在役石拱桥评估与加固关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石拱桥是一种古老的桥型,在我国应用广泛,据统计,我国现存石拱桥的数量就达四百多万座。由于自然环境、超载、设计、施工、自然灾害等因素的影响,导致石拱桥损坏现象极其严重,甚至导致坍塌。对在役石拱桥的评估、维护、加固、设计等关键技术体系和方法进行系统的研究有很强的现实意义,全文主要工作内容如下:
     1.在研究石砌体损伤机理的基础上,提出了相应的石砌体损伤模型。应用二参数Weibull分布描述损伤变量,引入峰值割线模量参数,推导并建立了石砌体的通用本构关系公式。该公式使石砌体整个压缩过程中的应力应变关系采用单一表达式描述,形式简单,参数少,且连续可导,便于实际应用,能较好符合实测应力应变关系。
     2.基于Ansys建立了大跨石拱桥的空间实体有限元模型,应用本文所建立的石砌体应力应变关系,对该桥的几何非线性、双重非线性及受损伤后的石拱桥的极限承载力进行了研究。全面分析了石拱桥在各种荷载工况、不同设计参数以及初始几何缺陷和损伤情况下的极限承载力变化规律和破坏形态,为在役石拱桥的评估与加固提供了理论指导。
     3.针对不同场地的典型地震波和基于规范生成的人工波,对石拱桥的地震动反应进行了分析,讨论了不同拱轴线和矢跨比对石拱桥抗震性能的影响。基于工程实例,进行了石拱桥的抗震加固方法的分析和对比,提出了提载情况下石拱桥抗震加固的优选方法。
     4.针对损伤识别训练样本庞大,低效的问题,提出了石拱桥的子结构识别的概念。通过检测手段和数学方法的结合,引入固有频率和静力位移为组合参数,建立了基于概率神经网络PNN的石拱桥子结构损伤识别方法,为石拱桥的监测和评估提供了可靠的数学方法。
     5.基于可靠度理论,引入时变可靠度理论,针对常见的石拱桥加固方法,提出了加固后的石拱桥组合截面抗力变化的概念,分析了荷载效应和结构抗力随时间变化的情况,建立了石拱桥加固后寿命预测的方法。对桥梁养护决策进行了分析,提出了基于马尔科夫过程的石拱桥加固后最优维护策略判断方法。根据结构所处的不同状态安排相应的最优维护策略,节省了维护费用,为加固维护决策提供了科学的依据。
As an old bridge type, stone arch bridge is widely used in China. According to statistics, the number of existing stone arch bridges have reached four million seats. Because of natural environment, overloading, design, construction, natural disasters and other factors, stone arch bridges have been seriously damaged, and even collapsed. So it is of great practical significance to carry out systematic research work on assessment, maintenance, reinforcement, design and other key technical system and method for in-service stone arch bridge. Main works are as follows:
     1. The corresponding damage model was presented based on study of damage mechanism of stone masonry, Two-parameter Weibull parameters were used to describe damage variable and by introducing the peak secant modulus a general constitutive equation was derived and established. Then the stress-strain relationship during the whole compression process could be expressed by a single expression. It was of simple form and less parameters. It was continuous derivable, easy to practice, and better meet the actual stress-strain relationship.
     2. The spatial entity finite element model of long-span stone arch bridge was built based on Ansys. The geometric nonlinearity, double nonlinear and ultimate bearing capacity of injured stone arch bridge were studied, using established stress-strain relationship. The variation of ultimate bearing capacity and failure modes were comprehensively analyzed for stone arch bridge in a variety of load conditions, different design parameters and initial geometric imperfections and damage. It provided theoretical guidance for the assessment and reinforcement of in-service stone arch bridge.
     3. The analysis on ground motion response of stone arch bridge was done according to typical seismic waves in different site and specification-based artificial waves. The effects of different arch axis and rise-span ratio on seismic behavior of stone arch bridge were discussed. Based on engineering practice, the analysis and comparison of seismic reinforcement methods of stone arch bridge were carried out and the preferred method of seismic reinforcement was put forward for increasing carrying capacity for stone arch bridge.
     4. In view of huge damage identification training samples and inefficient problem, the concept of sub-structure identification of stone arch bridge was proposed. With the combination of detecting means and mathematical methods, by introducing natural frequency and static displacement as combined parameter, sub-structure damage identification method based on probabilistic neural network PNN was established. It provided a reliable mathematical method for monitoring and evaluation of stone arch bridge.
     5.Based on reliability theory, by introducing the theory of time-varying reliability, aiming at common reinforcement methods of stone arch bridge, the concept of resistance varying of composite section of stone arch bridge was proposed, the changes of load effect and structural resistance with time were analyzed and life prediction method after reinforcement was built. Bridge maintenance decisions were analyzed and the optimal maintenance strategy judging method based on Markov process was given for reinforced stone arch bridge. Ihe optimal maintenance strategy was arranged according to different states. It saved cost and provided scientific basis for the reinforcement and maintenance.
引文
[1]王景波.圬工拱桥承载力可靠性分析:[硕士学位论文].哈尔滨:哈尔滨工程大学,2008
    [2]田云跃.湖南轻型石拱桥的变迁.湖南交通科技,1995(1):23-26
    [3]湖南省交通科研院.服役石拱桥安全性评估与加固改造技术研究.交通部西部课题项目,2004-318-785-18
    [4]罗英,唐寰澄.中国石拱桥研究.北京:人民交通出版社,1993
    [5]李妍,孟广伟,尹新生.砌体本构关系的研究进展.吉林建筑工程学院学报,2009.8:5-8
    [6]施楚贤.砌体结构理论与设计.北京:中国建筑工业出版社,2003:15-93
    [7]曾晓明,杨伟军,施楚贤.砌体受压本构关系模型的研究.四川建筑科学研究,2001.9:8-10
    [8]K.Naraine, S.Sinha. Behavior of brick masonry under cyclic compressive loading.Struct.Engrg ASCE 1989.115(6)
    [9]Lidia La Mendola. Influence of nonlinear constitutive law on masonry pier stability.struct. Engrg, ASCE 1997.123(10)
    [10]朱伯龙.砌体结构设计原理.上海:同济大学出版社,1998
    [11]庄一舟.模型砖砌体力学性能的实验研究.建筑结构,1997,27(2):22-25
    [12]R.F.Pedreschi. B.P. Sinha. The stress/strain relationship of brickwork, Proceedings of the 6th IBMaC, Roma.1982
    [13]A. Madan-A M.Reinhorn. J. B. Mander. Modeling of masonry infill panels for structural analysis.Technical Repost NCEER-95-0018.1995
    [14]R.E.Loov,A general stress-strain curve for concrete. Conf. CSCE.1991
    [15]M. Dbanasekar. etc. Stress-strain relations for bollow concrete masonry under cyclic compression. Proceedings of the 11th IBMaC. Shanghai. China.1997
    [16]Harries H.Traglasten Stahlemen Zweigelenkbogen mitausbreiten. fiebzonen Stahlban, ASCE 1970
    [17]Komatsu. S, Shinke. T. Practical Formulation for in-Plane Load Carrying Capacity ofArches[J]. Civ. Eng.ASCE 1977
    [18]Calhoun.P.R, DaDeppo. D. A. Nonlinear Finite Element Analysis of Clamped Arches. Struct, Eng, ASCE 1983, Vol.109(3):599-612
    [19]Mirmiran.A,Made.A.M.Inelastic Buckling of Prestressed Sandwich or Homogenous Arches. Struct. Eng, ASCE 1993
    [20]Pi.Y.L,Trahair N.S.in-Plane Inelastic Buckling and Strengths of Steel Arches. Struct.Eng, ASCE 1996, V01.122(7):734-747
    [21]Pi.Y.L,Bradford M.A.In-Plane Strength and Design of Fixed Steel I-Section Arehos. Struct Eng, ASCE 2004, V01.26:291-301
    [22]谢幼藩,陈克济.拱桥面内稳定性计算的探讨.西南交大学报,1982(1):3-10
    [23]陈克济.钢筋混凝土拱面内极限承载力非线性分析.桥梁建设,1983(1):24-36
    [24]郑振飞,陈宝春.钢筋混凝土无铰拱非线性平面有限元分析.工程力学,1988,V01.5(4):72-79
    [25]胡大琳.钢筋混凝土拱的非线性分析.华东公路,1992(3):77-81
    [26]金伟良.钢筋混凝土拱桥的极限承载力.浙江大学学报,1997,Vol.31(4):449-461
    [27]奉龙成,汪宏,赵人达.大跨径钢筋混凝土拱桥受力行为的几何材料非线性耦合分析.公路交通科技,2000,V01.29(3):20-26
    [28]袁红茵.大跨径钢管混凝土拱桥非线性效应及合理设计探讨.中外公路,2001,Vo1.21(5):30-32
    [29]程进.大跨度桥梁结构中若干问题研究:[博士后出站报告].北京:清华大学,2002
    [30]谢旭,李辉,黄剑源.大跨度两铰钢拱桥面内稳定分析.土木工程学报,2004,Vo1.37(8):43-49
    [31]贾伟红.大跨径双肋式拱桥承载性能研究:[硕士学位论文].重庆:重庆交通学院,2005
    [32]周文伟.大跨度铁路钢管混凝土拱桥空间稳定极限承载力分析:[博士学位论文].长沙:长沙铁道学院,1999
    [33]钟新谷.单拱面预应力混凝土系杆拱桥极限承载力分析.工程力学,1999(10):21-23
    [34]陈宝春,陈友杰.钢管混凝土拱肋面内受力全过程试验研究.工程力学,2000,Vol.17(2):44-50
    [35]陈宝春,陈友杰.钢管混凝土拱桥双重非线性有限元分析与研究.福州大学学报,2003,Vol.31(1):81-85
    [36]Chatterjee P N. on the Defleetion Theory of Ribbed Two-Hinged Elastic Arches.Thesis PhD., theUniversityoflllinois,1948
    [37]Sadao komatsu, Tatsuro Sakimoto Ultimate Load-bearing capacity of Steel Arches. Journal of the Structural Division, ASCE,1977
    [38]顾安邦,刘忠,周水兴.万县长江大桥混凝土时效和几何、材料等非线性因素影响分析.重庆交通学院学报,1999,Vo1.18(44):1-7
    [39]唐雪松、张建仁、李传习.基于损伤理论的钢筋混凝土拱结构破坏过程的数值模拟,2006,23(2):115-125
    [40]葛素娟、陈淮.考虑吊杆损伤的拱桥稳定性分析.世界桥梁,2006,3:38-41
    [41]中华人民共和国交通部.公路桥梁抗震设计细则(JTG/TB02-01-2008).北京:人民交通出版社,1989
    [42]Eurocode 8-Design provisions for earthquake resistance of structures-part2:Bridges.Brussels.Committee European de Normalization(CEN),1994
    [43]AASHTO.Standard specifications for highway bridges,1996
    [44]日本道路协会.道路桥示方书·同解说V耐震性能篇,1996
    [45]范立础.桥梁抗震.上海:同济大学出版社,1997
    [46]M.J.N.普瑞斯特雷,F.塞勃勒,G.M.卡尔维著.桥梁抗震设计与加固.北京:人民交通出版社,1999
    [47]潘龙,孙利民,范立础.基于推倒分析的桥梁地震损伤评估模型与方法.同济大学学报,2001.29(1),10-14
    [48]欧进萍,侯钢领,吴斌.概率Push-over分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报,2001.22(6),81-86
    [49]Bridge Manual. Wellington:Transit New Zealand (TNZ),1994
    [50]欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998
    [51]Lin J H, Li J J, Zhang W S,Williams F W Non-ststionary random seismic responses of multi-support structures in evolutionary inhomogeneous random fields. Earthquake Engineering and Structural Dynamics,1997,26:135-145
    [52]葛瑞林.基于神经网络的拱桥结构损伤识别:[硕士学位论文].成都:西南交通大学,2008
    [53]刘效尧,蔡键,刘晖.桥梁损伤诊断.北京:人民交通出版社,2002
    [54]Venkatasubramanian V.Chan K A neural network methodology for process fault diagnosis Journal of AlCHE,1989,35(12):1993-2002
    [55]Wu X.Ghaboussi J.Garrett J H Use of neural networks in detection of structural damage.ComputerStructuress,1992(04):649-659
    [56]Kirkegaard P H.Rytter A The use of neural networks for damage detection and location in a steel member. Neural Networks and Combinatorial Optimization in Civil and Structural Engineering. Edinburgh, UK,1993,1-9
    [57]Tsou P.Shen M-HH Structural damage detection and identification using neural networks. ALAA Journal,1994,32(1):176-183.
    [58]Chen S S.Kim S. Neural network based signal monitoring in a smart structural system. Smart Structures and Materials 1994:Smart Sensing, Processing, and Instrumentation, J S Sirkis(ed.), SPIE,1994,2191:176-186
    [59]Szewczyk Z.Hajela P Neural network based damage detection in structures. ASCE Journal of Computing and Civil Engineering.1994,8(2):163-178
    [60]Elkordy M F.Chang K C.Lee G C. Application of neural networks in vibrational signature analysis. Journal of Engineering Mechanics.1994,120(2):251-264
    [61]Pandy P C.Barals S V Multiplayer perceptron in damage detection of bridge structures. Computers and Structures.1995,54(4):597-608
    [62]Kaminski P C The approximate location of damage through the analysis of natural frequencies with artificial neural networks. Journal of Process Mechanical Engineering,1995,209:117-123
    [63]Mitsuru Nakamura,Masrisami F.Anatassios G et al.A method for nonparametric damage detection through the use of neural networks. Earthquake Engineering and Structural Dynamics.1998,27:997-1010
    [64]Choi M Y.Kwon I B. Damage detection system of a real steel truss bridge by neural networks. Smart Structures and Materials 2000:Smart Systems for Bridges, Structures and Highways,2000,3988:295-306
    [65]杨英杰,虞和济.结构损伤状态识别的神经网络方法.东北大学学报(自然科学版),1994,15(2):210-214
    [66]徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究.振动工程学报,1997,10(1):8-12
    [67]郭国会.钢筋混凝土结构破损评估的神经网络方法研究:[硕士学位论文].长沙:湖南大学,1998
    [68]陆秋海.利用模态试验参数识别结构损伤的神经网络法.工程力学,1999,16(1):35-42
    [69]姜绍飞,刘明,倪一清等.大跨悬索桥损伤定位的自适应概率神经网络研究.土木工程学报,2003,36:74-78
    [70]王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定.振动工程学报,2000,13(1):138-141.
    [71]王柏生,丁皓江,倪一清等.模型参数误差对用神经网络进行结构损伤识别的影响.土木工程学报,2000,33(1):50-55
    [72]王柏生,倪一清,高赞明.用概率神经网络进行结构损伤位置识别.振动工程学报,2001,14(1):60-64
    [73]王柏生,倪一清,高赞明.青马大桥桥板结构损伤位置识别的数值模拟.土木工程学报,2001,34(3):67-73
    [74]G.Somerville.The design life of struetures. Edi. Blaekie and Son Ltd.1992
    [75]屈文俊、罗西勤.既有结构剩余技术寿命预测.中国公路学报,4(12)1999,10(4):19-23
    [76]闰波,王幼青.大气污染对钢筋混凝土结构耐久性影响研究.哈尔滨建筑大学学报,2000,(3):39-43
    [77]惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法.工业建筑,1997,27(6):19-22
    [78]Weyers R E.Service life model for concrete structures in Choride Laden Environments.ACI Materials Journal,1998,95(4):445-453
    [79]Shamsad AHmad, Bishwajit Bhattacharjee. Experimental Sevrice Life Prediction of Rebar-Corroded Reinforced Concrete Surteture.ACI Materials Journal,1997, 94(4):311-316
    [80]Amey S.L, Johnson D.A., etal.Perdicting the Sevrice Life of Concrete Marine Structures:An Environmental Methodology.ACI Sturctural Journal,1998, 95(2):205-214
    [81]Liang M.T., Wang K.L., etal.Sevrice Life Prediction of Reinforced Concrete Structures.Cement and Concrete Research,1999,29:1411-1418
    [82]赵福星,史海秋,耿中行.一种适用于应力疲劳和应变疲劳得通用寿命模型.航空动力学报,2003,18(1):140-145
    [83]陈志芳,文雨松.不明配筋梁的剩余疲劳寿命评估.长沙铁道学院学报,2003,21(1):19-23
    [84]张宝昌,白付平,焦伟等.焊接结构断裂寿命估算的试验研究.焊接学报,1994,15(3):154-159
    [85]陈惟珍,G.Albrecht, D.Kosteas老钢桥剩余安全度与剩余寿命估计.同济大学学报.2001,29(4):384-389
    [86]李厚祥,熊健民等.基于断裂力学的钢梁整体节点疲劳寿命分析.湖北工学院学报,2002,17(4):23-25
    [87]李清富,赵国藩.结构概率寿命估计12].工业建筑,1995,(8):8-10
    [88]Engelund S., Sorensen J.D..A Probabilistic Model for Chloride-ingress and Initiation of Corrosion in Reinofrced Conerete Sturctures. Structural Saefty,1998, 20:69-89
    [89]Mori Y, Ellniwgood R.Time-dependent system reliability analysis by adaPtive importance sampling.Structural Saefty,1993,12(1):59-73
    [90]赵尚传,赵国藩.基于可靠性的在役混凝土结构剩余使用寿命预测.建筑科学,2001,17(5):19-22
    [91]陈艾荣,陈华婷,项海帆.大跨桥梁风致抖振疲劳可靠度近似分析及寿命估算.土木工程学报,1999,32(3):28-33
    [92]张妃二,陈秉照等.桥梁疲劳强度的模糊可靠性设计与疲劳寿命分析.中南公路工程,2002,27(1):48-53
    [93]李清富,成子桥等.混凝土结构剩余寿命的预测.郑州大学学报,2003,24(1):11-15
    [94]夏红俊,周宏等.基于神经网络的混凝土结构使用寿命评估.安全与环境学报,2004,4(1):29-31
    [95]万臻、李乔、毛学明.基于可靠度的桥梁结构剩余使用寿命预测方法,公路交通科技.2006,9(23):51-53
    [96]方东平、张剑.砌体结构剩余使用寿命预测,建筑技术,2002,12:896-897
    [97]宋小东.钢筋混凝土桥梁可靠性评估专家系统.[硕士学位论文].哈尔滨:哈尔滨工业大学,1995
    [98]屈文俊,车惠民.既有铁路混凝土桥梁的维修与经济使用寿命预测.桥梁建设:1998(2):6-9
    [99]李亚东.基于设计规范的桥梁承载能力评估.桥梁建设,1996(2):61-63
    [100]李亚东.既有桥梁评估初探.桥梁建设,1997(3):18-21
    [101]姜海波,车惠民,钱永久.一座既有铁路混凝土梁的承载能力评估.桥梁建设,1998(2):7-15
    [102]秦权.桥梁结构的健康监测.中国公路学报,2000,13(2):37-42
    [103]徐家云,邓志勇.基于时变可靠度的桥梁加固经济性评估.自然灾害学报,2005,12,14(5)24-27
    [104]李峰,王建平,任新见.桥梁维修策略分析.交通科技,2002.06 60-62
    [105]韩大建,潘玲.基于效益最大化的桥梁检修决策模型,华南理工大学学报,2009.3 37(3),99-103
    [106]郭院成,霍达.在役结构的最优维修决策.基建优化,1996.2(2):7-9
    [107]刘扬,张建仁.钢筋混凝土桥梁服役期间的可靠性评估.中国公路学报,2000,41(2):61-65
    [108]张宇贻,秦权.钢筋混凝土桥梁构件的时变可靠度分析.清华大学学报(自然 科学版),2001,41(12):65-67
    [109]刘士林,向中富.特大跨径石拱桥研究与实践.北京:人民交通出版社,2006
    [110]王克海,孙永红,韦韩等.汶川地震后对我国结构工程抗震的几点思考.公路交通科技.2008.11(25):54-59
    [101]杜义欣,刘晶波,聂建国等.金水桥石拱结构的抗震分析.建筑结构.2005.8,8(35):43-46
    [111]刘建生,安学军,苏跃.石砌体的本构关系.建筑结构,1995,27(2):28-33
    [112]程瑞谅.大体积浆砌石砌体强度和剪切试验.广西水利电力局,1972
    [113]刘桂秋.砌体结构基本受力性能的研究:[博士学位论文].长沙:湖南大学,2005
    [114]王述红,孙豁然,张娟霞等.砌体受压开裂过程数值模拟及其力学特征研究.哈尔滨工业大学学报,2006.4:644-648
    [115]杨卫忠,樊溶.砌体受压应力-应变关系.郑州大学学报,2007.3:47-50
    [116]ROBOTNOV Y N. Creep rupture. Applied Mechanics, Proceedings of ICAM-12[c].1968:342-349
    [117]Lemaitre, J. A Continuous Damage Mechanics Model for Ductile Fracture, Transactions of ASME Journal of Engineering.Materials and Tcchnology,1985,107:83-89.
    [118]王达诠,武建华.砌体RVE均质过程的有限元分析.重庆建筑大学学报,2002,24(4):35-39
    [119]孙伟民.预应力混凝土砌块砌体抗裂性能的有限元分析.四川建筑科学研究,2003,29(4):88-91
    [120]秦杰,朱炯.砌体房屋受地表变形的有限元分析.工业建筑,2002,32(5):41-44
    [121]全成华,唐岱新.配筋砌块砌体剪力墙抗剪性非线性分析.低温建筑技术,2002,90(4):49-50
    [122]苏益声,郑宏宇,邓志恒.约束刚度对砌体结构中现浇楼板裂缝影响的试验分析.建筑结构.2002,32(10):66-68
    [123]刘振宇,叶燎原,潘文.等效体积单元(RVE)在砌体有限元分析中的应用.工程力学.2003,20(2):31-35
    [124]熊峰,应付钊.非线性有限元法分析预应力砌体墙结构.四川大学学报,2000,32(3):32-36
    [125]周岑,孙利民.钢筋混凝土结构弹塑性分析在ANSYS中的实现.2002ANSYS中国用户年会论文集,2002:464-468
    [126]贺拴海.桥梁结构理论与计算方法.人民交通出版社,2003
    [127]李英民,韩军,刘立平ANSYS在砌体结构非线性有限元分析中的应用研究.重庆建筑大学学报,2006,28(5):90-96
    [128]胡大琳.大跨径石拱桥承载能力研究:[博士学位论文].西安:长安大学,2007
    [129]Loland K E.Continuous damage models for load-response estimation of eonerete.Cement and Concrete Researeh,1980, (10):392-402
    [130]Mazars J.APPlication de le mecanique delendonnagement an comportement non lineaire destrueture.These de doctorat, Univ.Pris 6, ENSET, Mai,1984
    [131]Mazars J. A description of miero-and maeroscale damage of conerete strueture.Eng.Frac.Meeh.,1986,25(5/6):729-737
    [132]Krajcinovic D, Fonseka G U.Continuous damage theory of brittle materials, Part Ⅰ and Ⅱ.J.APPl.Meeh.,1981,48:809-824
    [133]Barant Z P, Oh B H.MicroPlane model for Progressive fracture of conerete and rock.J.Eng.Mech.,1985,111:559-582
    [134]Oritiz M.An analysis study of the localized failure models of conerete.Mechanies of Materials,1987,6:159-174
    [135]高路彬,程庆国.一种新的各向同性的损伤本构模型及其应用.中国铁道科学,1989,10(2):1-11.
    [136]谢和平.岩石、混凝土损伤力学.徐州:中国矿业大学出版社,1990
    [137]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993
    [138]范立础,李建中,王君杰.高架桥梁抗震设计.北京:人民交通出版社.2001
    [139]陈宝春.钢管混凝土拱桥计算理论及研究进展.土木工程学报.2003,36(12),47-57
    [140]刘钊.系杆拱桥的结构优化设计及抗震性能研究:[博士学位论文].南京:东南大学,2001
    [141]范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社.2001
    [142]袁颖.桥梁结构损伤识别方法的相关问题研究:[博士学位论文].大连:大连理工大学,2005
    [143]袁旭东.基于不完备信息土木工程结构损伤识别方法研究:[博士学位论文].大连:大连理工大学,2005
    [144]万怡骎.基于概率神经网络的变压器故障诊断:[硕士学位论文].南昌:南昌大学,2007
    [145]薛彬.基于振动检测对桥梁结构劣化程度评估的研究与应用:[硕士学位论文].天津:河北工业大学,2008
    [146]袁旭东,周晶,黄梅.基于静力位移及频率的结构损伤识别神经网络方法.哈尔滨工业大学学报.2005.04:488-490
    [147]李忠献,杨晓明.应用人工概率神经网络的大型斜拉桥子结构损伤识别研究.地震工程与工程振动.2003,23(3):92-99
    [148]陈旭勇.双曲拱桥的可靠性评估与加固改造新技术研究:[硕士学位论文].武汉:华中科技大学,2006
    [149]中华人民共和国交通部.GB/T 50283-1999.公路工程结构可靠度设计统一标准.北京:中国计划出版社
    [150]侯胜男.上海地区天然地基承载力的可靠度分析与分项系数研究:[博士学位论文].上海:同济大学,2009
    [151]吕颖钊.在役混凝土桥梁可靠性评估与寿命预测研究:[博士学位论文].西安:长安大学,2006
    [152]Michael P.Enright,Dan M.Frangopol.Service-life predication of deteriorating concerete brideges.Journal of Structural Engineering,1998,124(3):309-317
    [153]V.Geidl and S.Saunders.Calculation of reliability for timevarying loads and resistance.Structural Safety,1987,4(4):285-292
    [154]Amimesh Dey,Sankaran Mahadevan.Reliability estimation with time-variant loads and resistances. Journal of Structural Engineering,2000,126(5):612-620
    [155]M.G Stewart,D.V.Rosowsky.Time-dependent reliability of deteriorating reinforced concrete buidges.Structural Safety,Amsterdam,1998(20):91-109
    [156]戴志华.钢筋混凝土结构和砌体结构剩余寿命预测与系统开发:[硕士学位论文].上海:同济大学,2008
    [157]方东平,张剑.砌体结构剩余使用寿命预测.建筑技术,2002,33(12):896-897
    [158]施仁杰.马尔科夫链基础及其应用.西安:西安电子科技大学出版社,1992.25-30
    [159]刁荣亭.在役梁桥结构模糊可靠性评价及其马尔科夫寿命预测:[硕士学位论文].西安:长安大学,2006
    [160]滕海文,霍达,宋国华.在役抗震结构基于马尔科夫过程的最优维修策略分析.工业建筑,2004,34(10):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700