地铁站全膜流板式蒸发冷却器传热传质机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了充分吸引客流,地铁站总是设置在闹市区。在寸土寸金的闹市区,在满足冷却塔设置要求的前提下,又要与周围的环境协调共存,很难找到一个合适的位置安置冷却塔。因此,迫切需要一种高效换热设备替代常规冷却塔,将冷却塔移入地铁站排风通道内,解决地铁站等地下建筑设置冷却塔的问题。本文提出采用全膜流板式蒸发冷却器代替冷却塔的构想,并对该换热设备的关键技术进行了理论和实验研究。主要包括以下内容:
     论文阐述了全膜流板式蒸发冷却器的运行环境、系统构成以及工作原理。通过对顺流、逆流、叉流条件下的模拟计算以及该设备安装位置的比较分析,指出不论从提高设备换热性能方面,还是从设备安装和日后的运行维护方面在地铁排风道水平段设置全膜流板式蒸发冷却器都是最佳方案。
     全膜流板式蒸发冷却器至少包括板式蒸发换热器和全膜流蒸发布液器,板式蒸发换热器与对应的全膜流蒸发布液器构成冷却单元,实际工程应用中,可根据换热量增减冷却单元数量。通过对模拟计算结果与实验结果的关联分析,指出均匀布膜技术和研制适用于地铁站排风道环境的板式蒸发换热器是全膜流板式蒸发冷却器的核心技术;换热板片之间的间距、储液槽与换热板之间的夹角以及储液槽下边缘与换热板片之间的缝宽是全膜流板式蒸发冷却器的关键参数。
     建立全膜流板式蒸发冷却器液膜在气体外掠条件下液膜流动和传热特性的数学模型,探讨了气液界面切应力协同条件下层流液膜非线性温度分布的液膜传热性能,分析液膜厚度和传热系数沿液膜流动方向上的变化趋势,讨论界面切应力、界面对流换热强度和雷诺数等因素的对液膜换热的影响。结果表明:随着液膜雷诺数的增加,无量纲液膜厚度逐渐增大,无量纲液膜换热系数逐渐减小;同向界面切应力对液膜有推动拉伸作用,液膜传热系数随同向界面切应力的增加不断增大;反向界面切应力对液膜流动有阻碍作用,液膜传热系数随反向界面切应力的增加不断减小,并且反向界面切应力对液膜换热的影响比同向界面切应力显著。分析湍流液膜涡旋粘性和速度分布,对涡旋粘性、界面切应力和雷诺数对液膜厚度和液膜传热系数的影响进行讨论,结果表明:涡旋粘性随着界面切应力的增大逐渐增大,并且随着界面切应力的增大,涡旋粘性的最大值逐渐向气液界面靠近;无量纲速度分布随着距离壁面间距的增加不断增大。
     在气液叉流条件下,采用VOF两相流模型,考虑表面张力源项和气液两相传质源项,编写UDF程序,建立了三维全膜流板式蒸发冷却器数理模型,对实验条件和恒定壁面热流密度条件液膜流动的传热传质性能进行模拟计算,考察表面张力、固液接触角等因素对液膜流动状态和传热传质性能的影响,结果表明:随着表面张力系数和固液接触角的增大,液膜的不稳定性增强,边界发生波动,在实际工程应用中,应当采取一些物理或化学方法,降低液相表面张力,以促进连续液膜的形成。
     自行设计和搭建实验台,综合考察了叉流条件下液膜流量、液膜温度、外掠空气温度、相对湿度、流动速度以及换热器内热流体流动方式等因素对液膜传热传质性能的影响。结果表明:在液膜雷诺数增加的过程中,存在最佳雷诺数,使得液膜的换热热阻最小,换热系数最大;雷诺数较小时,热量传递受温度的影响较大,雷诺数较大时,流动状态对液膜换热系数的影响远大于温度对液膜换热系数的影响。
For sake of getting more passengers, the subway station is always located at down town. In order to meet setting demand of cooling tower and not to destroy urban landscape, it is very difficult to find an appropriate location to install cooling tower. Hence, there is an impatient need to find an efficient heat exchanger to substitute the cooling tower, move the cooling tower into the subway station and solve the problem that there is no place for installing the cooling tower of the underground buildings. The paper presents a novel subway station plate evaporative cooler as an alternative to cooling tower, and the key technology of it was investigated experimentally and theoretically. The main contents of the present paper include:
     The working environment, system composition and working principle of subway station plate evaporative cooler were expatiated. Based on the simulated results of concurrent flow counterflow and cross flow and comparative analysis of install location in subway station exhaust airway, it is pointed out that the optimal install location is horizontal segment of subway station exhaust airway, not only from the aspect of installing, but also from the aspect of running attention.
     The subway station plate evaporative cooler comprises plate evaporative heat exchanger and liquid film distributor at least. Plate evaporative heat exchanger and liquid film distributor in corresponding compose the cooling unit. The number of cooling unit could be increased or decreased according to the heat transfer rate in practical application. Based on relevance analysis of simulated results and experimental results, it is indicated that the uniform liquid film technique and the developing of plate evaporative heat exchanger suitable for subway station exhaust airway are the key technology. It is pointed out that the spacing between heat exchange flat, the angle between reservoir and heat exchanges flat and the spacing between reservoir lower limb and heat exchanges flat are the key parameters.
     Under the gas stream sweeping condition, the hydrodynamics and heat transfer model of subway station plate evaporative cooler was established. The heat transfer performance of laminar liquid film under nonlinear temperature distribution with interfacial shear stress was discussed. The change of liquid film thickness and heat transfer coefficient along with the flow direction of liquid film was discussed. The effects of interfacial shear stress and the intensity of interfacial convection heat transfer and Reynolds number on hydrodynamics and heat transfer are explained. The results indicate that with a rise in Reynolds number the dimensionless liquid film thickness increases and heat transfer coefficient decreases. The cocurrent shear stress plays the roles on thinning film thickness and enhancing heat transfer, and the countercurrent shear has inverse effect. And the effect of countercurrent is more remarkable than that of cocurrent shear stress. The effects of eddy viscosity, interfacial shear stress and Reynolds number on heat transfer of turbulent liquid film were discussed. The results indicate that eddy viscosity increases with a rise in interfacial shear stress. And the eddy viscosity maximal value gets close to gas-liquid interface gradually as the interfacial shear stress increases. The dimensionless velocity distribution increases with the increasing of distance from wall.
     Based on volume of fluid (VOF) method, the three-dimensional model of subway station plate evaporative cooler was set up under gas-liquid cross-flow condition. By compiling user-defined functions, the surface tension source and mass transfer source were taken into account. The heat transfer of liquid film under experimental condition and constant heat flux condition was investigated. The effects of surface tension and liquid solid contact angle on heat transfer of liquid film were investigated. The results show that with the increasing of surface tension and liquid solid contact angle the instability of liquid film strengthens and liquid film brim begins to fluctuate. Hence, in practical engineering physical or chemical methods should be taken into account to reduce the surface tension source.
     By designing and founding the experimental apparatus and collecting the data of liquid film flow rate, inlet and outlet water temperatures and the air velocity, the heat transfer of liquid film was investigated. The experimental results indicate that as the increasing of Reynolds number there was an optimal liquid Reynolds number which minimize thermal resistance and maximize heat transfer coefficient of liquid film. Temperature plays an important role in heat transfer of laminar flow liquid film. Whereas, the heat transfer of turbulence liquid film flow is not sensitive to liquid film inlet temperature.
引文
[1]宋永超.关于地铁车站风亭及冷却塔设置问题的探讨[C].铁路暖通空调专业2006年学术交流会论文集, 2006.
    [2]黄翔,蒸发冷却新风空调集成系统[J].暖通空调, 2003, 33(5):13-16.
    [3] John R. Watt, Evaporative air conditioning, 1963, New York.
    [4] R.O. Parker, R. E.Treyball. Chemical Engineering and Processing Symposium Series.57. 1962, 32:138-147.
    [5] T. Mizusbina, H. Miyashita. Experimental Study of an Evaporative Cooler[J]. Int.Chem.Eng, 1967, 7:727-739.
    [6] .L.Mchlaine-Cross,P.J.Banks,A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling[J]. Journal of heat transfer , 1981, 103(3):579-585.
    [7] H.Perez-Blanco, W.A.Bird. Study of Heat and Mass Transfer in a Vertical Tube Evaporative Cooler[J]. Transactions of the ASME.1984, 106:210-215
    [8] Ralph L.Webb,Alejandro Viliacres. Performance Simulation of Evaporative Heat Exchangers[J]. Heat Transfer Engineering.1985, 6(2):31-38
    [9] P.J.Erens. Comparison of Some Design Choices for Evaporative Cooler Cores[J]. Heat Transfer Engineering.1988, 9(2):29-35.
    [10] Boris Halasz. A General Mathematical Model of Evaporative Cooling Devices[J]. Revue Generale de Thermique.1998, 37(4):245-255.
    [11] S.G.Chuklin,Yu Lar Yanovskiy. Heat Transfer in a Plate-Type Evaporative Condenser[J]. Heat Transfer Soviet-Research.1975, 7(5):79-84.
    [12] Pescod D.Effects of turbulence promoters on the performance of plate heat exchangers[J]. Heat Exchangers: Design and theory Sourcebook, Washington, McGraw-Hill, 1974:601-615.
    [13] Pescod D. A heat exchanger for energy saving in an air-conditioning plant[J]. ASHRAE Transactions,1979, 85(2):238-151.
    [14] Uriyel Fisher, Wolfgang Leidenfrost, Jiashang Li. Hybrid Evaporative Condenser Cooling Tower[J]. Heat Transfer Engineering.1983, 4(2):28-41.
    [15] H. J. M. Vollebregt, T. de Jong. Indirect evaporative cooler with condensation of primary airflow[J]. ASHRAE Traps, 1994, 100:354-359.
    [16] Faisal I. Al-Juwayhel, Amir A. Al-Haddad a, Habib I. Shaban, Hisham T. A. El-Dessouky. Experimental Investigation of the Performance of Two-Stage Evaporative Coolers[J]. HeatTransfer Engineering, 1997, 18(2):21-32.
    [17] Tulsidasani T R, R L Sawheney, S P Singh, et al. Recent research on an indirect evaporative cooler(IEC)part 1:optimization of the COP[J]. International Journal of Energy Research,1997, 21:1099-1108.
    [18] Wojeiech Zalewski, Piotr Antoni Gryglaszewski. Mathematical Model of Heat and Mass Transfer Processes in Evaporative Fluid Coolers[J]. Chemical Engineering and Processing. 1997, 36(4):271-280
    [19] Yunho Hwang,et al. Evaporatively-cooled Condenser with Rotating Disks. Enhanced Heat Transfer[J]. 2000, 7(4):273-287.
    [20] Hisham.M. Ettouney,et,al. Performance of Evaporative Condensers[J]. Heat Transfer Engineering. 2001, 22(4):41-55.
    [21] Ala Hasan, Kai Siren. Performance Investigation of plain and finned tube evaporatively cooled heat exchangers[J]. Applied Thermal Engineering. 2003, 23(3):325-340.
    [22] Ala Hasan, Kai Siren. Performance Investigation of plain circular and oval tube evaporatively cooled heat exchangers[J]. Applied Thermal Engineering. 2004, 24(5-6):777-790.
    [23]陈沛霖,秦慧敏.在美国蒸发冷却技术在空调中的应用[J].制冷技术. 1990, 3:1-4.
    [24]陈沛霖.间接蒸发冷却在我国适用性的分析[J].暖通空调. 1992, 4(5):3-5.
    [25]陈沛霖.间接蒸发空气冷却器热工计算的改进模型及其实验验证[J].制冷学报. 1992. 2:22-26.
    [26]杨宁生,陶宏平,孙相玉等.喷雾强化空冷器的散热研究[J].高等化学工程学报,1990, 4(3):232-239.
    [27]丁良士,王建军,姜明健.间接蒸发冷却式板式换热器热工特性实验研究[J].工程热物理学报,1997, 18(1):85-89.
    [28]鱼剑琳,金立文,曹琦等.管式间接蒸发冷却器水平单管外对流传质的实验研究[J].西安交通大学学报, 1999, 33(3):68-71.
    [29]贺进宝,黄翔.椭圆管式间接蒸发冷却器热质交换过程初探.西安工程科技学院学报[J]. 2003(专辑), 6-8.
    [30]张旭,王正慧,周宗京等. TIEC中传递过程的理论模型及其解析解[J].西安建筑科技大学学报, 1998, 30(4):332-336.
    [31]张旭,陈沛霖.管式间接蒸发冷却器中传递过程熵分析及优化[J].同济大学学报, 2000, 28(4):457-461.
    [32]张旭,陈君红,陈沛霖.管式间接蒸发冷却器传递过程的解析解及验证[J].同济大学学报, 1998, 26(4):461-465.
    [33]任承钦.蒸发冷却分析及板式换热器的设计与模拟研究[D].湖南:湖南大学机械与汽车工程学院, 2001:1-46.
    [34]任承钦,汤广发,张国强等.一种新型板式换热器的设计及其传热特性的模拟研究[J].暖通空调, 2003, 33(5):106-118.
    [35]黄翔,周斌等.管式间接蒸发冷却器均匀布水的实验研究[J].暖通空调,2006, 12:48-52.
    [36]王玉刚.管式间接蒸发冷却器中强化传热传质的实验研究[D].西安:西安工程科技学院环境工程学院, 2006.
    [37]何叶从,地铁专用间接蒸发冷却器研究[D].重庆:重庆大学,2009.
    [38]刘焕成,蔡祖康,夏畹.氨蒸发式冷凝器热工性能实验研究[J].制冷技术.1990, (3):4-9.
    [39]徐窒祥,娄锦培,徐灿根.蒸发式冷凝器在制冷系统中的节能[J].制冷学报. 1993, 3:29-32.
    [40]刘宪英等.蒸发式冷凝器应用于房间空调器的试验研究[J].暖通空调. 1997, 27(5):31-34.
    [41]崔海亭,王振辉,汪云. ATC蒸发式冷凝器在制冷工程中的应用[J].河北化工. 1998, 3:28-29
    [42]王东屏.蒸发式冷凝器的设计[J].大连铁道学院学报, 1999, 20(1):45-49.
    [43]袁建新.蒸发式冷凝器的应用分析[J].制冷. 2000, 19(2):85-86.
    [44]余江海,陆震,范林.蒸发式冷凝器应用现状及存在问题探讨[J].制冷技术. 2001, 2:33-36.
    [45]庄友明.蒸发式冷凝器和水冷式冷凝器的能耗比较及经济性分析[J].制冷. 2001, 74(20):48-51.
    [46]朱冬生,蒋翔.蒸发式冷凝器的研究与应用[J].化学工程.2002,30:129-134.
    [47]尹铭,陈嘉宾,马学虎等.水平管内低压蒸汽的冷凝[J].化工学报. 2003, 54(7):913-917.
    [48]晏刚,马贞俊,周晋等.蒸发式冷凝器的设计与应用[J].制冷与空调. 2003, 3(3):43-45.
    [49]王铁军,吴吴,刘向农.蒸发式冷凝器经济技术分析[J].低温与超导. 2003, 3(2):65-69.
    [50] Jiang Xiang, Zhu Dongsheng, Shen Jialong. Heat Transfer Enhancement in Evaporative Condenser[J]. Proceedings of The 3rd International Symposium on Heat Transfer and Energy Conversation, Guangzhou, 2004:1025-1031.
    [51] M. Feddaoui, H. Meftah, A. Mir. The numerical computation of the evaporative cooling of falling water film in turbulent mixed convection inside a vertical tube[J]. International Communications in Heat and Mass Transfer, 2006, 33:917–927.
    [52] E. Mezaache, M. Daguenet. Effects of inlet conditions on film evaporation along an inclined plate[J]. Solar Energy, 2005, 78:535–542.
    [53] Sabir H, Suen K O, Vinnicombe G A. Investigation of effects of wave motion on the performance of a falling film absorber[J]. Int. J. Heat Mass Transfer, 1996, 38(12):2463-2472.
    [54] Ye X M, Yan W P. Linear temporal and spatial stability formulations of two-dimensionalsurface waves on evaporating, isothermal, or condensing liquid films[J]. Heat Transfer Asian-Research, 2005, 34(4):243-257.
    [55] M. Feddaoui, A. Mir, E. Belahmidi, Concurrent turbulent mixed convection heat and mass transfer in falling film of water inside a vertical heated tube[J], Int. J. Heat Mass Transfer,2003, 46 (18):3497-3509.
    [56] Jer-Huan Jang, Wei-Mon Yan, Thermal protection with liquid film in turbulent mixed convection channel flows[J], Int. J. Heat Mass Transfer, 2006, 49 (19–20):3645–3654.
    [57] Yan,W.M.,Evaporative cooling of liquid film in turbulent mixed convection channel flows[J]. Int.J.Heat Mass Transfer, 1998, 41(23):3719-3729.
    [58] Grossman,G.,Simultaneous heat and mass transfer in film absorption under laminar flow[J]. Int.J.Heat Mass Transfer, 1983, 26(3):357-371.
    [59]陈济东主编,大亚湾核电站系统及运行[M],北京:原子能出版社, 1994.
    [60] W.里西等著,张禄庆,连培生等译.核电厂[M],北京:原子能出版社, 1996.
    [61]胡宗军,吴铭岚.蒸汽冷却及其在先进热力联合循环中的应用[J].燃气轮机技术, 1998, 11(3):27-34.
    [62]于达仁,刘金福,徐基豫.面向21世纪的燃气轮机技术的发展[J].燃气轮机技术, 2001, 14(1):14-21.
    [63] W. Nusselt, Die Oberflaechenkondensateion des Wasserdampfes, VDI Zeitschrift 1916, (60):541-546.
    [64] T. Fujita, T. Ueda. Heat transfer to falling liquid films and film breakdown[J]. Int. J. Heat Mass Transfer, 1978, 21:109-118.
    [65] A. Asblad, T. Bemtsson, Surface evaporation of turbulent falling films[J]. Int. J. Heat Mass Transfer, 1991, 34(3):835-840.
    [66] P.L. Kapitza, 1964 Wave Flow of Thin Layers of a Viscous Fluid layers[J]. Zh.Eksp.Teor.Fiz. 1948, 18(1):3-28.
    [67] H.S. Kheshgi, L.E. Scriven, Disturbed Film Flow on a Vertical Plate[J]. Phys.Fluids, 1987, 30:990.
    [68] D.M. Maron, N.Brauner, A.E Dukler. Interfacial Structure of Thin Falling Films: Piecewise Modeling of the Waves[J]. Physico-Chem. Hydrodynam. 1985 , 6(1):87-90.
    [69] M. Fang, T. Nosoko, T. Nagata. A Numerical Study of the Hydrodynamics of a Falling Liquid Film by the Integral Method[J]. 3rd International Symposium on Multiphase Flow and Heat Transfer, Edited by Chen X., Xi’an Jiaotong University Press,Xi’an,1994, 191-198.
    [70] Arshavski I, Nekhamkin Y, Olek S, et al. Conjugate heat transfer during falling film evaporation [J]. International Communications in Heat and Mass Transfer, 1995,22(2):271-284.
    [71] Moon-Hyun Chun, Seok-Jeong Park, Effects of turbulence model and interfacial shear on heat transfer in turbulent falling liquid films[J], International Communications in Heat and Mass Transfer, 1995, 22(1):1-12.
    [72] S. Jayanti, G.. F. Hewitt. Hydrodynamics and Heat Transfer of Wavy Thin Film Flow[J]. Int. J. Heat Mass Transfer, 1997, 40(1):179-190.
    [73] S. Jayanti, G.. F. Hewitt. Hydrodynamics and Heat Transfer in Wavy Annular Gas-Liquid Flow: Computational Fluid Dynamics Study[J]. Int. J. Heat Mass Transfer, 1997, 40(10):2445-2460.
    [74] Wassenaar R H, Segal G. Numerical results of falling film absorption with water/ammonia[J]. Int. J. ThermSci, 1999, 38:960-964.
    [75]王补宣,张金涛,彭晓峰.壁薄液膜流动稳定性的分析[J].工程热物理学报, 1997, 20 (4):457-461.
    [76] Du X Z, Wang B X, Wu S R, et al. Energy analysis of evaporating thin falling film instability in vertical tube[J]. International Journal of Heat and Mass Transfer, 2002, 45:1889-1893.
    [77]叶学民,阎维平.沿倾斜壁面下降的蒸发/冷凝降膜二维表面波的线性稳定性[J].西安交通大学学报, 2002, 36(1):25-29.
    [78]钱焕群,胡志华,孙贺东等.下降液膜流动模型及稳定性分析[J].热能动力工程, 2003, 18(103):82-85.
    [79]谷芳,规整填料局部流动与传质的计算流体力学研究[D],天津:天津大学,2004.
    [80]陈江波,高压下规整填料塔的计算传递及传质性能[D],天津:天津大学,2006.
    [81] O.A. Kabov, Y. V. Lyulin, I.V. Marchuk, et al. Locally heated shear-driven liquid films in microchannels and minichannels[J]. International Journal of Heat and Fluid Flow, 2007, 28 (1):103-112.
    [82] P. Adomeit, U. Renz. Hydrodynamics of three-dimensional waves in laminar falling films[J]. International Journal of Multiphase Flow, 2000, 26:1183-1208.
    [83] C. A. Decker, T. J. Mackin. Measuring film thickness using infrared imaging[J]. Thin Solid Films, 2005, 473 (2):196-200.
    [84] A. Schagen, M. Modigell, G. Dietze, et al. Simultaneous measurement of local film thickness and temperature distribution in wavy liquid films using a luminescence technique[J]. Int. J. Heat Mass Transfer, 2006, 49(25–26):5049-5061.
    [85] F. Zhang, Z. B. Zhang, J. Geng. Study on shrinkage characteristics of heated falling liquid films[J]. AIChE J.2005, 51(11):2899-2907.
    [86] K. Moran, J. Inumaru, M. Kawaji. Instantaneous hydrodynamics of a laminar wavy liquidfilm[J]. International Journal of Multiphase Flow, 2002, 28(5):731-755.
    [87] Ganchev B.G., Koglov V.M., Lozovetskiy V.V., A study of heat transfer to a falling fluid film at a vertical surface[J]. Heat Transfer-Soviet Research, 1972, 4:102-110.
    [88] Norman W.S., Mcintyre V.. Heat transfer to a liquid film on a vertical surface[J]. Trans. Instn.Chem.Engrs.1960, 38:301-307.
    [89] Wilke,W., W?rmeübergang an Rieselfilme,VDI Forschungsh, 1962, No.490,Düsseldorf.
    [90]蒋章焰,马同泽,赵嘉琪等.垂直管外降落液膜的流动和传热特性[J].工程热物理学报,1988, 1:70-74.
    [91]蒋章焰,宋金田,孔旭静等.垂直加热管外自由降膜流的破断特性[J].工程热物理学报,1995, 16(2):199-203.
    [92]蒋章焰,陶正文,阎维平.垂直自由降膜流表面波的非线性演化[J].工程热物理学报,1999, 26(1):13-17.
    [93] Adomeit P, Renz U. Hydrodynamics of three - dimensional waves in laminar falling films[J]. International Journal of Multiphase Flow, 2000, 26:118-208.
    [94] Karimi G, Kawaji M. Flow characteristics and circula2tory motion in wavy falling films with and without counter-current gas flow[J]. International Journal of Multiphase Flow, 1999, 25:1305-1319.
    [95] Zhanga J. T, Penga X. F, Peterson G. P. Experimental investigation on the hydrodynamics of falling liquid film flow by nonlinear description procedure[J]. International Journal of Heat and Mass Transfer, 2000, 43:3847-3852.
    [96] Bukin V G, Danilova G N, Dyundin V A. Heat Transfer from freons in a film flowing over bundles of horizontal tubes that carry a porous coating[J]. Heat Transfer-Soviet Research, 1982, 14 (2):98-103.
    [97] Panchal C B, France D M, et al. Experimental investigation of single phase, condensation, and flow boiling heat transfer for a spirally fluted tube[J]. Heat Transfer Engineering, 1992, 13(1):42-52.
    [98] L. ZHao & R. L. CERRO. Experimental characterization of viscous film flows over complex surfaces[J]. International Journal of Multiphase Flow, 1992, 18(4):495-516.
    [99] G. S. ZHENG, W. M. WOREK. Method of heat and mass transfer enhancement in film evaporation[J]. International Journal of Heat and Mass Transfer, 1997, 39(1):97-108.
    [100]刘晓华,李淞平,沈自求等.螺旋线圈强化管内单相流体传热的研究[J].石油化工高等学校学报,2001, 14(3):57-73.
    [101]乔梁,刘东亮,史晓平等.管内插螺旋线的降膜蒸发传热性能研究[J].河北工业大学学报,2003, 32(4):30-34.
    [102]魏峰.带螺旋线的管内降膜蒸发器传热性能研究[D].天津:河北工业大学. 2005.
    [103]腊栋.带扩展面的竖壁降膜蒸发机理研究[D].上海:同济大学. 2007.
    [104]江琴,季赐明.直流冷却在广州地铁集中供冷系统中的应用[J].给水排水,2005, 31(7):71-72.
    [105] M. Feddaoui, H. Meftah, A. Mir. The numerical computation of the evaporative cooling of falling water film in turbulent mixed convection inside a vertical tube[J]. International Communications in Heat and Mass Transfer, 2006, 33:917–927.
    [106] E. Mezaache, M. Daguenet. Effects of inlet conditions on film evaporation along an inclined plate[J]. Solar Energy, 2005, 78:535–542.
    [107] Sabir H, Suen K O, Vinnicombe G A. Investigation of effects of wave motion on the performance of a falling film absorber[J]. Int. J. Heat Mass Transfer, 1996, 38(12):2463-2472.
    [108] Ye X M, Yan W P. Linear temporal and spatial stability formulations of two-dimensional surface waves on evaporating, isothermal, or condensing liquid films[J]. Heat Transfer Asian-Research, 2005, 34(4):243-257.
    [109] M. Feddaoui, A. Mir, E. Belahmidi, Concurrent turbulent mixed convection heat and mass transfer in falling film of water inside a vertical heated tube[J], Int. J. Heat Mass Transfer,2003, 46 (18):3497-3509.
    [110] Jer-Huan Jang, Wei-Mon Yan, Thermal protection with liquid film in turbulent mixed convection channel flows[J], Int. J. Heat Mass Transfer, 2006, 49 (19–20):3645–3654.
    [111]叶学民,阎维平.蒸发或冷凝薄液膜的空间稳定性分析[J].中国电机工程学报, 2002 , 22 (12):26-31.
    [112]戴干策,陈敏恒,化工流体力学,化学工业出版社,2005。
    [113] Chun, K. R., and Seban, R. A., Heat Transfer to Evaporating Liquid Film[J]. J. Heat Transfer 1971, 93(3):391-396.
    [114]叶学民,阎维平.切应力作用下层流饱和蒸发降膜的传热特性[J].中国电机工程学报,2007,27(11):68-72.
    [115] Kutateladze,S.S. On the use of the similarity theory in the process of condensation of saturated vapor[J]. J.Tech.Phys.19377:282-293.
    [116]叶学民,阎维平等.自由降膜表面波流动和传热特性的研究[J].华北电力大学学报,1999, 26 (1):7-12.
    [117] W. Nusselt, Die Oberflaechenkondensateion des Wasserdampfes, VDI Zeitschrift 1916, (60):541–546.
    [118] Ueda, H., M611er, R., Komori, S., and Mizushima, T., Eddy Diffusivity Near the Free Surface of Open Channel Flow, Int. J. Heat Mass Transfer, Vol.20, pp.1127-1136 (1977).
    [119] Van Driest, E.R., On Turbulent Flow Near a Wall, J. Aerosp. Sci.,Vol.23, pp.1007-1011 (1956).
    [120] Rohsenow, W.M., Webber, J.H., and Ling, A.T. Effect of Vapor Velocity on Laminar and Turbulent-Film Condensation[J], Trans. ASME, 1956, 78:1637-1643.
    [121] A. E. Dukler, Fluid Mechanics and Heat Transfer in Vertical Falling Film Systems[J], Chern. Eng. Prog. Symp. Ser., 1960, 56.
    [122] Hubbard, G.L., Mills, A.F., and Chung, D.K., Heat Transfer Across a Turbulent Falling Film with Concurrent Vapor Flow[J], J. Heat Transfer, 1976, 98:319-320.
    [123] Yih, S.M. and Liu, J.L., Prediction of Heat Transfer in Turbulent Falling Liquid Films with or without Interfacial Shear[J], AIChE Joumal, 1983, 29(6):903-909.
    [124] Mudawwar, I.A. and E1-Masri, M.A., Momentum and Heat Transfer Across Freely-Falling Turbulent Liquid Films[J], Int. J. Muldphase Flow, 1986, 12(5):771-790.
    [125] Moon-Hyun Chun, Seok-Jeong Park, Effects of turbulence model and interfacial shear on heat transfer in turbulent falling liquid films[J], International Communications in Heat and Mass Transfer, 1995, 22(1):1-12.
    [126]郭良宽等著,计算传热学[M],合肥:中国科学技术大学出版社,1988.
    [127] Mathews, J.H.等著,周璐等译.数值方法[M],北京:电子工业出版社,2005.
    [128] Blangetti, F. and Schlfinder, E. U., Local Heat Transfer Coefficients on condensation in a Vertical Tube[J], Proc. 6th Int. Heat Transfer Conf., 1978, (2): 437-442.
    [129] M. Feddaoui, H. Meftah, A. Mir. The numerical computation of the evaporative cooling of falling water film in turbulent mixed convection inside a vertical tube[J]. International Communications in Heat and Mass Transfer, 2006, 33:917–927.
    [130] E. Mezaache, M. Daguenet. Effects of inlet conditions on film evaporation along an inclined plate[J]. Solar Energy, 2005, 78:535–542.
    [131] Sabir H, Suen K O, Vinnicombe G A. Investigation of effects of wave motion on the performance of a falling film absorber[J]. Int. J. Heat Mass Transfer, 1996, 38(12):2463-2472.
    [132] Ye X M, Yan W P. Linear temporal and spatial stability formulations of two-dimensional surface waves on evaporating, isothermal, or condensing liquid films[J]. Heat Transfer Asian-Research, 2005, 34(4):243-257.
    [133] M. Feddaoui, A. Mir, E. Belahmidi, Concurrent turbulent mixed convection heat and mass transfer in falling film of water inside a vertical heated tube[J], Int. J. Heat Mass Transfer,2003, 46 (18):3497-3509.
    [134] Jer-Huan Jang, Wei-Mon Yan, Thermal protection with liquid film in turbulent mixed convection channel flows[J], Int. J. Heat Mass Transfer, 2006, 49 (19–20):3645–3654.
    [135]叶学民,阎维平.蒸发或冷凝薄液膜的空间稳定性分析[J].中国电机工程学报, 2002 , 22 (12):26-31.
    [136] Winkler C M,Chen T S. Mixed convection film condensation from isothermal vertical surfaces-the entire regime[J]. Int. J. Heat Mass Transfer, 2000, 43(17):3245-3251.
    [137] Mosaad M. Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface [J].Int. J. Heat Mass Transfer, 1999, 42(21):4017-4025.
    [138] Mitrovic J, Effects of vapor superheat and condensate subcooling on laminar film condensation[J]. Trans. ASME, J. Heat Transfer, 2000, 122(1):192-196.
    [139]郭常青,朱冬生,蒋翔等.板式蒸发式冷凝器传热传质的数值模拟[J],华南理工大学学报(自然科学版),2009, 37(3):53-57.
    [140] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics.1981, 39:201-206.
    [141]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001.
    [142] Choudhury D. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107, 1993.
    [143] J U Brackbill, D B Kothe, C Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(1992) 335–354.
    [144] Knudsen, M. The kinetic theory of gases. Some modern aspects. London: Methuen and Co., Ltd. 1934.
    [145] Lide, D. R. CRC handbook of chemistry and physics. Boston: CRC Press. 1998.
    [146] Crowe C., Sommerfeld M., Tsuji, Y. Multiphase flows with droplets and particles. CRC Press. 1998.
    [147] Marek, R., & Straub, J. Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water. International Journal of Heat and Mass Transfer, 2001: 44, 39.
    [148] K. Nabavian, L. A. Bromley. Condensation coefficient of water[J]. Chemical Engineering Science. 1963, 18(10):651-660.
    [149] Z. Yang, X.F. Peng, P. Ye. Numerical and experimental investigation of two phase flowduring boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer. 2008, 51:1003-1016.
    [150] Kader B. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers[J]. Int. J. Heat Mass Transfer, 1993, 24(9): 1541-1544.
    [151]王福军,计算流体动力学分析[M],北京,清华大学出版社,2004.
    [152] Tsay Y L, Lin T F. Evaporation of a heated falling liquid film into a laminar gas stream[J]. Experimental Thermal and Fluid Science, 1995, 11:61-71.
    [153] Elioni M A, Nicolaiewsky, James R. Fair. Liquid flow over textured surfaces. 1 Contact angles[J]. Ind. Eng. Chem. Res., 1999, 39:284-291.
    [154] Chun, K. R., and Seban, R. A., Heat Transfer to Evaporating Liquid Film[J]. J. Heat Transfer 1971, 93(3):391-396.
    [155]叶学民,壁面薄膜流的热质传递和稳定性研究[D],华北电力大学,保定:华北电力大学博士学位论文,2002.
    [156] W. Nusselt, Die Oberflaechenkondensateion des Wasserdampfes, VDI Zeitschrift 1916, (60):541-546.
    [157]谷芳,规整填料局部流动与传质的计算流体力学研究[D],天津大学,2004.
    [158]腊栋.带扩展面的竖壁降膜蒸发机理研究[D],同济大学,2007.
    [159]田胜元,萧日嵘.实验设计与数据处理.中国建筑工业出版社, 2000.
    [160]叶学民,阎维平等.自由降膜表面波流动和传热特性的研究[J].华北电力大学学报,1999, 26 (1):7-12.
    [161] A.J. Chapman著.传热学.北京:冶金工业出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700