类肝素酶与肾组织炎症细胞浸润的临床与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾组织炎性细胞浸润是多种慢性肾病(Chronic kidney disease,CKD)慢性化进程中的常见表现,在介导肾小管间质慢性炎症和肾纤维化的发生发展中具有重要作用。在病理状态下外周血炎症介质表达及活性增加,同时肾脏固有细胞激活并表达各种趋化因子,募集单核-巨噬细胞、多形核白细胞和T细胞等炎症细胞向肾组织浸润,与肾固有细胞相互作用,表达一系列细胞因子/生长因子、粘附分子和细胞外基质(extracellular matrix, ECM)成分,从而直接或间接放大肾间质损伤,同时细胞因子和趋化因子的协同作用可以启动更多的炎症反应途径,形成瀑布效应,导致肾间质不可逆损伤。但是关于炎症细胞向炎症部位募集、迁徙机制,除公认的炎症趋化因子作用外,是否存在其它因素影响炎细胞迁徙浸润的生物学行为,如炎症细胞迁徙移行路径中结构及微环境变化等,目前尚不清楚。
     炎症细胞趋向炎症反应区必须穿越由细胞外基质和基底膜组成的屏障。该屏障主要由结构蛋白和糖氨聚糖两种成分构成,后者主要成分是硫酸乙酰肝素蛋白多糖(heparan sulfate proteoglycan,HSPGs)。HSPGs主要由一个蛋白核心和数个与之共价连接的线性硫酸乙酰肝素(heparan sulfate,HS)侧链组成。起初认为结构蛋白的破坏是细胞侵袭、转移的决定性步骤。事实上糖氨聚糖作为ECM和基底膜的另一主要成分,其降解也是细胞侵袭游走所必须的。
     类肝素酶(heparanase,Hpa)是近年发现的一种以HSPGs为底物、裂解HSPGs核心分子HS的内切糖苷酶,Hpa在炎症及肿瘤细胞的侵袭、转移中具有重要作用。在炎症和免疫反应中,淋巴细胞、单核巨噬细胞等受刺激后可立即释放Hpa,裂解HSPG,突破血管壁基底膜屏障和内皮的完整性,有利于循环中的免疫活性细胞外渗,迁徙移行到炎症区域而发生炎症反应。炎症反应的发动是机体防御性反应,但病理情况下如炎症趋化及炎症反应不去除,持续的修复过度,则导致炎症反应区域不可逆纤维化。
     鉴于近年关于Hpa在肿瘤细胞转移以及免疫活性细胞向炎症区迁徙中作用的认识,我们推想在进展性CKD中,肾组织炎性细胞的浸润以及此后的慢性进行性肾纤维化进程中可能也涉及Hpa的异常表达,激活的T淋巴细胞等炎性细胞在肾脏局部发挥Hpa活性,促进肾组织炎细胞浸润,激活肾脏固有细胞,释放HS结合因子、释放促纤维化细胞因子和生长因子等,从而触发肾脏纤维化进程。
     所以本课题旨在观察CKD中Hpa与肾组织炎细胞浸润的相关性;利用阿霉素肾病模型持续大量蛋白尿、肾间质进行性炎症性损伤、纤维化的特点,模拟人类CKD,观察Hpa在阿霉素肾病中的表达,并探讨Hpa抑制剂的抗炎症治疗作用,为防治CKD及延缓其纤维化进程提供新思路。
     主要实验内容:
     1、第一部分采用RT-PCR及免疫组化方法观察进展期慢性肾炎患者及健康肾移植供者外周血淋巴细胞及肾组织Hpa表达,同时观察肾组织炎细胞浸润情况;
     2、第二部分通过细胞培养,RT-PCR方法观察Hpa抑制剂海带多糖对培养的CKD患者外周血淋巴细胞Hpa表达的影响;
     3、第三部分建立阿霉素肾病模型,采用RT-PCR及免疫组化方法进一步观察肾病大鼠外周血淋巴细胞及肾组织Hpa表达及其与肾组织炎细胞浸润的相关性,检测临床指标观察海带多糖对阿霉素肾病的治疗作用,液闪计数观察海带多糖对阿霉素肾病大鼠淋巴细胞增殖活性的影响,以及免疫组化检测肾组织中重要的趋化因子、粘附分子以及致纤维化因子的表达变化。
     主要实验结果:
     1、CKD患者组外周血淋巴细胞Hpa mRNA表达较健康对照组增高;正常肾组织Hpa仅低表达,而慢性肾病患者肾组织中Hpa表达均不同程度增高,主要表达在肾小管间质炎细胞浸润部位,与炎细胞浸润程度具有相关性。
     2、培养CKD患者外周血淋巴细胞中Hpa mRNA表达仍高于正常对照,海带多糖可减弱Hpa表达。
     3、阿霉素肾病大鼠外周血淋巴细胞及肾组织Hpa表达均较正常大鼠增高,与肾组织炎细胞浸润程度的加重具有相似的时相性。
     4、海带多糖治疗组大鼠尿蛋白、血肌酐、血尿素氮等临床指标均较肾病对照组减轻;肾组织炎细胞浸润程度及纤维化程度较肾病对照组减轻。
     5、海带多糖治疗组大鼠外周血淋巴细胞Hpa mRNA及肾组织Hpa表达均低于肾病对照组。
     6、海带多糖治疗组大鼠淋巴细胞增殖活性较肾病对照组减弱。
     7、海带多糖治疗组肾组织IL-6、IL-8、ICAM-1及TGF-β表达较肾病对照组减弱。
     全文主要结论:
     1、Hpa在CKD中存在高表达,肾组织炎性细胞浸润与Hpa高表达具有相关性。
     2、海带多糖对CKD淋巴细胞Hpa表达具有抑制作用。
     3、海带多糖对阿霉素肾病具有治疗作用,其机制可能通过抑制Hpa、抑制淋巴细胞增殖而减轻肾间质炎症反应,从而减轻肾组织重要的趋化因子、粘附分子及致纤维化因子表达,延缓CKD纤维化。
As a common symptome in the development of various Chronic kidney diseases(CKD), renal inflammatory cell infiltration plays an important role in mediation of the occurrence and development of both chronic renal tubulointerstitial inflammation and renal fibrosis. Pathologically , there is an increase of expression and activity of inflammation mediators in peripheral blood, meanwhile, intrinsic renal cells are activated , express various chemotatic factors, and conduct inflammatory cells such as mononuclear-macrophage, polymorphonuclear leucocytes and T cells to nephridial tissue ,which interact with intrinsic renal cells ,then express a series of cytokines and growth factors, adhesion molecules and extracellular matrix (ECM), so renal interstitial injury is directly or indirectly magnified, meanwhile, synergistic effect of cytokines and chemotatic factors will lead to more paths of inflammatory reactions to form a water fall effect. This cascade effect results in irreversible injury of renal interstitium. However, with regard to the mechanism of recruitment and migration of inflammatory cell to inflammatory site , it is still unclear whether there are other factors contributing to the biological behavior of migration and infiltration of inflammatory cells beside the effects of known inflammatory chemotatic factors up to now.
     To migrate to inflammatory reaction site, inflammatory cells have to pass through the barrier composed of extracellular matrix and basement membrane .This barrier mainly contains structural protein and glycosaminoglycan, the main component of glycosaminoglycan is heparan sulfate proteoglycan (HSPGs). HSPGs are glycoproteins mainly consisting of a protein core and side chains of several linear heparan sulfate (HS) covalent linking to the protein core. At the beginning, destruction of structural protein is regarded as the decisive step for cell invasion and migration. But actually, as a component of ECM and basement membrane, the degradation of glycosaminoglycan is essensial for cell invasion.
     Heparanase(Hpa)is an endoglycosidase which takes HSPGs as substrate,then splits core molecule HS of HSPGs . Hpa plays an important role in inflammation, invasion and migration of tumor cells. In inflammation and immune reaction , once on stimulation , lymphocytes and mononuclear-macrophages immediately release Hpa and split HSPG, so integrity of vessel wall basement membrane is destroyed ,which enables the extravasation of immune competent cell and they migrate to the inflammation site. The body’s defensive reaction leads to inflammatory reaction, but pathologically, if inflammatory chemotaxis and inflammatory reaction haven’t been stopped, persistent excessive repair will contribute to irreversible fibrosis of the inflammatory site.
     According to recent knowledge of the role that Hpa plays in metachoresis of immunocompetence cells and migration to inflammatory site of immune competent cells, we guess that in progressive CKD, renal inflammatory cell infiltration and successive chronic progressive renal fibrosis may have relationship with abnormal expression of Hpa, inflammatory cells such as activated T lymphocytes secrete Hpa, and Hpa performs its activity in regional kidney, which promotes inflammatory cell infiltration into nephridial tissue, activates intrinsic renal cells, releases HS binding factors, pro-fibrotic cytokines and growth factors, which triggers renal fibrosis proceeding.
     Therefore, our study aimed at investigation of the relationship between Hpa and renal inflammatory cell infiltration. As adriamycin nephrosis model has a character of continuous quantitative proteinuria, progressive inflammatory injury and fibrosis of renal interstitium, so similarly, we observed Hpa expression in adriamycin nephrosis and discussed the anti-inflammatory effect of Hpa inhibitors to explore new way to prevent CKD and delay its fibrosis.
     Main contents of the experiment
     1. In the first part of our study, RT-PCR and immunochemical method were used to investigate the Hpa expression in the nephridial tissue and peripheral blood lymphocyte of patients with progressive chronic nephritis and healthy donor for kidney transplant. Meanwhile, we observed the inflammatory cell infiltration of the nephridial tissue.
     2. In the second part, after cell culture, we used RT-PCR to observe the effect of Hpa inhibitor laminaran on Hpa expression in cultured peripheral blood lymphocytes from CKD patients.
     3. In the third part, we first established an adriamycin nephrosis model, then investigated the Hpa expression in murine peripheral blood lymphocytes and nephridial tissue, and their relationship with nephridial tissue inflammatory cell with RT-PCR and immunochemical method, tested clinical indexes to see the therapeutical effect of laminaran on adriamycin nephrosis model, observed the influence of laminaran on proliferation of lymphocytes in adriamycin nephrosis rat with liquid scintillation method, and measured the expression variance of chemokines, adhesion molecules and pro-fibrotic cytokines that were crucial to nephridial tissue with immunochemical method.
     Main result
     1. We use RT-PCR and immunohistochemistry to investigate the Hpa expression of peripheral blood lymphocytes and nephridial tissues in CKD patients and healthy donors of kidney for transplant, as well as the infiltration of inflammatory cells
     2. Hpa mRNA expression is still higher in cultured peripheral blood lymphocytes than normal control group. Laminaran can decrease Hpa expression.
     3. The Hpa expressions, in peripheral blood lymphocytes and nephridial tissue from adriamycin nephrosis rat, both are higher than normal rat, which has a similar phase characteristic to the degree of aggravation of inflammatory cells infiltration in nephridial tissue.
     4. Compared with control group with renal disease, clinical indexes including Urine protein, serum creatinine, blood urea nitrogen, etc, show that the disease is relieved in laminaran treated group rat, extent of inflammatory cell infiltration and fibrosis in nephridial tissue are palliated.
     5. Both Hpa mRNA expression in peripheral blood lymphocytes and nephridial tissue of laminaran treated group rats are lower than these of control group with renal disease.
     6. Lymphocytes proliferation activitiesof laminaran treated group rats are lower than these of control group with renal disease.
     7. Expression of IL-6、IL-8、ICAM-1 and TGF-βin nephridial tissue of laminaran treated group is lower than that of control group with renal disease.
     Main Conclusion
     1.There is high Hpa expression in CKD, infiltration extent of inflammatory cells in nephridial tissue closely relates with high expression of Hpa.
     2. Laminaran can inhibit the expression of Hpa in CKD Lymphocytes.
     3. Laminaran has curative effect on adriamycin nephrosis, probably by inhibiting Hpa and Lymphocytes proliferation to palliate inflammatory reaction in renal interstitium, which palliates the expression of important chemotactic factors, adhesion molecules, profibrotic cytokines in nephridial tissue, and delays CKD fibrosis.
引文
1. Eddy AA.Molecular basis of renal fibrosis.Pediatri Nephrol,2000, 15(3-4):290-301.
    2. Chevalier RL,Thornhill BA, Chang AY.Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood. Kidney Int,2000, 58(5):1987-1995.
    3. Abo ZH,Katsoudas S,Wild G,etal. Early human renal allograft fibrosis: cellular mediators. Nephron, 2002, 91(1): 112-119.
    4. Sanai T,Sobka T,Johnson T,etal.Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy. Diabetologia, 2000, 43(1): 91-100.
    5. Kimura K,Suzuki N,Ohba S,etal.Hypertesive glomerular damage as revealed by the expreeion of alpha-smooth muscle actin and non-muscle myosin.Kidney Int,1996,55(supplement):S169-172.
    6. Zeisberg M, Strutz F, Muller GA. Renal fibrosis: an update. Curr Opin Nephrol Hypertens.2001;10(3):315-320.
    7. Eddy AA. Progression in chronic kidney disease.Adv Chronic Kidney Dis.2005; 12(4): 353-365.
    8. Stenvinkel P. New insights on inflammation in chronic kidney disease-genetic and non-genetic factors.Nephrol Ther. 2006;2(3):111-119.
    9. Su W, Madaio MP. Recent advances in the pathogenesis of lupus nephritis: autoantibodies and B cells.Semin Nephrol. 2003;23(6):564-568.
    10. Anders HJ,Vielhauer V,Schlondorff D.Chemokines and chemokine receptors are involved in the resolution or progression of renal disease.Kidney Int, 2003, 63(2): 401-415.
    11. Daha MR,Van Kooten C.Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant,2000;15(Suppl 6):41~43.
    12. Van Kooten C,Daha MR,van Es LA.Tubular epithelial cells: A critical cell type in the regulation of renal inflammatory processes. Exp Nephrol ,1999;7 (5):429~437.
    13. Schena FP,Grandaliano G,Gesualdo L.The role of tubular cells in the progression of renal damage:guilty or innocent?Ren Fail ,2001;23(3):589~596.
    14. Goldbrunner RH,Bernstein JJ,Tonn JC. Cell-extracellular matrix interaction in glioma invasion.Acta Neurochir (Wien).1999;141(3):295-305.
    15. Eccles SA.Heparanase:breaking down barriers in tumors.Nat Med,1999,5 (7):735-736.
    16. Vlodavsky I,Eldor A,Haimovitz-Friedman A,et al.Expression of heparanase by platelets and circulating cells of the immune system:Possible involvement in diapedesis and extravasation.Invasion Metastasis,1992,12(2):112-127.
    17. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta.2001;1471(3):99-108.
    18. Vaday GG,Lider O.Extracellular matrix moieties,cytokines,and enzymes:dynamic effects on immune cell behavior and inflammation.J Leuk Biol, 2000; 67(2): 149-158.
    19. Raats CJ,Van Den Born J, Berden JH.Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria.Kidney Int.2000;57(2):385-400.
    20. Levidiotis V,Kanellis J, Ierino FL,et al.Increased expression of heparanase in puromycin aminonucleoside nephrosis.Kidney Int.2001;60(4):1287-1296.
    21. Levidiotis V,Freeman C,Punler M,et al.A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis.J Am Soc Nephrol.2004; 15(11): 2882-2892.
    22. Maxhimer JB,Gattuso P,Prinz RA,et al.Heparanase-1 expression and gene regulation in diabetic nephropathy.Journal of Surgical Research, 2003;2(114):279.
    23.陈惠萍.肾穿刺活检病理.江苏南京:中国人民解放军肾脏病研究所,1999.
    24.司徒镇强,吴军正.细胞培养.西安:兴界图书出版西安公司,1996.
    25.余传霖,叶天星,陆德源,等.现代医学免疫学.上海医科大学出版社,1998, 747-751.
    26. F.奥斯伯,R.布伦特,R.E.金斯顿,等.精编分子生物学实验指南.科学出版社,1998,121-122.
    27.卢圣栋.现代分子生物学实验技术.中国协和医科大学出版社,1999, 323-324.
    28. Timoshanko JR,Tipping PG.Resident kidney cells and their involvement in glomerulonephritis.Curr Drug Targets Inflamm Allergy.2005;4(3):353-362.
    29. Okada H,Kalluri R.Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis.Curr Mol Med.2005;5(5):467-474.
    30.冯江敏,吴靖川,张国娟等.慢性间质性肾炎炎症细胞浸润的特点.中华肾脏病杂志.1999,15(6):372-375.
    31.姜傥,关伟明,周建中,肾小管炎在肾小球性疾病中的临床意义.中山大学学报(医学科学版).2003,24(1):63-67.
    32. Appay V,Rowland-Jones SL.RANTES: a versatile and controversial chemokine. Trends Immunol,2001;22(2):83~87.
    33. Kelly CJ.Cellular immunity and the tubulointerstitium.Semin Nephrol, 1999; 19(2):182~187.
    34. Kuroiwa T,Schlimgen R,Illei GG.Distinct T cell/renal tubular epithelial cell interactions define differential chemokine production:implications for tubulointerstitial injury in chronic glomerulonephritides.J Immunol, 2000; 164(6): 3323~3329.
    35. Nikolic-Paterson DJ,Atkins RC.The role of macrophages in glomerulonephritis. Nephrol Dial Transplant, 2001; 16 Suppl5:3~7.
    36. Hulett MD,Freeman C, Hamdorf BJ, et al.Coloning of mammalian heparanase an important enzyme in tumor invasion and metastasis.Nat Med,1999,5 (7):803-809.
    37. Parish CR,Freeman C,Brown KJ, et al.Identification of sulfated oligosaccharide based inhibitors of tumor growth and metastasis using novel in vitro assay for angiogenesis and heparanase activity.Cancer Res ,1999 ,59 (14):3433-3441.
    38. Parish CR,Hindmarsh EJ,Bartlett MR, et al.Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol Cell Biol,1998,76(1):104-113.
    39. Bartlett MR,Underwood PA,Parish CR.Comparative analysis of the ability of leucocytes,endothelial cells and platelets to degrade the subendothelial basement membrane:Evidence for cytokine dependence and detection of a novel sulfatase.Immunol Cell Biol,1995,73(2):113-124.
    40. Rops AL,vander Vlag J,Lensen JF.Heparan sulfate proteoglycans in glomerular inflammation.Kidney Int.2004;65(3):768-785.
    41.阎妍,王峥,罗苇.肾病鼠外周血白细胞乙酰肝素酶基因的表达及其与尿蛋白的相关性.四川大学学报(医学版).2004;35 (4): 489-491.
    42. Miao HQ, Elkin M, Aingorn E, et al. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer.1999; 29; 83(3): 424-31.
    43.刘德纯,党诚学,白纪纲等.硫酸昆布多糖在仓鼠胰腺癌肝转移模型中抑制作用的研究.中华肝胆外科杂志.2004.10(12): 831-834.
    44. Parish CR. The role of heparan sulphate in inflammation.Nat Rev Immunol.2006 Sep;6(9):633-643.
    45. Vlodavsky I,Friedmann Y, Elkin M,et al.Mammalian heparanase:gene cloning, expression and function in tumor progression and metastasis.Nat Med, 1999, 5(7): 793-802.
    46. Whitelock JM, Murdoch AD,Iozzo RV,et al.The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases.J Biol Chem. 1996, 26;271 (17):10079-10086.
    47. Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci.2000;25(8):349-351.
    48. Vaday GG, Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation.J Leukoc Biol.2000;67(2):149-159.
    49. Kodaira Y, Nair SK, Wrenshall LE,et al.Phenotypic and functional maturation of dendritic cells mediated by heparan sulfate.J Immunol. 2000;165(3):1599-1604.
    50.王庭欣,马晓彤,蒋东升,等.海带多糖的抑瘤作用及其免疫学机制.河北预防医学,1999,5(2):21-24.
    51.詹林盛,张新生,吴晓红等.海带多糖的免疫调节作用.中国生化药物杂志,2001,22(3):116-118.
    52.彭波,许实波,许东晖等.褐藻多糖硫酸酯的抗凝和纤溶活性.中草药,2001,32(11):1015-1018.
    53. Vlodavsky I, Mohsen M,Lider O , et al.Inhibition of tumor metastasis by heparanase inhibiting species of heparin.Invasion Metastasis, 1994, 14(1): 290-302.
    54. Tobilli JE,Ferder L,Stella I, et al. Enalapril prevents fatty liver in nephritic rats.J Nephrol, 2002,15(4):358~367.
    55. Irony-Tur-Sinai M,Vlodavsky I,Shmuel A,et al.A synthetic heparin-mimicking polyanionic compound inhibits central nervous system inflammation. J Neurological Sci,2003;206(1): 49-57.
    56.中国科学院生物物理研究所“液闪”编译组.液体闪烁计数及其在生物学中的应用.科学出版社, 1979年9月第1版.
    57. Bertani T,Poggi A,Pozzoni R,et al.Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events.Lab Invest.1982;46(1):16-23.
    58. Bertani T, Rocchi G, Sacchi G, et al. Adriamycin-induced glomerulosclerosis in the rat.Am J Kidney Dis.1986;7(1):12-19.
    59. Alfrey AC, Hammond WS. Renal iron handling in the nephrotic syndrome. Kidney Int.1990;37(6):1409-1413.
    60. Wang Y,Wang P,Tay YC,et al.Progressive adriamycinnephropathy in mice: sequence ofhistologic and immnohitochemical events.Kidney Int,2000;58 (4):1797~1804.
    61. Arcamone F, Animati F, Capranico G,et al. New developments in antitumor anthracyclines.Pharmacol Ther.1997;76(1-3):117-124.
    62. Ogura R,Sugiyama M,Haramaki N,et al.Electron spin resonance studied on the mechanism of adriamycin-inducedheart mitochondial damages.Cancer Res,1991, 51(13):3555-3558.
    63. Thakkar NS,Potten CS.Abrogation of adriamycin toxicity in vivo by cycloheximide. Biochem Pharmacol,1992,43(8):1863-1691.
    64. Singal PK,Siveski- Iliskovic N,Hill M ,et al.Combination therapy with probucol adriamycin induced cardiomyopathy.Mol cell Cardiol, 1995;27(4):1055-1063.
    65.赵军宁,谭永淑,姚先莹.阿霉素肾病模型研究进展.四川生理科学杂志,1995 ,17 (1) :34-39.
    66.孙艳萍,陈金和,陈贤钧.丹参对大鼠肾脏近曲小管超微结构保护机制的研究.中国中西医结合肾病杂志,2003,4(3):145-147.
    67.孙良忠,岳智慧,汤洁如,等.细胞凋亡在阿霉素肾病大鼠肾小球硬化过程中的意义.中华儿科杂志,2000,38(5):285-287.
    68. Usta Y, Ismailoglu UB, Bakkaloglu A, et al. Effects of pentoxifylline in adriamycin-induced renal disease in rats.Pediatr Nephrol. 2004 Aug; 19(8): 840-843.
    69. Mutti A,Coccini T,Alinovi R , et al. Exposure to hydrocarbons and renal di sease : an experimental animal model. Ren Fail,1999,21(324):369~385.
    70. Wang Y,Wang P, Tay YC , et al. Progressive adriamycin nephropathy in mice : sequence of histologic and immnohitochemical events . Kidney Int , 2000 , 58(4):1797~1804.
    71.胡明昌,等.柔红霉素及其衍生物肾病模型的研究.国外医学泌尿系统分册.1988;8(3):120.
    72. Giroux L, Smeesters C, Boury F,et al. Adriamycin and adriamycin-DNA nephrotoxicity in rats.Lab Invest.1984;50(2):190-196.
    73.王泰华,钱家麒,张介玉等.阿霉素肾病肾硬化动物模型的实验改进.肾脏病与透析肾移植杂志. 1997;6(2): 191-193.
    74. Vanden Branden C, Ceyssens B, De Craemer D, et al. Renal antioxidant enzymes and fibrosisOrelated markers in the rat adriamycin model. Nephron, 2000,86(2):167-175.
    75. Lider O, Baharav E, Mekori YA,et al. Suppression of experimental autoimmunediseases and prolongation of allograft survival by treatment of animals with low doses of heparins.J Clin Invest 1989;83:752-756.
    76. Lines DR, Coleman M, Gallus A. Focal glomerulosclerosis treated with heparin. Arch Dis Child. 1989 Jun;64(6):855-857.
    77.姚小丹.肝素能治疗增殖性肾小球肾炎吗?肾脏病与透析肾移植杂志. 1996, 5(5):95-96.
    78.陈香美,徐启河.肝素治疗肾小球疾病的机理研究进展.中华肾脏病杂志.1998,14(5):331-333.
    79. Tyrrell DJ, Horne AP, Holme KR,et al.Heparin in inflammation: potential therapeutic applications beyond anticoagulation.Adv Pharmacol 1999; 46: 151-208.
    80. Wardle EN. Heparins for proliferative nephritides? Nephron, 1996; 73: 515.
    81. Furness PN, Drakeley S. Heparin causes partial removal of glomerular antigen deposits by a mechanism independent of its anticoagulant properties.J Pathol.1992; 168 (2):217-220.
    82. Floege J, Eng E, Young BA, et al. Heparin suppresses mesangial cell proliferation and matrix expansion in experimental mesangioproliferative glomerulonephritis. Kidney Int. 1993; 43(2): 369-380.
    83. Vlodavsky I, Mohsen M, Lider O,et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 1994;14:290–302.
    84. Diccianni MB, Mistry MJ, Hug K,et al. Inhibition of phospholipase A2 by heparin. Biochim Biophys Acta 1990;1046:242-248.
    85. Dua R, Cho W. Inhibition of human secretory class II phospholipase A2 by heparin. Eur J Biochem 1994;221:481-490.
    86. Lider O, Mekori YA, Miller T,et al. Inhibition of T lymphocyte heparanase by heparin prevents T cell migration and T cell-mediated immunity. Eur J Immunol 1990; 20:493-499.
    87. Willenborg DO, Parish CR. Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J Immunol 1988;140:3401-3405.
    88. Parish CR, Hindmarsh EJ, Bartlett MR, Staykova MA, Cowden WB, Willenborg DO. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol Cell Biol 1998;76:104-113.
    89.李幼姬,童新,李清刚.狼疮肾炎患者血与尿白细胞介素-8测定的临床意义.中华肾脏病杂志,1999,15:218-220.
    90. Pedreanez A, Viera N, Rincon J, Mosquera J. Increased IL-6 in supernatant of rat mesangial cell cultures treated with erythrogenic toxin type B and its precursor isolated from nephritogenic streptococci.Am J Nephrol. 2006;26(1):75-81.
    91. Grassl C, Luckow B, Schlondorff D, Dendorfer U. Transcriptional regulation of the interleukin-6 gene in mesangial cells.J Am Soc Nephrol. 1999;10(7):1466-1477.
    92. Ishihara K, Hirano T. Molecular basis of the cell specificity of cytokine action.Biochim Biophys Acta,2002,1592:281-296.
    93. Clayton A, Steadman R , Williams JD. Cells isolated from the human cortical interstitium resemble myofibroblasts and bind neutrophils in an ICAM-1-dependent manner. J Am Soc Nephrol , 1997,8(4) :604-615.
    94. Clayton A, Evans RA, Pettit E, Hallett M, Williams JD, Steadman R. Cellular activation through the ligation of intercellular adhesion molecule-1.J Cell Sci. 1998;111(4):443-453.
    95. Kriegsman J, Muller H, Sommer M, et al. Expression of LFA-1 and ICAM-1 in an animal model of renal interstitial fibrosis induced by unilateral ureteral obstruction. Exp Toxical Pathol, 2000,52(3):185-191.
    96. Tamaki K,Okuda S.Role of TGF-βin the progression of renal fibrosis. Contrib Nephrol,2003,139:44-65.
    97. Wang S,Denichilo M,Brubaker C.Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int. 2001; 60(1): 96-105.
    98. Heino J,Massague J.Transforming growth factor-beta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin.J Biol Chem.1989 25;264(36):21806-21811.
    99. Witowski J, Knapowski J. Przegl Lek. Transforming growth factor-beta: a new approach to the pathogenesis of glomerulonephritis and glomerulosclerosis. 1995, 52(9):467-473.
    1. Orenstein NS, Galli SJ, Dvorak AM, et al. Sulfated glycosaminoglycans of guinea pig basophilic leukocytes.J Immunol. 1978 Aug;121(2):586-592.
    2. Hulett MD,Freeman C, Hamdorf BJ, et al.Coloning of mammalian heparanase an important enzyme in tumor invasion and metastasis.Nat Med,1999,5 (7):803-809.
    3. Vlodavsky I,Friedmann Y,Elkin M,et al.Mammalian heparanase:gene cloning, expression and function in tumor progression and metastasis.Nat Med,1999, 5(7): 793-802.
    4. Fairbanks MB ,Mildner AM,Leone JW, et al . Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem, 1999, 274(42):29587-29590.
    5. Nadav L, Eldor A, Yacoby-Zeevi O, et al. Activation, processing and trafficking of extracellular heparanase by primary human fibroblasts.J Cell Sci. 2002; 15; 115(Pt10): 2179-2187.
    6. Haimov-Kochman R, Friedmann Y, Prus D,et al. Localization of heparanase in normal and pathological human placenta. Mol Hum Reprod. 2002 ;8(6):566-573.
    7. Sasaki N, Higashi N, Taka T, et al. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate.J Immunol. 2004;15;172(6):3830-3835.
    8. Goldshmidt O, Nadav L, Aingorn H, et al.Human heparanase is localized within lysosomes in a stable form.Exp Cell Res. 2002 Nov 15;281(1):50-62.
    9. Zetser A, Levy-Adam F, Kaplan V,et al. Processing and activation of latent heparanase occurs in lysosomes.J Cell Sci. 2004; 1;117(Pt 11):2249-2258.
    10. Schubert SY, Ilan N, Shushy M,et al. Human heparanase nuclear localization and enzymatic activity.Lab Invest. 2004;84(5):535-544.
    11. Schubert SY,Ilan N ,ShushyM, et al.Human heparanase nuclear localization and enzymatic activity.Lab Invest ,2004 ,84 (5) :535-544.
    12. Shteper PJ, Zcharia E, Ashhab Y, Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene. 2003 Oct 30;22(49):7737-7749.
    13. Andela VB, Schwarz EM, Puzas JE, Tumor metastasis and the reciprocal regulation ofprometastatic and antimetastatic factors by nuclear factor kappaB.Cancer Res. 2000; 60(23): 6557-6562.
    14. Chen G, Wang D, Vikramadithyan R, et al.Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry.2004;43(17):4971-4977.
    15. Marchetti D, Denkins Y, Reiland J,et al. Brain-metastatic melanoma: a neurotrophic perspective. Pathol Oncol Res.2003;9(3):147-158.
    16. Sasaki M, Ito T, Kashima M,et al. Erythromycin and clarithromycin modulation of growth factor-induced expression of heparanase mRNA on human lung cancer cells in vitro.Mediators Inflamm. 2001;10(5):259-267.
    17. Gilat D, Hershkoviz R, Goldkorn I, et al. Molecular behavior adapts to context: heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. J Exp Med. 1995;181(5):1929-1934.
    18. Goldshmidt O, Zcharia E, Cohen M,et al. Heparanase mediates cell adhesion independent of its enzymatic activity.FASEB J. 2003 Jun;17(9):1015-1025.
    19. Gingis-Velitski S, Zetser A, Kaplan V, et al.Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans.J Biol Chem. 2004;279(42):44084-44092.
    20. Freeman C, Browne AM, Parish CR. Evidence that platelet and tumour heparanases are similar enzymes. Biochem J. 1999;342 ( Pt 2):361-368.
    21. Dempsey LA, Plummer TB, Coombes SL, et al.Heparanase expression in invasive trophoblasts and acute vascular damage. Glycobiology. 2000;10(5):467-475.
    22. French MM, Smith SE,Akanbi K, et al.Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro.J Cell Biol.1999;145(5):1103-1115.
    23. Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci.2000;25(8):349-351.
    24. Pillarisetti S, Paka L, Obunike JC,et al. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix.J Clin Invest. 1997;100(4):867-874.
    25. Eccles SA.Heparanase:breaking down barriers in tumors.Nat Med,1999,5 (7):735-736.
    26. Whitelock JM, Murdoch AD,Iozzo RV,et al.The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor bystromelysin, collagenase, plasmin, and heparanases.J Biol Chem. 1996;271(17): 10079-10086.
    27. Gohji K, Katsuoka Y,Okamoto M, et al.Human heparanase : roles ininvasion and metastasis of cancer.Hinyokika Kiyo ,2000 ,46 (10) :757-762.
    28. Vaday GG, Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation.J Leukoc Biol.2000;67(2):149-159.
    29. Mollinedo F,Nakajima M,Llorens A, et al.Major co2localization of theextracellular- matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochem J,1997,327( Pt3) :917-923.
    30. Irony-Tur-Sinai M,Vlodavsky I,Shmuel A,et al.A synthetic heparin-mimicking polyanionic compound inhibits central nervous system inflammation. J Neurological Sci,2003;206(1): 49-57.
    31. Kodaira Y, Nair SK, Wrenshall LE,et al.Phenotypic and functional maturation of dendritic cells mediated by heparan sulfate.J Immunol. 2000;165(3):1599-1604.
    32. Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression.J Biol Chem. 1999;274(34):24153-24160.
    33. Freeman C, Parish CR. A rapid quantitative assay for the detection of mammalian heparanase activity.Biochem J. 1997;325 ( Pt 1):229-237.
    34. Miao HQ, Liu H, Navarro E, Development of heparanase inhibitors for anti-cancer therapy.Curr Med Chem. 2006;13(18):2101-2111.
    35. Vlodavsky I, Abboud-Jarrous G, et al.The impact of heparanese and heparin on cancer metastasis and angiogenesis.Pathophysiol Haemost Thromb.2006;35(1-2):116-127.
    36. Vlodavsky I , Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest ,2001 ,108 (3) :341-347.
    37. Ferro V ,Hammond E ,Fairweather JK. The development of inhibitors of heparanase ,a key enzyme involved in tumour metastasis ,angiogenesis and inflammation.Mini Rev Med Chem,2004 ,4 (6) :693-702.
    38. Miao HQ ,Elkin M,Aingorn E, et al .Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer ,1999 ,83(3) :424-431.
    39. Hoffman R, Paper DH, Donaldson J,et al. Inhibition of angiogenesis and murinetumour growth by laminarin sulphate.Br J Cancer. 1996;73(10):1183-1186.
    40.肖青,董蒲江,胡妮妮,等.昆布多糖硫酸酯抑制BxPC23细胞增殖的实验研究.重庆医学.2004;33 (3):417-418.
    41.翟振国,蒋捍东,秦筱梅,等.海藻硫酸多糖对肺癌增殖的抑制作用及其机制.中华结核和呼吸杂志,2004 ,27 (2) :97-100.
    42. Basche M, Gustafson DL, Holden SN, et al.A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors.Clin Cancer Res. 2006;12(18):5471-5480.
    43. Joyce JA, Freeman C, Meyer-Morse N, et al.A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer.Oncogene. 2005;24(25):4037-4051.
    44. Karoli T, Liu L, Fairweather JK,et al. Synthesis, biological activity, and preliminary pharmacokinetic evaluation of analogues of a phosphosulfomannan angiogenesis inhibitor (PI-88).J Med Chem. 2005;48(26):8229-8236.
    45. Marchetti D ,Reiland J ,Erwin B , et al. Inhibition of heparanase activity and heparanase2induced angiogenesis by suramin analogues. Int J Cancer, 2003, 104(2): 167-174.
    46. Temkin V, Aingorn H, Puxeddu I,et al. Eosinophil major basic protein: first identified natural heparanase-inhibiting protein. J Allergy Clin Immunol. 2004;113(4):703-709
    47. Edovitsky E,Elkin M,Zcharia E,et al.Heparanase gene silencing ,tumor invasiveness , angiogenesis ,and metastasis.J Natl Cancer Inst,2004,96(16):1219-1230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700