyzed by 5% TCA in water bath for 2 h, and then mixed with ExtrelutTM diatomite and the analytes were eluted by 100 mL Ethyl acetate. (2) MIP:The urine samples were hydrolyzed byβ-glucuronidase/arylsufatase, the extracts were loaded onto the MIP SPE cartridge for cleanup after adjusting the pH value of the hydrolyzed solution to 7.0. The results of method validation were satisfied. The linear ranges of 25β-agonists and 23β-blockers were 5~200μg/L, the coefficient of correlation was not less than 0.99, and the limit of detection for each compound in the muscle tissue were 0.001~0.13μg/L for MSPD method and 0.001~0.06μg/L for MIP method. The recoveries of each compound were in the range of 38.8%~133.4%% at the spike level of 5、10 and 20μg/L using MSPD procedure, and RSD were in the range of 1.5%~38.1%; and the recoveries were 40.4%~125.6% at the spike level of 0.5、1 and 2μg/L for MIP procedure, and RSD were in the range of 1.0%~33.3%. Positive urine samples were analysed, and satisfactory results were obtained. The results demonstrated that the method is easy, fast, sensitive, and suitable for the confirmation and quantitation of 25β-agonists and 23β-blockers in urine samples.
     3. Supervision ofβ-agonists andβ-blockers in animal foods in Beijing.
     Supervision ofβ-agonists and P-blockers in animal foods were conducted in Beijing.88 samples including 43 chicken samples,45 pork liver samples, and 6 pork kidney samples were collected from markets of 8 districts in Beijing. The 94 samples and the 4 pooled animal origin food sample of 2009 TDS of Beijing were analyzed using the established method under the satisfied analysis quality control including analysis of blank samples and blank spiked samples. Of all the samples, only salbutamol was detected in 1 pork kidney samples at the level of 31.38μg/kg. The results demonstrate that illeagal use ofβ-agonists on food animals still happened from time to time. Although there were noβ-agonists andβ-blockers in samples of 20, considering thatβ-agonists andβ-blockers are prohibited in the food animal breeding in China and incident of food poison caused byβ-agonists happened from time to time, it is necessary to supervise multiple residues ofβ-agonists andβ-blockers in animal foods.
     4. Residue level, traceability analysis and dietary exposure estimation ofβ-agonists andβ-blockers in animal food products in 2007 TDS
     The concentration level ofβ-agonists andβ-blockers in 48 pooled animal food samples of 2007 TDS were detected by the established HPLC-LIT-MS3 method under the satisfied analysis quality control including analysis of blank and blank spiked samples. In the 48 pooled animal samples, no otherβ-agonists andβ-blockers were detected except for clenbuterol and ractopamine which were simultaneously detected in 2 pooled meat samples from Jiangxi and Shaihai. The concentration level of clenbuterol in the pooled meat sample was higher than that of ractopamine. The residues of clenbuterol and ractopamine were come from pork product, mainly pork meat and pork liver, according to the traceability analysis. It can be inferred that illegal use ofβ-agonists still existed in the industry of food animal breeding.
     Dietary exposure of clenbuterol and ractopamine were estimated. The average dietary exposure of clenbuterol of Chinese people was 0.0827μg/person d, which is 32.8% of ADI. And the average dietary exposure of ractopamine of Chinese people was relatively low,0.0092μg/person d, which is 0.0015% of ADI, and with this level of dietary exposure of ractopamine, there is not any risk for people's health.
     However, the total dietary exposure of clenbuterol of Shanghai and Jiangxi were relatively high,0.4764μg/person d and 0.4783μg/person d, and 189.0% and 189.8% of ADI, which post a high risk to people in Shanghai and Jiangxi. The extreme dietary exposure of clenbuterol was also estimated. The results showed that the products with the highest risk for people's health were pork liver. The offal, especially the liver of animal is the organ with the highest level of residue of chemicals. To lower the health risk, it is riot recommended that consuming large amount of animal offal in one meal.
引文
[1]四川美康医药软件研究开发有限公司.药物临床信息参考.重庆:重庆出版社,2008.
    [2]M.A.J. Godfrey, S.P.L. Anderson, B. Julicher, P. Kwasowski, M.J. Sauer.1996. Detection of clenbuterol in hair by IAC/cELISA. In:N. Haagsma and A. Ruiter (Ed.) Residues of Veterinary Drugs in Food. Proceedings of the EuroResidue Ⅲ Conference, May 68,1996, Veldhoven, The Netherlands.421-425.
    [3]R.F. Witkamp,1996. Pharmacological and toxicological properties of β-agonists. In:G. Enne, H.A. Kuiper, and A. Valentini (Ed.) Residues of Veterinary Drugs and Mycotoxins in Animal Products. New Methods for Risk Assessment and Residue Control. Proceedings of the First Electronic Mail Conference. ISBN 90-74134-27-0.113-123. Wageningen Pers, The Netherlands.
    [4]C.T. Elliott, W.J. Mccaughey, S.R.H. Crooks. Residues of clenbuterol in cattle receiving therapeutic doses:Implications for differentiating between legal and illegaluse. Vet Q,1995,17:100-102.
    [5]M.J. Sauer, M. Dave, B.G. Lake, G.R. Manchee, L.C. Howells, N.G. Coldham. Beta2-agonist abuse in food producing animals:use of in vitro liver preparations to assess biotransformation and potential target residues for surveillance, Xenobiotica,1999,29:483-497.
    [6]L. Leyssens, J. van de Greef, H.Penxten. Structure elucidation of unknown clenbuterol analogues detected in illegal preparation for animal use, Proceedings of the Euroresidue Ⅱ Conference, Veldhoven, the Natherlands,1993,444-448.
    [7]P.E.V. Williams, L.Pagliani. Effects of a β-agonist (clenbuterol) on growth, carcass composition, protein and energy metabolism of veal calves. Br J Nutr, 1987,57:417.
    [8]J.H. Eisemann, G.B. Huntington. Effects of dietary clenbuterol on metabolism of the hindquarters in steers. J Anim Sei,1988,66:105.
    [9]J.M. Brockway, J.C. MacRae. Side effects of clenbuterol as a repartioning agent. Vet Rec,1987,20:381.
    [10]蒋巧燕.盐酸克伦特罗中毒11例分析.医学理论与实践,2002,15(4):434.
    [11]张玲,邵春花.瘦肉精的危害及其预防措施.新疆农垦科技,2003,(6):19-20.
    [12]B. Jarzab, M. Kaminski, E. Gubala. Postnatal treatment of rats with the β2-adrenergic agonist salbutamol influences the volume of the sexually dimorphie nucleus in the preoptic area. Brain Res,1990,516:257-262.
    [13]G. Re, P. Badino. Down-regulation of β2-adrenoceptors and up-regulation of estrogen and progesterone receptors induced by dietary clenbuterol in the female reproductive system of veal catves. Amer J Veter Res,1995,56:1493-1497.
    [14]M.A. McElligott, A. Barreto. Effect of continuous and interm ittent clenbuterol feeding on rat growth rate an d muscle. Comp Bioc hem Physiol,1989,92: 125-138.
    [15]J.M. Brockway, J.C. MacRae, P.E. Williams. Side effects of clenbuterol as a repartitioning agent. Vet Rec,1987,120:381-383.
    [16]林荣泉.瘦肉精对人的危害及防制.肉类工业,2002,(7):30-31.
    [17]T.Y. Chan. Food-borne clenbuterol may have potential for cardiovascular effects with chronic exposure (commentary). J Toxicol Clin Toxicol.2001,39:345-348.
    [18]凌明亮,黄仁术.瘦肉精的危害及检测方法.安徽农学通报,2003,9(4):87-88.
    [19]M.J. Sauern, R.J.H. Pickett, S. Limer. Distribution and Elimination of clenbuterol intissues and fluids of calves following prolonged oral administration at a grow-promoting dose. J Vet Pharmacol Therap,1995,18: 81-86.
    [20]A.T. Nials, R.A. Coleman, M. Johnson, H. Magnussen, K.F. Rabe, C.J. Vardey. Effects of beta-adrenoceptor agonists in human bronchial smooth muscle. Br J Pharmatcol,1993,110:1112-1116.
    [21]J.F. Martinez-Navarro. Food poisoning related to consumption of illicit β-agonist in liver. Lancet,1990,336:1311.
    [22]H.A. Kuiper, M.Y. Noordam, M.M. van Dooren-Flipsen, R. Schilt, A.H. Roos. Illegal use of beta-adrenergic agonists:European Community. J Anim Sci,1998, 76:195-207.
    [23]L. Salleras, A. Dominguez, E. Mata, J.L. Taberner, I. Moro, P. Salva. Epidemiologic study of an outbreak of clenbuterol poisoning in Catalonia, Spain. Public Health Rep,1995,110:338-342.
    [24]C. Pulce, D. Lamaison, G. Keck, C. Bostvironnois, J. Nicolas, J. Descotes. Collective human food poisonings by clenbuterol residues in veal liver. Vet Hum Toxicol,1991,33:480-481.
    [25]S. Maistro, E. Chiesa, R. Angeletti, G. Brambilla. Beta blockers to prevent clenbuterol poisoning. The Lancet,1995,346:180.
    [26]V. Sporano, L. Grasso, M. Esposito, G. Oliviero, G. Brambilla, A. Loizzo. Clenbuterol residues in non-liver containing meat as a cause of collective food poisoning. Vet Hum Toxicol,1998,40:141-143.
    [27]G. Brambilla, A. Loizzo, L. Fontana, M. Strozzi, A. Guarino, V. Soprano. Food poisoning following consumption of clenbuterol-treated veal in Italy. JAMA, 1997,278:635.
    [28]G.J Bilbao, J.J.F. Hoyo, J.M. Lopez, S.M. Vinuesa, M.J. Perianes, M.P. Munoz, G.J. Ruiz. Clenbuterol poisoning. Clinical and analytical data on an outbreak in Mostoles, Madrid. Rev Clin Esp,1997,197:92-95.
    [29]G. Brambilla, T. Cenci, F. Franconi, R. Galarini, A. Macri, F. Rondoni, M. Strozzi, A. Loizzo. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett,2000,114: 47-53.
    [30]J. Barbosa, C. Cruz, J. Martins, J.M. Silva, C. Neves, C. Alves, F. Ramos, M.I. Da Silveira. Food poisoning by clenbuterol in Portugal. Food Addit Contam, 2005,22:563-566.
    [31]中华人民共和国农业部农牧发[1997]3号《关于严禁非法使用兽药的通知》,1997年3月25日颁布.
    [32]胡萍,余少文,黎志林,刘擎宇,陈白玉.85起盐酸克伦特罗食物中毒分析.中国预防医学杂志,2008,9(1):65-67.
    [33]何仁尧.10起盐酸克伦特罗食物中毒分析.中国公共卫生管理,2002,18(5):457.
    [34]严华松,金乐君.5起盐酸克伦特罗食物中毒的调查与分析.福建医药杂志,2004,26(6):232.
    [35]陈剑英,陈忠熙.一起食用乌骨鸡引起盐酸克伦特罗中毒的调查分析.中国公共卫生管理,2001,17(5):439-440.
    [36]袁宝君,徐瑞平,杨小平.两宗淡水鱼污染克伦特罗引起食物中毒的调查与分析.中国食品卫生杂志,2004,16(1):51-52.
    [37]丁瑞根,刘跃英.一起误用盐酸克伦特罗引起中毒的调查.中国公共卫生管理,2005,21(3):261-262.
    [38]陈文瑞,江启钦,陈顺洪,魏国平,吴国寿,骆木娘.克伦特罗中毒致代谢紊乱和心肌损害探讨.现代保健:医学创新研究,2006,3(7):75.
    [39]顾振华,郑雷军.上海盐酸克伦特罗食物中毒事件的分析与思考.中国食品卫生杂志,2007,19(1):10-12.
    [40]卢志坚,苏少芳,陈海明,卢学会.韶关市3起盐酸克伦特罗食物中毒分析.华南预防医学,2008,34(3):75-76.
    [41]李春.60例盐酸克伦特罗中毒者心电图分析.医学理论与实践,2008,21(11):1364.
    [42]张茜利,叶和军,胡瑞行.53例“瘦肉精”中毒临床诊治体会.实用中西医结合临床,2009,9(5):73-74.
    [43]钱欣,王晓萍,龚征.瘦肉精(盐酸克伦特罗)中毒7例的诊治分析.福建医药杂志,2009,31(3):177-178.
    [44]汪令四.含“瘦肉精”畜产品对人健康的危害.畜牧兽医杂志,2002,21(4):29-30.
    [45]韩陆奇,陈莲.注意防范“瘦肉精”食物中毒.肉品卫生,2002,(2):18.
    [46]周林娟,陈剑华,陈栋力,邵国利.一起“瘦肉精”引起的急性化学性食物中毒的调查分析.中国食品卫生杂志,2002,14(4):41-42.
    [47]刘志清.“瘦肉精”引起食物中毒的调查分析.现代预防医学,2003,30(1):105.
    [48]周波,缪伟,郑春生.一起“瘦肉精”引起食物中毒的调查报告.现代预防医学,2002,29(5):669-670.
    [49]庾晋,周洁.肃清瘦肉精之祸.肉类工业,2002,(10):24-25.
    [50]胡圣武,程玉兰,陈文盛.食用含“瘦肉精”的白鲢鱼引起中毒调查.安徽预防医学杂志,2003,9(1):41-42.
    [51]关小玲,欧阳合意.大批“瘦肉精”中毒患者的紧急救护及组织管理.中华急诊医学杂志,2004,13(7):196.
    [52]黄宏南,华永有,兰丽萍.一起“瘦肉精”引起的中毒事件HPLC-PDA快速分析.中华流行病学杂志,2006,27(2):160.
    [53]于春华.“瘦肉精”中毒患者心率与血钾相关性分析.中国基层医药,2006,13(12):1963-1964.
    [54]张吟,陈一农.克伦特罗药理作用的研究进展.海峡药学,2002,14(5):10-12.
    [55]G.A. Mitchell, G.J. Dunnavan. Illegal use of beta-adrenergic agonists in the United States. Anim Sci,1998,76:208-211.
    [56]D. Downie, M.I. Delday, C.A. Maltin, A.A. Sneddon. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero. Mol Reprod Dev,2008,75:785-794.
    [57]J.B. Anthony, I.H. Stewart, C.W. Anthony, S.George. Effect of clenbuterol on sarcoplasmic reticulum function in single skinned mammalian skeletal muscle fibers. Am J Physiol Cell Physiol,1998,274:1718-1726.
    [58]Z. Chodorowski, A.J. Sein. Acute poisoning with clenbuterol--a case report. Przegl Lek,1997,54:763-764.
    [59]G.P. Daubert, V.H. Mabasa, V.W. Leung, C. Aaron. Acute clenbuterol overdose resulting in supraventricular tachycardia and atrial fibrillation, J Med Toxicol, 2007,3:56-60.
    [60]M. Spadari, C. Coja, F. Rodor, B. Monnier, M.F. Affaton, J. Arditti, M. Hayek-Lanthois, J.M. David, M. Valli. Doping in sports. Cases reported to the Poison Control Center of Marseille from 1992 to 2000. Presse Med,2001,30: 1733-1739.
    [61]C.P. Ingalls, W. Barnes. Interaction between clenbutrol and run training:effects on exercise performan ce and M LC isoform content. J Appl Phaysiol,1996,80: 795-801.
    [62]N.D. Duncan, D.A. Williams. Deletrious effects of chronic clenbuterol treatment on endurance and sprint exercise performance in rats. clinical. Science,2000, 98:339-347.
    [63]J. Suzuki, M. Bao. Effects of the adrenergic agonist clenbuterol on capillary geometry in cardiac and skeletal muscles in young an d middle-aged rats. Acta Physiol Scand,1997,161:317-326.
    [64]C.E. Torgan, J.T. Brozinick. Exercise training and clenbuterol reduce insulin resistance of obese Zucker rats. Am J Physiol,1993,264:373-379.
    [65]P. Bilkoo, J. Thomas, C.D. Riddle, G. Kagaoan. Clenbuterol toxicity:an emerging epidemic. A case report and review. Conn Med,2007,71:89-91.
    [66]R.S. Hoffman, B.M. Kirrane, S.M. Marcus. Clenbuterol Study Investigators. A descriptive study of an outbreak of clenbuterol-containing heroin. Ann Emerg Med,2008,52:548-553.
    [67]J.Q. Dimaano, A.M. Burda, J.E. Korah, M. Wahl. Street drugs possibly tainted with clenbuterol. J Emerg Nurs,2008,4:582-583.
    [68]W.E. Wingert, L.A. Mundy, L. Nelson, S.C. Wong, J. Curtis. Detection of clenbuterol in heroin users in twelve postmortem cases at the Philadelphia medical examiner's office. J Anal Toxicol,2008,32:522-528.
    [69]A.C. Anderson. Management of Beta-Adrenergic Blocker Poisoning. Clin Ped Emerg Med,2008,9:4-16.
    [70]M.W. Lai, W. Klein-Schwartz, G.C. Rodgeers.2005 Annual report of the American Association of Poison Control Centers' national poisoning and exposure data base. Clin Toxicol,2006,44:803-932.
    [71]H.A. Kuiper, M.Y. Noordam, M.M. Van Dooren-Flipsen, R. Schilt, A.H. Roos. Illegal use of beta-adrenergic agonists:European Community. J Anim Sci,1998, 76:195-207.
    [72]European community. Council regulation 90/2377/EEC of 26 June 1990 laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Off J Eur Communities. L224:7-14.
    [73]European community. Council Directive 96/22/EC of 29 April 1996 concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of P-agonists, and repealing Directives 81/602/EEC,88/146/EEC and 88/299/EEC. Official Journal of the European Communites, L125:3-9.
    [74]European community. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC.
    [75]Illegal Compounding of Clenbuterol. FDA Veterinarian Newsletter 2002 Volume ⅩⅦ, No Ⅱ.
    [76]W.G. Drennan, M.S. Yong. Clenbuterol not approved for use in cattle in Canada. Can Vet J,1994,35:474-475.
    [77]中华人民共和国农业部农(牧)字第5号《动物性食品中兽药最高残留限量(试行)》,1994年2月4日发布.
    [78]中华人民共和国农业部农(牧)字第7号《动物性食品中兽药最高残留限量》,1997年9月1日颁布.
    [79]中华人民共和国农业部农(牧)字第17号《动物性食品中兽药最高残留限量》,1999年9月13日颁布.
    [80]中华人民共和国国务院令第266号《饲料和饲料添加剂管理条例》,1999年 5月29日颁布.
    [81]中华人民共和国农业部第235号公告《动物性食品中兽药最高残留限量》2002年12月24日颁布.
    [82]北京市标准化指导性技术文件,DB11/Z 462-2007,奥运会食品安全食品动物药品使用管理规范.
    [83]Federal Register(2001) U.S. Government Printing Office, Washington, DC,66: 21283-21284.
    [84]Federal Register(2003) U.S. Government Printing Office, Washington, DC,68, 54658-54660.
    [85]C.S. Stachel, W. Radeck, P. Gowik. Anal. Chim. Acta,2003,493:6.
    [86]Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (2002) Report of the First Research Coordination Meeting of the Co-ordinated Research Project:The Development of Strategies foe the Effective Monitoring of Veterinary Drug Residues in Livestock and Livestock Products in Developing countries, FAO/IAEA, Vienna, Austria.
    [87]J. Blanca, P. Munoz, M. Morgado, N. Mendez, A. Aranda, T. Reuvers, H. Hooghuis. Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta,2005,529:199-205.
    [88]B. Shao, X.F. Jia, J. Zhang, J. Meng, Y.N. Wu, H.J. Duan, X.M. Tu. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chemistry, 2009,114:1115-1121.
    [89]G.V. Vyncht, S. Preece, R. Gaspar, G. Maghuin-Roglster, E. DePauw. Gas and liquid chromatography coupled to tandem mass spectrometry for the multiresidue analysis of β-agonists in biological matrices. J. Chromatogr. A, 1996,750:43-49.
    [90]L. Leyssens, C. Driessen, A. Jacobs, J. Czech, J. Raus. Determination of β2-receptor agonists in bovine urine and liver by gas chromatography-tandem mass spectrometry. J Chromatogr,1991,564:515-527.
    [91]B. Damien, O.K. Michael, R.S. Malcolm. Matrix solid-phase dispersion as a multiresidue extraction technique for β-agonists in bovine liver tissue. Analyst, 1994,119:1467-1470.
    [92]K.D. Wasch, B.H. De, D. Courtheyn. LC-MS-MS to detect and identify four beta-agonists and quantify clenbuterol in liver. Analyst,1998,123:2701-2705.
    [93]P. Batjoens, D. Courtheyn, H.F.D. Brabander, J. Vercammen, K.D. Wasch, M. Logghe. Gas chromatographic-tandem mass spectrometric analysis of clenbuterol residues in faeces. J. Chromatogr. A,1996,750:133-139.
    [94]H. Hooijerink, R. Schilt, E.O. van Bennekom, F.A. Huf. Determination of beta-sympathomimetics in liver and urine by immunoaffinity chromatography and gas chromatography mass selective detection. J. Chromatogr. B,1994,660: 303-313.
    [95]P.A. Guy, M.C. Savoy, R.H. Stadler. Quantitative analysis of clenbuterol in meat products using liquid chromatography electrospray ionization tandem mass spectrometry. J. Chromatogr. B,1999,736:209-219.
    [96]P. Gallo, G. Brambilla, B. Neri, M. Fiori, C. Testa, L. Serpe. Purification of clenbuterol-like β2-agonist drugs of new generation from bovine urine and hair by α1-acid glycoprotein affinity chromatography and determination by gas chromatography-mass spectrometry. Analytica Chimica Acta,2007,587:67-74.
    [97]M.K. Henze, G. Opfermann, H. Spahn-Langguth, W. Schanzer. Screening of β-2 agonists and confirmation of fenoterol, orciprenaline, reproterol and terbutaline with gas chromatography-mass spectrometry as tetrahydroisoquinoline derivatives. J. Chromatogr. B,2001,751:93-105.
    [98]苗虹,吴永宁,赵京玲,王凌琰,赵云峰,彭红.气相色谱-质谱法测定动物性食品及生物材料中的克伦特罗残留[J].中国食品卫生杂志,2003,15(1):18-22.
    [99]I. Durscha, A. Malucellia, H.H.D. Meyer. Screening of clenbuterol, salbutamol and terbutaline in animal feeds. Food Agric Immun,1994,6:141-145.
    [100]C.A. Fente, B.I. Vazquez, C. Franco, A. Cepeda, P.G. Gigosos. Determination of clenbuterol residues in bovine hair by using diphasic dialysis and gas chromatography-mass spectrometry. J. Chromatogr. B,1999,726:133-139.
    [101]P. Gonzalez, C.A. Fente, C. Franco, B. Vazquez, E. Quinto, A. Cepeda. Determination of residues of the β-agonist clenbuterol in liver of medicated farm animals by gas chromatography--mass spectrometry using diphasic dialysis as an extraction procedure. J. Chromatogr. B,1997,693:321-326.
    [102]J. Mandy, K. Michael, D.G. Eremy. Supercritical fluid extraction (SFE) as a multi-residue extraction procedure for β-agonists in bovine liver tissue. Analyst,1999,124:1355-1360.
    [103]M.J. O'Keeffe, M. O'Keeffe, J.D. Glennon, A.R. Lightfield, R.J. Maxwell. Supercritical fluid extraction of clenbuterol from bovine liver tissue. Analyst, 1998,123:2711-2714.
    [104]王炼,黎源倩.高效液相色谱法测定动物性食品中4种β2-兴奋剂.中国卫生检验杂志,2008,18(7)7:1227-1230.
    [105]W. Haasnoot, M.E. Ploum, R.J.A. Paulussen, R. Schilt, F.A. Huf. Rapid determination of clenbuterol residues in urine by high performance liquid chromatography with on-line automated sample processing using immunoaffinity chromatography. J. Chromatogr. A,1990,519:323-335.
    [106]W.L. Shelver, D.J. Smith. Immunoaffinity column as sample cleanup method for determination of the beta - adrenergic agonist ractopamine and its metabolites. J AOAC Int,2002,85:1302-1307.
    [107]F.L. James, C. Menard. Determination of clenbuterol in beef liver and muscle tissue using immunoaffinity chromatographic cleanup and liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B,1997, 696:291-297.
    [108]S.A. Barker, A.R. Long, C.R. Short. Isolation of drug residues from tissues by matrix solid phase dispersion. J. Chromatogr.,1989,475:353-361.
    [109]E. Horne, M. O'Keeffe, C. Desbrow, A. Howells. A novel sorbent for the determination of clenbuterol in bovine liver. Analyst,1998,123:2517-2520.
    [110]A. Blomgren, C. Berggren, A. Holmberg, F. Larsson, B. Sellergren, K. Ensing. Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high performance liquid chromatography with UV detection. J. Chromatogr. A,2002,975:157-164.
    [111]C. Widstrand, F. Larsson, M. Fiori, C. Civitareale, S. Mirante, G. Brambilla. Evaluation of MISPE for the multi-residue extraction of β-agonists from calves urine. J. Chromatogr. B,2004,804:85-91.
    [112]N.V. Hoof, D. Courtheyn, J.P. Antignac, M.V. de Wiele, S. Poelmans, H. Noppe, H.D. Brabander. Multi-residue liquid chromatography/tandem mass spectrometric analysis of beta-agonists in urine using molecular imprinted polymers. Rapid Commun. Mass Spectrom,2005,19:2801-2808.
    [113]N.V. Hoof, D. Courtheyn, J.-P. Antignac, M.V. de Wiele, S. Poelmans, H. Noppe, H.D. Brabander. Multi-residue liquid chromatography/tandem mass spectrometric analysis of beta-agonists in urine using molecular imprinted polymers. Rapid Commun. Mass Spectrom,2005,19:2801-2808.
    [114]J.F. Huang, H.J. Zhang, B.Lin, Q.W. Yu, Y.Q. Feng. Multiresidue analysis of β-agonists in pork by coupling polymer monolith microextraction to electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom,2007,21:2895-2904.
    [115]Z.G. Xu, Y.F. Hu, Y.L. Hu, G.K. Li. Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of P2-agonists in complex samples. J. Chromatogr. A,2010,1217:3612-3618.
    [116]J.F. Lawtence, C. Menard. Determination of clenbuterol in beef liver and muscle tissue using immunoaffinity chromatographic cleanup and liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B,1997, 696:91-297.
    [117]苗虹,王凌琰,吴永宁.高效液相色谱法紫外电化学串联检测测定鸡肉中克伦特罗残留.分析化学,2003,31(8):1024.
    [118]E. Shishani, S. Chai, S. Jamokha, G. Aznar, M.K. Hoffman. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/ tandem mass spectrometry. Analytica Chimica Acta, 2003,483:137-145.
    [119]N.G. Ram, D.F. Hugh, B.D. Myrna. Optimization of a column liquid chromatographic procedure for the determination of plasma salbutamol concentration. J. Chromatogr. B,1994,654:205-211.
    [120]唐琴,宋航,付超,雷永诚,陈先勇.高效液相色谱手性固定相法拆分克伦特罗对映体.分析化学,2004,32(6):755-758.
    [121]W. Liu, L. Zhang, Z.Y. Wei, S.P. Chen, G.N. Chen. Analysis of β-agonists and β-blockers in urine using hollow fibre-protectedliquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry. J. Chromatogr. A,2009,1216: 5340-5346.
    [122]C.G. Georgakopoulos, C. Tsitsimpikou, M.H.E. Spyridaki. Excretion study of the P2-agonist reproterol in human urine. J. Chromatogr. B,1999,726: 141-148.
    [123]S. Moane, M.R.Smyth, M. O'Keeffe. Differential-pulse voltammetric determination of clenbuterol in bovine urine using a Nafion-modified carbon paste electrode. Analyst,1996,121:779-784.
    [124]I. Garcia, L. Sarabia, M.C. Ortiz, J.M. Aldama. Three-way models and detection capability of a gas chromatography-mass spectrometry method for the determination of clenbuterol in several biological matrices:the 2002/657/EC European Decision. Analytica Chimica Acta,2004,515:55-63.
    [125]T.W. Logsdon, X. Zhou, P. Breen, P. Anderson, L. Gann, C. Hiller, C.M. Compadre. Determination of albuterol in plasma after aerosol inhalation by gas chromatography-mass spectrometry with selected-ion monitoring. J. Chromatogr. B,1997,692:472-477.
    [126]M. Reig, N. Batlle, J.L. Navarro, F. Toldra. Stability of β-agonist methyl boronic derivatives before gas chromatography-mass spectrometry analysis. Analytica Chimica Acta,2005,529:293-297.
    [127]F. Ramos, C. Santos, A. Silva, M.I.N. da Silveira. β2-Adrenergic agonist residues:simultaneous methyl- and butylboronic derivatization for confirmatory analysis by gas chromatography-mass spectrometry. J. Chromatogr. B,1998,716:366-370.
    [128]D. Lucia, V. Rosa. Derivatization procedures for the detection of β2-agonists by gas-chromatographic/mass spectrometric analysis. J Mass Spectrom,2000, 35:1285-1294.
    [129]M. Hernandez-Carrasquilla. Gas chromatography-mass spectrometry analysis of β2-agonists in bovine retina. Analytica Chimica Acta,2000,408:285-290.
    [130]吴平谷,王强,陈慧华,应永飞,赵永信,沈向红,宋国良,徐小民.同时检测动物肌肉中26种β2-兴奋剂和激素残留.分析化学,2008,36(11):1476-1482.
    [131]J.A. van Rhijn, H.H. Heskamp, M.L. Essers, H.J. van de Wetering, H.C.H. Kleijnen, A.H. Roos. Possibilities for confirmatory analysis of some β-agonists using two different derivatives simultaneously. J. Chromatogr. B, 1995,665:395-398.
    [132]吴永宁,苗虹,范赛,赵云峰.高效液相色谱-线性离子阱质谱法测定畜禽肌肉中β2-受体激动剂及β-阻断剂类药物残留.中国科学B辑:化学,2009,39:774-784.
    [133]F. Badoud, E. Grata, L. Perrenoud, M. Saugy, S. Rudaz, J.L. Veuthey. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Ⅱ: Confirmatory analysis. J. Chromatogr. A,2009,1-11.
    [134]F. Badoud, E. Grata, L. Perrenoud, L. Avois, M. Saugy, S. Rudaz, J.L. Veuthey. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry Ⅰ. Screening analysis. J. Chromatogr. A,2009,1216:4423-4433.
    [135]W.Y. Wang, Y.L. Zhang, J.Y. Wang, X.. Shi, J.N. Ye. Determination of β-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Science,2010,85:302-305.
    [136]Q. Chen, L.Y. Fan,W. Zhang, C.X. Cao. Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment. Talanta,2008, 76:282-287.
    [137]Y.F. Shi, Y. Huang, J.P. Duan, H.Q. Chen, G.N. Chen. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis. J. Chromatogr. A,2006,1125: 124-128.
    [138]T.S. Zhou, Q. Hu, H. Yu, Y.Z. Fang. Separation and determination of β-agonists in serum by capillary zone electrophoresis with amperometric detection. Analytica Chimica Acta,2001,441:23-28.
    [139]S.H. Shen, J. Ouyang, W.R.G. Baeyens, J.R. Delanghe, Y.P. Yang. Determination of β2-agonists by ion chromatography with direct conductivity detection. Journal of Pharmaceutical and Biomedical Analysis,2005,38: 166-172.
    [140]S. Collins, M. O'Keeffe, R. Smyth. Multi-residue analysis for beta-agonists in urine and liver samples using mixed phase columns with determination by radioimmunoassay. Analyst,1994,119:2671-2674.
    [141]S.Y. Sheu, Y.C. Lei, Y.T. Tai, T.H. Chang, T.F. Kuo. Screening of salbutamol residues in swine meat and animal feed by an enzyme immunoassay in Taiwan. Analytica Chimica Acta,2009,654:148-153.
    [142]J.Z. Shen, Z. Zhang, Y. Yao, W.M. Shi, Y.B. Liu, S.X. Zhang. Time-resolved fluoroimmunoassay for ractopamine in swine tissue. Anal Bioanal Chem,2007, 387:1561-1564.
    [143]M. Gros, T.M. Pizzolato, M. Petrovic, M.J.L. de Alda, D. Barcelo. Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography-quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A,2008,1189:374-384.
    [144]H.B. Lee, K. Sarafin, T.E. Peart. Determination of β-blockers and β2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A,2007,1148:158-167.
    [145]S. Boyd, H.H. Heskamp, T.F.H. Bovee, M.W.F. Nielen, C.T. Elliott. Development, validation and implementation of a receptor based bioassay capable of detecting a broad range of β-agonist drugs in animal feeding stuffs. Analytica Chimica Acta,2009,637:24-32.
    [146]F. Moragues, C. Igualada. How to decrease ion suppression in a multiresidue determination of P-agonists in animal liver and urine by liquid chromatography-mass spectrometry with ion-trap detector. Analytica Chimica Acta,2009,637:193-195.
    [147]L.D. Williams, M.I. Churchwell, D.R. Doerge. Multiresidue confirmation of β-agonists in bovine retina and liver using LC-ES/MS/MS. J. Chromatogr. B, 2004,813:35-45.
    [148]P.R. Kootstra, C.J.P.F. Kuijpers, K.L. Wubs, D. van Doorn, S.S. Sterk,L.A. van Ginkel, R.W. Stephany. The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening. Analytica Chimica Acta,2005,529:75-81.
    [149]D. Boyd, P. Shearan, J.P. Hopkins, M. O'Keeffe and M.R. Smyth. Application of matrix solid phase dispersion for the determination of clenbuterol in liver samples. Analytica Chimica Acta,1993,275:221-226.
    [150]D. Boyd, M. O'Keeffe, M.R. Smyth. Matrix solid-phase dispersion as a multiresidue extraction technique for beta-agonists in bovine liver tissue. Analyst.1994,119:1467-1470.
    [151]Council Directive 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002). Official Journal of the European Communities No. L221.
    [152]J. Zhang, B. Shao, J. Yin, Y.N. Wu, H.J. Duan. Simultaneous detection of residues of β-adrenergic receptor blockers and sedatives in animal tissues by high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B,2009,877:1915-1922.
    [153]翟凤英,杨晓光.2002年中国居民营养与健康状况调查报告之一.北京:人民卫生出版社,2006.
    [154]R. Fritz. Ungemach. WHO FOOD ADDITIVES SERIES:53 RACTOPAMINE (addendum).
    [155]J. Boenisch, F. Quirke.1992. Safety assessment of beta-agonist s. In:H A Kuiper and L A P Hoogenboom(Ed) In Vitro Toxicological Studies and Real Time Analysis of Residues in Food. FLAIR - Concerted Action No .8 Proceedings of t he Wordshop Held in Ghent, May 22~24,1992, and Thessaloniki, October30~31,1992, RIKILT-DLO, Wageningen, The Net herlands,102-124.
    [156]JECFA Toxicological Abbreviations, CLENBUTEROL (JECFA Evaluation) http://www.inchem.org/documents/jecfa/jecmono/v38je02.htm.
    [157]R. Ventura, L. Damasceno, M. Farre, J. Cardoso, J. Segura. Analytical methodology for the detection of β2-agonists in urine by gas chromatography-mass spectrometry for application in doping control. Analytica Chimica Acta,2000,418:79-92
    [158]N.V. Hoof, R. Schilt, E. van der Vlis, P. Boshuis, M.V. Baak, A. Draaijer, K.D. Wasch, M.V. de Wiele, J.V. Hende, D. Courtheync, H.D. Brabander. Detection of zilpaterol (Zilmax(?)) in calf urine and faeces with liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta,2005, 529:189-197
    [159]M. Roig, R. Berges, R. Ventura, K.D. Fitch, A.R. Morton, J. Segura. Quantification of terbutaline in urine by enzyme-linked immunosorbent assay and capillary electrophoresis after oral and inhaled administrations. J. Chromatogr. B,2002,768:315-324
    [160]M.H. Carrasquilla. External contamination of bovine hair with β-agonist compounds:evaluation of decontamination strategies. J. Chromatogr. B,2002, 767:235-243
    [161]M. Fiori, C. Civitareale, S. Mirante, E. Magaro, G. Brambilla. Evaluation of two different clean-up steps, to minimise ion suppression phenomena in ion trap liquid chromatography-tandem mass spectrometry for the multi-residue analysis of beta agonists in calves urine. Analytica Chimica Acta,2005,529: 207-210
    [162]L.A. Lin, J.A. Tomlinson, R.D. Satzger. Detection of clenbuterol in bovine retinal tissue by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A,1997,762:275-280.
    [163]J.H.W. Lau, C.S. Khoo. Determination of clenbuterol, salbutamol, and cimaterol in bovine retina by electrospray ionization-liquid chromatography-tandem mass spectrometry. J AOAC Int,2004,87:31-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700