RIP2基因单核苷酸多态性及血清水平与系统性红斑狼疮的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种全身性的自身免疫性疾病,其特征主要表现为多种自身抗体形成,免疫复合物沉积和补体活化,造成多系统和多器官损害。SLE的发病机制至今尚不明确,一般认为其受遗传易感性、环境因素、性激素紊乱和免疫异常等多个方面影响。
     天然免疫和获得性免疫系统紊乱在SLE的免疫发病机制中起着重要作用。SLE的免疫异常与多条免疫信号通路(NF-κB信号通路、Toll-like受体信号通路、JAK∕STAT信号通路、MAPK信号通路、PI3-AKT信号通路及Th17信号通路等)紊乱密切相关,各条通路之间可能相互作用、异常调节从而导致机体免疫调节紊乱。
     本课题组前期采用病例对照研究的方法,利用Real-time PCR芯片技术筛选Toll-like受体信号通路上SLE的差异表达基因,结果发现受体相互作用蛋白2(receptor interacting protein2,RIP2)在SLE患者外周血白细胞中的mRNA表达上调,提示RIP2可能参与了SLE的发病。
     RIP2,也称为RIPK2、RICK或CARDAK,是信号转导途径中关键的丝氨酸∕苏氨酸激酶,能参与Toll-like受体和NOD样受体等介导的天然免疫和获得性免疫应答,诱导产生炎症细胞因子。已有研究表明RIP2可能参与了炎症性肠病、多发性硬化症等自身免疫性疾病的发病,但是迄今为止国内外尚无关于RIP2与SLE关联性研究的相关报道。
     基于上述内容,本课题拟采用病例对照研究,利用TaqMan探针技术、ELISA方法,检测SLE患者及正常对照者RIP2基因单核苷酸多态性及血清水平,探讨其与SLE发病之间的关联性。本课题的完成将有助于阐明RIP2在SLE发病中的作用,进一步揭示SLE的发病机制,并为寻找新的SLE治疗靶点提供科学依据。
     目的
     比较SLE患者和正常对照者RIP2基因的2个SNP位点(rs16900617、rs16900627)的等位基因和基因型频率的差异,探讨RIP2基因单核苷酸多态性与系统性红斑狼疮的关联性。
     方法
     病例来自安徽省立医院和安徽医科大学第一附属医院风湿免疫科的SLE患者(均符合1997年美国风湿病学会修订的SLE分类诊断标准),共590例。对照来自健康志愿者,共660例。采用自行设计的问卷,调查并记录研究对象的一般情况和临床资料,在获得知情同意后,采集SLE患者及正常对照者的外周静脉血。应用TaqMan探针及ABI7300PCR仪检测SLE患者和正常对照者RIP2基因的等位基因和基因型频率。
     采用SPSS10.01软件进行统计分析,χ~2检验或确切概率法用于比较两组间等位基因频率、基因型频率的分布差异,Stata7.0软件用于分析哈迪-温伯格平衡,应用SHEsis软件进行单倍型分析。检验水准α=0.05。
     结果
     (1)rs16900617位点多态性与SLE的关联性研究SLE患者组AA、AG、GG的基因型频率分别为86.4%、13.4%和0.2%,对照组为77.9%、20.3%和1.8%;SLE患者组A和G等位基因频率为93.1%和6.9%,对照组则为88.0%和12.0%。两组基因型频率的分布差异有统计学意义(AG vs.AA:OR=0.59,95%CI0.44-0.81,P=0.001;GG vs. AA:OR=0.08,95%CI0.01-0.65,P=0.006;AG+GG vs. AA:OR=0.55,95%CI0.41-0.75,P <0.001),等位基因频率的分布差异也具有统计学意义(G vs.A:OR=0.54,95%CI0.41-0.72,P <0.001)。
     狼疮肾炎(lupus nephritis,LN)患者的基因型分布状况为:A和G等位基因频率为94.0%和6.0%;AA、AG、GG的基因型频率分别为88.0%、12.0%和0%。非LN患者组中:A和G等位基因频率为93.2%和6.8%;AA、AG、GG的基因型频率分别为86.6%、13.2%和0.2%。两组的基因型频率的分布差异无统计学意义
     (AG vs.AA:OR=0.90,95%CI0.52-1.55,P=0.698;GG vs.AA:OR=1.003,95%CI0.997-1.008,P=1.000;AG+GG vs. AA:OR=0.88,95%CI0.51-1.52,P=0.651),等位基因频率的分布差异也没有统计学意义(G vs. A:OR=0.87,95%CI0.52-1.48,P=0.612)。
     (2)rs16900627位点多态性与SLE的关联性研究SLE患者的基因型分布状况为:A和G等位基因频率为80.7%和19.3%;AA、AG、GG的基因型频率分别为64.6%、32.2%和3.2%。对照组中:A和G等位基因频率为84.2%和15.8%;AA、AG、GG的基因型频率分别为72.3%、23.9%和3.8%。两组的基因型频率分布差异有统计学意义(AG vs.AA:OR=1.51,95%CI1.17-1.93,P=0.001;AG+GG vs.AA:OR=1.43,95%CI1.13-1.82,P=0.003),等位基因频率的分布差异也有统计学意义(G vs.A:OR=1.28,95%CI1.04-1.58,P=0.019)。
     LN患者的基因型分布状况为:A和G等位基因频率为77.1%和22.9%;AA、AG、GG的基因型频率分别为58.4%、37.3%和4.2%。非LN患者组中:A和G等位基因频率为82.2%和17.8%;AA、AG、GG的基因型频率分别为67.5%、29.5%和3.1%。两组等位基因的频率分布差异有统计学意义(G vs.A:OR=1.37,95%CI1.00-1.87,P=0.046),基因型频率分布差异也具有统计学意义(AG+GG vs. AA:OR=1.47,95%CI1.02-2.13,P=0.039)。
     (3)RIP2基因rs16900617和rs16900627位点的单倍型分析将RIP2基因的2个SNP位点rs16900617和rs16900627构建单倍型,单倍型AG和GA在SLE患者组和正常对照组中的分布差异具有统计学意义(OR=1.37,95%CI1.11-1.70,P=0.003;OR=0.60,95%CI0.45-0.79,P=0.0003)。
     (4)RIP2基因SNP位点与SLE临床特征的关系RIP2基因的2个SNP位点rs16900617、rs16900627的等位基因、基因型与SLE患者主要临床特征,如关节炎、颧部红斑、口腔溃疡等之间不存在统计学关联(P均>0.05)。
     结论
     RIP2基因的rs16900617和rs16900627位点及其单倍型在SLE患者和正常对照者中的分布差异有统计学意义,提示RIP2基因多态性可能与中国汉族人群SLE遗传易感性有关。
     目的
     比较SLE患者和正常对照者,狼疮肾炎患者和非狼疮肾炎患者,疾病活动期患者和非疾病活动期患者之间血清RIP2表达水平差异,分析血清RIP2水平与SLE患者实验室检测指标、临床特征之间的关联性,探讨其在SLE发生发展中的作用。
     方法
     病例来自安徽省立医院和安徽医科大学第一附属医院风湿免疫科的门诊及住院患者,共80例,SLE的诊断依据1997年美国风湿病学会修订的SLE分类标准。对照来自健康志愿者,共76例,与病例按照年龄、性别匹配。问卷调查收集研究对象的一般情况和临床资料,并进行SLE疾病活动指数(systemic lupuserythematosus disease activity index,SLEDAI)评分。获得研究对象知情同意后,抽取外周静脉血。采用ELISA试剂盒检测血清RIP2水平,比较SLE患者和正常对照者,狼疮肾炎患者和非狼疮肾炎患者,疾病活动期患者和非疾病活动期患者之间血清RIP2表达水平差异。采用SPSS10.01软件进行统计分析,检验水准α=0.05。
     结果
     (1)不同组别间血清RIP2水平的比较SLE患者组与正常对照组的血清RIP2浓度分别为:2.725(1.901,3.876)ng/mL、2.627(1.906,3.309)ng/mL,差异无统计学意义(Z=-1.009,P=0.313);SLE合并肾炎组与未合并肾炎组的血清RIP2浓度分别为:2.684(1.906,3.529)ng/mL、2.970(1.897,4.258)ng/mL,差异无统计学意义(Z=-1.353,P=0.176);活动期与非活动期SLE患者血清RIP2浓度分别为:2.813(2.038,3.876)ng/mL、2.022(1.491,3.825)ng/mL,差异无统计学意义(Z=-1.550,P=0.121)。
     (2)血清RIP2水平与SLE疾病活动指数的关系SLE患者血清RIP2浓度与SLE疾病活动指数无相关性(r=0.094,P=0.409)。
     (3)血清RIP2水平与临床特征和实验室检测指标的关联SLE患者血清RIP2水平与患者的视神经受损存在显著关联,视神经受损的患者血清RIP2水平降低(Z=-2.096,P=0.023);SLE患者血清RIP2水平与抗RNP抗体、血沉、C反应蛋白存在显著关联,在抗RNP抗体阳性、血沉升高、C反应蛋白升高的SLE患者中血清RIP2水平显著升高(Z=-2.469,P=0.014;Z=-2.218,P=0.027;Z=-1.967,P=0.049)。
     结论
     本研究未发现SLE患者组与正常对照组、狼疮肾炎组与非狼疮肾炎组、疾病活动组与非疾病活动组之间的血清RIP2水平表达差异,但是血清RIP2水平与SLE患者的部分临床特征、实验室检测指标之间存在关联。
Background Systemic lupus erythematosus (SLE) is a systemic autoimmune disease,it is characterized by a diverse array of autoantibody production, immune complexesdeposition and complement activation, resulting in multiple system and organinvolvement. The etiology of SLE remains unclear, genetic susceptibility, environmentalfactors, sexual hormone disorder and immune dysfunction are thought to contribute todisease development.
     Dysfunction of innate immunity and adaptive immunity plays an importment rolein the immune pathogenesis. Multiple immune signaling pathways have been reportedto participate in the immune pathogenesis of SLE, including NF-κB signaling pathway,Toll-like receptor signaling pathway, JAK/STAT signaling pathway, MAPK signalingpathway, PI3-AKT signaling pathway, Th17signaling pathway and so on. Thesesignaling pathways interaction might regulate abnormally, resulting in the immunedysregulation.
     Our previous study has found that the level of RIP2mRNA in SLE patients wassignificantly elevated compared to the healthy controls using case-control design andReal-time PCR assay to detect differentially expressed genes in Toll-like receptorsignaling pathway. This result indicated that RIP2might take part in the progress ofSLE.
     RIP2, also known as RIPK2, RICK, CARDAK, is a key serine/threonine kinase insignal transduction pathway. RIP2mediates innate and adaptive immune responsesinduced through multiple receptors, such as Toll-like receptor and NOD-like receptorand so on, resulting in the production of inflammatory cytokines. Several studies have identified that RIP2might be associated with autoimmune diseases, such as Crohn’sdisease, multiple sclerosis. However, so far no study has reported the association ofRIP2and SLE at home and abroad.
     Thus, on the basis of the content above, our study adopted case-control design todetect association of RIP2gene polymorphisms, serum RIP2level and SLE by theTaqMan SNP Genotyping Assay kit and ELISA. The accomplishment of this studywould help to further reveal the role of RIP2in the pathogenesis of SLE and developnew potential therapeutic targets.
     Objective To compare the differences of allele and genotype frequencies about twoSNPs (rs16900617, rs16900627) of RIP2between SLE patients and normal controls,and to explore the association of RIP2polymorphisms with susceptibility to SLE.
     Methods590SLE patients were recruited from Department of Rheumatology andImmunology of Anhui Provincial Hospital and the First Affiliated Hospital of AnhuiMedical University. All SLE patients fulfilled the1997revised American College ofRheumatology classification criteria.660normal controls were recruited from healthyvolunteers. The demographic and clinical data were collected by self-designedquestionnaire. After obtaining the informed consent, blood samples from all studiedsubjects were collected. The genotypes of the rs16900617and rs16900627SNPs weredetermined by the TaqMan SNP Genotyping Assay kit using an ABI7300Real-Timepolymerase chain reaction (PCR) system.
     SPSS10.01software was used for statistical analysis. The chi-square test orFisher’s exact test was applied to compare the distribution of allele and genotype frequencies between SLE patients and normal controls. Stata7.0software was used toHardy-Weinberg equilibrium test. Haplotype analysis was assessed using SHEsissoftware. P values were calculated based on two-sided tests, with a statisticalsignificance defined as P value <0.05.
     Results
     (1) Association of rs16900617and SLE The genotype frequencies of AA, AG, GGwere86.4%,13.4%,0.2%in SLE patients and77.9%,20.3%,1.8%in controls. Theallele frequencies of A, G were93.1%,6.9%in SLE patients and88.0%,12.0%incontrols. There were significant differences between SLE patients and controls aboutgenotype (AG vs. AA: OR=0.59,95%CI0.44-0.81, P=0.001; GG vs. AA: OR=0.08,95%CI0.01-0.65, P=0.006; AG+GG vs. AA: OR=0.55,95%CI0.41-0.75, P <0.001) and allele frequencies (G vs. A: OR=0.54,95%CI0.41-0.72, P <0.001).
     The allele frequencies of A, G were94.0%,6.0%and the genotype frequencies ofAA, AG, GG were88.0%,12.0%,0%in lupus nephritis (LN) patients. They were93.2%,6.8%,86.6%,13.2%,0.2%respectively in non-LN patients. There were nosignificant differences between LN patients and non-LN patients about genotype (AGvs. AA: OR=0.90,95%CI0.52-1.55, P=0.698; GG vs. AA: OR=1.003,95%CI0.997-1.008, P=1.000; AG+GG vs. AA: OR=0.88,95%CI0.51-1.52, P=0.651) andallele frequencies (G vs. A: OR=0.87,95%CI0.52-1.48, P=0.612).
     (2) Association of rs16900627and SLE The allele frequencies of A, G were80.7%,19.3%and the genotype frequencies of AA, AG, GG were64.6%,32.2%,3.2%in SLEpatients. They were84.2%,15.8%,72.3%,23.9%,3.8%respectively in controls. Therewere significant differences between SLE patients and controls about genotype (AG vs.AA: OR=1.51,95%CI1.17-1.93, P=0.001; AG+GG vs. AA: OR=1.43,95%CI1.13-1.82, P=0.003) and allele frequencies (G vs. A: OR=1.28,95%CI1.04-1.58, P =0.019).
     The allele frequencies of A, G were77.1%,22.9%and the genotype frequenciesof AA, AG, GG were58.4%,37.3%,4.2%in LN patients. They were82.2%,17.8%,67.5%,29.5%,3.1%respectively in non-LN patients. There were significant differencesabout allele (G vs. A: OR=1.37,95%CI1.00-1.87, P=0.046) and genotypefrequencies (AG+GG vs. AA: OR=1.47,95%CI1.02-2.13, P=0.039) between LNpatients and non-LN patients.
     (3) Haplotype analysis Haplotypes were constructed with the two variants(rs16900617, rs16900627) and the frequencies of haplotypes were analyzed. The resultsrevealed that two haplotypes, AG and GA, were significantly associated with SLE (OR=1.37,95%CI1.11-1.70, P=0.003; OR=0.60,95%CI0.45-0.79, P=0.0003).
     (4) Association of RIP2gene polymprphisms and clinical features of SLE patients Nosignificant association was detected between the distribution of allele and genotypefrequencies of RIP2gene polymorphisms and clinical manifestation, such as arthritis,malar rash, oral ulcer and so on (P>0.05).
     Conclusion There are significant differences between SLE patients and normalcontrols regarding the SNPs of rs16900617, rs16900627and haplotypes constructedwith the two variants. The RIP2gene polymorphisms may be associated withsusceptibility to SLE in the Chinese population.
     Objective To compare the serum RIP2levels between patients with SLE and normalcontrols, patients with and without nephritis, active and inactive SLE patients. Toanalyze the association of serum RIP2level with laboratory results and clinical profiles.Additionally, to explore the role of RIP2in the occurrence and development of SLE.
     Methods80SLE patients were in-and out-patients recruited from Department ofRheumatology and Immunology of Anhui Provincial Hospital and the First AffiliatedHospital of Anhui Medical University. Diagnosis of SLE was established according tothe1997revised criteria of American College Rheumatology.76normal controls wererecruited from healthy volunteers. Patients and controls were age-, sex-matched. Thedemographic and clinical data were collected by questionnaire. Disease activity wasevaluated using the SLE Disease Activity Index (SLEDAI) score. After obtaining theinformed consent, blood samples from all studied subjects were collected. Serum RIP2levels were detected by Enzyme-linked Immunosorbent Assay (ELISA). The data wereanalyzed by SPSS10.01software. All P values were calculated based on two-sided tests,with a statistical significance defined as P value <0.05.
     Results
     (1) Comparisons of serum RIP2level between different groups There were nosignificant differences of serum RIP2level between patients with SLE and normalcontrols (2.725(1.901,3.876) ng/mL vs.2.627(1.906,3.309) ng/mL, Z=-1.009, P=0.313), patients with and without nephritis (2.684(1.906,3.529) ng/mL vs.2.970(1.897,4.258) ng/mL, Z=-1.353, P=0.176), active and inactive SLE patients (2.813(2.038,3.876) ng/mL vs.2.022(1.491,3.825) ng/mL, Z=-1.550, P=0.121).
     (2) Correlations between serum RIP2level and SLEDAI Correlation analysis betweenserum RIP2level and SLEDAI showed no significant association (r=0.094, P=0.409).
     (3) Association of serum RIP2level and clinical, laboratory data of SLE patientsSignificant association was found between serum RIP2level and optic nerve injury (Z=-2.096, P=0.023). As for laboratory features, serum RIP2level was significantlyassociated with anti-RNP antibodies (Z=-2.469, P=0.014), ESR (Z=-2.218, P=0.027) and CRP (Z=-1.967, P=0.049).
     Conclusion In conclusion, this study showed no significant differences of serum RIP2level between patients with SLE and normal controls, patients with and withoutnephritis, active and inactive SLE patients. However, we detected significant associationof serum RIP2level with part of clinical and laboratory features.
引文
[1]叶冬青.红斑狼疮.北京:人民卫生出版社,2006.
    [2] Bertsias GK, Salmon JE, Boumpas DT. Therapeutic opportunities in systemic lupuserythematosus: state of the art and prospects for the new decade. Ann Rheum Dis.2010;69(9):1603-1611.
    [3] Smyth A, Garovic VD. Systemic lupus erythematosus and pregnancy. Minerva UrolNefrol.2009;61(4):457-474.
    [4] Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, WalkerA, Mack TM. A revised estimate of twin concordance in systemic lupus erythemato-sus. Arthritis Rheum.1992;35(3):311-318.
    [5] Arnett FC, Shulman LE. Studies in familial systemic lupus erythematosus. Medicine(Baltimore).1976;55(4):313-322.
    [6]王茜,潘海峰,李文先,叶冬青. IgG型抗dsDNA抗体及其亚型与狼疮肾炎临床和病理关系探讨.中华疾病控制杂志.2008;12(5):420-424.
    [7] Ortega LM, Schultz DR, Lenz O, Pardo V, Contreras GN. Review: Lupus nephritis:pathologic features, epidemiology and a guide to therapeutic decisions. Lupus.2010;19(5):557-574.
    [8]李若洁,叶冬青.系统性红斑狼疮的全基因组关联研究进展.中华疾病控制杂志.2011;15(7):614-618.
    [9] Rhodes B, Vyse TJ. The genetics of SLE: an update in the light of genome-wideassociation studies. Rheumatology (Oxford).2008;47(11):1603-1611.
    [10] Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, MarthG, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, CoggillPC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT,Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH,McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, DalyMJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, LanderES, Altshuler D; International SNP Map Working Group. A map of humangenome sequence variation containing142million single nucleotidepolymorphisms. Nature.2001;409(6822):928-933.
    [11] Twyman RM, Primrose SB. Techniques patents for SNP genotyping. Pharmacog-enomics.2003;4(1):67-79.
    [12]马文丽.医学分子生物学.北京:高等教育出版社,2008:252.
    [13] Shen GQ, Abdullah KG, Wang QK. The TaqMan method for SNP genotyping.Methods Mol Biol.2009;578:293-306.
    [14] Enzler T, Bonizzi G, Silverman GJ, Otero DC, Widhopf GF, Anzelon-Mills A,Rickert RC, Karin M. Alternative and classical NF-kappa B signaling retainautoreactive B cells in the splenic marginal zone and result in lupus-like disease.Immunity.2006;25(3):403-415.
    [15] Huang Q, Pope RM. Toll-like receptor signaling: a potential link among rheumato-id arthritis, systemic lupus, and atherosclerosis. J Leukoc Biol.2010;88(2):253-262.
    [16]袁慧,叶冬青. JAK/STAT信号通路与系统性红斑狼疮.中华疾病控制杂志.2010;14(8):787-790.
    [17] Iwata Y, Wada T, Furuichi K, Sakai N, Matsushima K, Yokoyama H, Kobayashi K.p38Mitogen-activated protein kinase contributes to autoimmune renal injury inMRL-Fas lpr mice. J Am Soc Nephrol.2003;14(1):57-67.
    [18]梁柳琴,詹钟平,许韩师,杨岫岩,叶玉津,连帆,邱茜.系统性红斑狼疮患者外周血T细胞磷酸肌醇3激酶信号通路异常活化.中华医学杂志.2008;88(29):2036-2040.
    [19] Pan HF, Ye DQ, Li XP. Type17T-helper cells might be a promising therapeutictarget for systemic lupus erythematosus. Nat Clin Pract Rheumatol.2008;4(7):352-353.
    [20]张宁. Toll样受体信号通路相关基因与系统性红斑狼疮发病的相关性研究.合肥:安徽医科大学,2011.
    [21] Chin AI, Dempsey PW, Cheng G. Rip2: A key molecule that regulates both innateand acquired immunity. Curr Med Chem.2005;4:35-42.
    [22] McCarthy JV, Ni J, Dixit VM. RIP2is a novel NF-kappaB-activating and celldeath-inducing kinase. J Biol Chem.1998;273(27):16968-16975.
    [23] Inohara N, del Peso L, Koseki T, Chen S, Nú ez G. RICK, a novel protein kinasecontaining a caspase recruitment domain, interacts with CLARP and regulatesCD95-mediated apoptosis. J Biol Chem.1998;273(20):12296-12300.
    [24] Thome M, Hofmann K, Burns K, Martinon F, Bodmer JL, Mattmann C, TschoppJ. Identification of CARDIAK,a RIP-like kinase that associates with caspase-1.Curr Biol.1998;8(15):885-888.
    [25] Magalhaes JG, Lee J, Geddes K, Rubino S, Philpott DJ, Girardin SE. Essential roleof Rip2in the modulation of innate and adaptive immunity triggered by Nod1andNod2ligands. Eur J Immunol.2011;41(5):1445-1455.
    [26] Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement ofreceptor-interacting protein2in innate and adaptive immune responses. Nature.2002;416(6877):190-194.
    [27] Kobayashi K, Inohara N, Hernandez LD, Galán JE, Nú ez G, Janeway CA,Medzhitov R, Flavell RA. RICK/Rip2/CARDIAK mediates signalling forreceptors of the innate and adaptive immune systems. Nature.2002;416(6877):194-199.
    [28] Abbott DW, Wilkins A, Asara JM, Cantley LC. The Crohn's disease protein,NOD2, requires RIP2in order to induce ubiquitinylation of a novel site on NEMO.Curr Biol.2004;14(24):2217-2227.
    [29] Negroni A, Stronati L, Pierdomenico M, Tirindelli D, Di Nardo G, Mancini V,Maiella G, Cucchiara S. Activation of NOD2-mediated intestinal pathway in apediatric population with Crohn's disease. Inflamm Bowel Dis.2009;15(8):1145-1154.
    [30] Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCHK63-ubiquitinates the NOD2binding protein, RIP2, to influence inflammatorysignaling pathways. Curr Biol.2009;19(15):1255-1263.
    [31] Thiébaut R, Douchin V, Jung C, Merlin F, Colombel JF, Lemann M, Almer S,Tysk C, O'Morain C, Gassull M, Finkel Y, Zouali H, Pascoe L, Hugot JP. RIP2polymorphisms in inflammatory bowel diseases. Inflamm Bowel Dis.2011;17(4):1055.
    [32] Shaw PJ, Barr MJ, Lukens JR, McGargill MA, Chi H, Mak TW, Kanneganti TD.Signaling via the RIP2adaptor protein in central nervous system-infiltratingdendritic cells promotes inflammation and autoimmunity. Immunity.2011;34(1):75-84.
    [33] Nakashima K, Hirota T, Suzuki Y, Akahoshi M, Shimizu M, Jodo A, Doi S, FujitaK, Ebisawa M, Yoshihara S, Enomoto T, Shirakawa T, Kishi F, Nakamura Y,Tamari M. Association of the RIP2gene with childhood atopic asthma. AllergolInt.2006;55(1):77-83.
    [34] Hochberg MC. Updating the American College of Rheumatology revised criteriafor the classification of systemic lupus erythematosus. Arthritis Rheum.1997;40(9):1725.
    [35] Shi YY, He L. SHEsis, a powerful software platform for analyses of linkagedisequilibrium, haplotype construction, and genetic association at polymorphismloci. Cell Res.2005;15(2):97-98.
    [36] Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, Body-Malapel M,Inohara N, Nú ez G. RICK/RIP2mediates innate immune responses inducedthrough Nod1and Nod2but not TLRs. J Immunol.2007;178(4):2380-2386.
    [37] Yang Y, Yin C, Pandey A, Abbott D, Sassetti C, Kelliher MA. NOD2pathwayactivation by MDP or Mycobacterium tuberculosis infection involves the stablepolyubiquitination of Rip2. J Biol Chem.2007;282(50):36223-36229.
    [38] Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Nú ez G. The cytosolicsensors Nod1and Nod2are critical for bacterial recognition and hostdefense afterexposure to Toll-like receptor ligands. Immunity.2008;28(2):246-257.
    [39]陈凌.系统性红斑狼疮的遗传易感相关基因的研究.福建医科大学.福建:福州.2008.
    [40] Rhodes B, Vyse TJ. The genetics of SLE:an update in the light of genome-wideassociation studies.Rheumatology(Oxford).2008;7(11):1603-1611.
    [41] Graham RR, Hom G, Ortmann W, Behrens TW. Review of recent genome-wideassociation scans in lupus. J Intern Med.2009;265(6):680-688.
    [42] Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, Xu JH, Cai ZM, Huang W,Zhao GP, Xie HF, Fang H, Lu QJ, Xu JH, Li XP, Pan YF, Deng DQ, Zeng FQ, YeZZ, Zhang XY, Wang QW, Hao F, Ma L, Zuo XB, Zhou FS, Du WH, Cheng YL,Yang JQ, Shen SK, Li J, Sheng YJ, Zuo XX, Zhu WF, Gao F, Zhang PL, Guo Q,Li B, Gao M, Xiao FL, Quan C, Zhang C, Zhang Z, Zhu KJ, Li Y, Hu DY, Lu WS,Huang JL, Liu SX, Li H, Ren YQ, Wang ZX, Yang CJ, Wang PG, Zhou WM, LvYM, Zhang AP, Zhang SQ, Lin D, Li Y, Low HQ, Shen M, Zhai ZF, Wang Y,Zhang FY, Yang S, Liu JJ, Zhang XJ. Genome-wide association study in aChinese. Han population identifies nine new susceptibility loci for systemic lupuserythematosus. Nat Genet.2009;41(11):1234-1237.
    [43] Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, Hirankarn N, Ying D, PanHF, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Leung AM, LiXP, Avihingsanon Y, Wong CM, Lee TL, Ho MH, Lee PP, Chang YK, Li PH, LiRJ, Zhang L, Wong WH, Ng IO, Lau CS, Sham PC, Lau YL; Asian LupusGenetics Consortium. Genome-wide association study in Asian populationsidentifies variants in ETS1and WDFY4associated with systemic lupuserythematosus. PLoS Genet.2010;6(2):e1000841.
    [44] Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ.Genetic analysis of case/control data using estimated haplotype frequencies:application to APOE locus variation and Alzheimer's disease. Genome Res.2001;11(1):143-151.
    [45] Schipper RF, D'Amaro J, de Lange P, Schreuder GM, van Rood JJ, Oudshoorn M.Validation of haplotype frequency estimation methods. Hum Immunol.1998;59(8):518-523.
    [46] Gigante A, Gasperini ML, Afeltra A, Barbano B, Margiotta D, Cianci R, De Franc-esco I, Amoroso A. Cytokines expression in SLE nephritis. Eur Rev MedPharmacol Sci.2011;15(1):15-24.
    [47]杨雅骊,王培光,杜文辉,张学军,杨森.青少年系统性红斑狼疮的临床特点分析.疾病控制杂志.2008;12(3):227-229.
    [48]韩慧,叶冬青,李志军,陈琳洁,李梅,袁长江,汤建军.66例6~18岁青少年SLE患者临床特点及血液检验结果分析.疾病控制杂志.2008;12(3):233-235.
    [49] Toloza SM, Sequeira W, Jolly M. Treatment of lupus: impact on quality of life.Curr Rheumatol Rep.2011;13(4):324-337.
    [50] Liu CC, Ahearn JM. The search for lupus biomarkers. Best Pract Res ClinRheumatol.2009;23(4):507-523.
    [51] Illei GG, Tackey E, Lapteva L, Lipsky PE. Biomarkers in systemic lupuserythematosus. I. General overview of biomarkers and their applicability. ArthritisRheum.2004;50(6):1709-1720.
    [52] Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of theSLEDAI. A disease activity index for lupus patients. The Committee on PrognosisStudies in SLE. Arthritis Rheum.1992;35(6):630-640.
    [53]胡巢凤,陆大祥. Toll样受体与核苷酸结合寡聚化结构域蛋白在防御反应中的相互作用.生理科学进展.2006;37(3):233-235.
    [54] Hall HT, Wilhelm MT, Saibil SD, Mak TW, Flavell RA, Ohashi PS. RIP2contributes to Nod signaling but is not essential for T cell proliferation, T helperdifferentiation or TLR responses. Eur J Immunol.2008;38(1):64-72.
    [55] Balomenos D, Rumold R, Theofilopoulos AN. Interferon-gamma is requiredfor lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest.1998;101(2):364-371.
    [56]陶金辉,李向培,厉小梅,汪国生,钱龙,王玮. IFN-γ在系统性红斑狼疮发病中的作用和临床意义.疾病控制杂志.2005;9(3):278-280.
    [57] Harigai M, Kawamoto M, Hara M, Kubota T, Kamatani N, Miyasaka N. Excessiveproduction of IFN-gamma in patients with systemic lupus erythematosus and itscontribution to induction of B lymphocyte stimulator/B cell-activating factor/TNFligand superfamily-13B. J Immunol.2008;181(3):2211-2219.
    [58] Inohara N, Koseki T, Hu Y, Chen S, Nú ez G. CLARP, a death effector domain-containing protein interacts with caspase-8and regulates apoptosis. Proc NatlAcad Sci U S A.1997;94(20):10717-10722.
    [59] Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, WallachD. CASH, a novel caspase homologue with death effector domains. J BiolChem.1997;272(32):19641-19644.
    [60] Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. I-FLICE, a novel inhibitor of tumornecrosis factor receptor-1-and CD-95-induced apoptosis. J Biol Chem.1997;272(28):17255-17257.
    [61] Kaplan MJ, Lewis EE, Shelden EA, Somers E, Pavlic R, McCune WJ, RichardsonBC. The apoptotic ligands TRAIL, TWEAK, and Fas ligand mediate monocyte de-ath induced by autologous lupus T cells. J Immunol.2002;169(10):6020-6029.
    [62] Kalled SL, Cutler AH, Burkly LC. Apoptosis and altered dendritic cell homeostasisin lupus nephritis are limited by anti-CD154treatment. J Immunol.2001;167(3):1740-1747.
    [63]叶正芹,王慧娟,季晓辉. Fas/FasL在系统性红斑狼疮中的作用.医学综述.2005;11(6):484-486.
    [64] Alenzi FQ. The role of apoptotic proteins in patients with systemic lupuserythemaatosis. Egypt J Immunol.2009;16(1):107-116.
    [65] McCully ML, Baroja ML, Chau TA, Jain AK, Barra L, Salgado A, Blake PG,Madrenas J. Receptor-interacting protein2is a marker for resolution of peritonealdialysis-associated peritonitis. Kidney Int.2007;72(10):1273-1281.
    [66] McCully ML, Fairhead T, Colmont CS, Beasley FC, Heinrichs DE, Blake PG,Topley N, Madrenas J. Receptor-interacting protein-2deficiency delaysmacrophage migration and increases intracellular infection during peritonealdialysis-associated peritonitis. Am J Nephrol.2008;28(6):879-889.
    [67] Kim BC, Kang TJ, Jin SH, Kim SK, Lee SB, Chae GT. Tissue-specificdown-regulation of RIPK2in Mycobacterium leprae-infected nu/nu mice.Mediators Inflamm.2004;13(1):51-52.
    [68] Sivaraj RR, Durrani OM, Denniston AK, Murray PI, Gordon C. Ocular manifestat-ions of systemic lupus erythematosus. Rheumatology(Oxford).2007;46(12):1757-1762.
    [69] Tápanes FJ, Vásquez M, Ramírez R, Matheus C, Rodríguez MA, Bianco N. Clusteranalysis of antinuclear autoantibodies in the prognosis of SLE nephropathy: areanti-extractable nuclear antibodies protective? Lupus.2000;9(6):437-444.
    [70] Arnett FC, Hamilton RG, Roebber MG, Harley JB, Reichlin M. Increased frequen-cies of Sm and nRNP autoantibodies in American blacks compared to whites withsystemic lupus erythematosus. J Rheumatol.1988;15(12):1773-1776.
    [71]夏丽萍,肖卫国,鲁静,沈晖. C-反应蛋白与系统性红斑狼疮的相关性研究.中国医科大学学报.2007;36(1):88-89.
    [72] Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P, Mejía JC,Aydintug AO, Chwalinska-Sadowska H, de Ramón E, Fernández-Nebro A,Galeazzi M, Valen M, Mathieu A, Houssiau F, Caro N, Alba P, Ramos-Casals M,Ingelmo M, Hughes GR; European Working Party on Systemic LupusErythematosus. Morbidity and mortality in systemic lupus erythematosus during a10-year period: a comparison of early and late manifestations in a cohort of1,000patients.Medicine (Baltimore).2003;82(5):299-308.
    [73] Sada KE, Makino H. Usefulness of ISN/RPS classification of lupus nephritis. JKorean Med Sci.2009;24Suppl:S7-10.
    [1] Zhang D, Lin J, Han J. Receptor-interacting protein(RIP) kinase family. Cell MolImmunol.2010;7(4):243-249.
    [2] Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. TrendsBiochem Sci.2005;30(3):151-159.
    [3] Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing adeath domain that interacts with Fas/APO-1(CD95) in yeast and causes cell death.Cell.1995;81(4):513-523.
    [4] McCarthy JV, Ni J, Dixit VM. RIP2is a novel NF-kappaB-activating and celldeath-inducing kinase. J Biol Chem.1998;273(27):16968-16975.
    [5] Inohara N, del Peso L, Koseki T, Chen S, Nú ez G. RICK, a novel protein kinasecontaining a caspase recruitment domain, interacts with CLARP and regulatesCD95-mediated apoptosis. J Biol Chem.1998;273(20):12296-12300.
    [6] Thome M, Hofmann K, Burns K, Martinon F, Bodmer JL, Mattmann C, Tschopp J.Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. CurrBiol.1998;8(15):885-888.
    [7]蒋宇. Sp1结合位点在RIP2基因调控中的作用研究.广州:暨南大学,2010.
    [8] Chin AI, Dempsey PW, Cheng G. Rip2: A key molecule that regulates both innateand acquired immunity. Curr Med Chem.2005;4:35-42.
    [9] Chen YR, Clark AC. Equilibrium and kinetic folding of an alpha-helical Greek keyprotein domain: caspase recruitment domain(CARD) of RICK. Biochemistry.2003;42(20):6310-6320.
    [10] Slack E, Hapfelmeier S, Stecher B, Velykoredko Y, Stoel M, Lawson MA,Geuking MB, Beutler B, Tedder TF, Hardt WD, Bercik P, Verdu EF, McCoy KD,Macpherson AJ. Innate and adaptive immunity cooperate flexibly to maintainhost-microbiota mutualism. Science.2009;325(5940):617-620.
    [11] Kobayashi K, Inohara N, Hernandez LD, Galán JE, Nú ez G, Janeway CA,Medzhitov R, Flavell RA. RICK/Rip2/CARDIAK mediates signalling forreceptors of the innate and adaptive immune systems. Nature.2002;416(6877):194-199.
    [12] Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement ofreceptor-interacting protein2in innate and adaptive immune responses. Nature.2002;416(6877):190-194.
    [13] Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol.2002;20:197-216.
    [14] Inohara N, Nu ez G. NODs: intracellular proteins involved in inflammation andapoptosis. Nat Rev Immunol.2003;3(5):371-82.
    [15]刘红春,王吉耀.阻断RIP2对小鼠巨噬细胞及内毒素血症的影响.中国临床医学.2007,14(3):334-336.
    [16]刘红春,曹中伟,金建军,王吉耀. RNA干扰技术阻断小鼠巨噬细胞受体相互作用蛋白2表达的实验研究.中华内科杂志.2007,46(9):721-724.
    [17] Hurst J, von Landenberg P. Toll-like receptors and autoimmunity. Autoimmun Rev.2008;7(3):204-208.
    [18] Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, AkiraS. Differential roles of TLR2and TLR4in recognition of gram-negative andgram-positive bacterial cell wall components. Immunity.1999;11(4):443-451.
    [19] Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor3. Nature.2001;413(6857):732-738.
    [20] Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E,Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B.Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4gene. Science.1998;282(5396):2085-2088.
    [21] Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, AkiraS, Underhill DM, Aderem A. The innate immune response to bacterial flagellin ismediated by Toll-like receptor5. Nature.2001;410(6832):1099-1103.
    [22] Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M,Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizesbacterial DNA. Nature.2000;408(6813):740-745.
    [23] kira S, Fakeda K. Toll-like receptor signalling. Nm Rev Immunol.2004;4(7):499-511.
    [24] Lu C, Wang A, Dorsch M, Tian J, Nagashima K, Coyle AJ, Jaffee B, OcainTD, Xu Y. Participation of Rip2in lipopolysaccharide signaling is independent ofits kinase activity. J Biol Chem.2005;280(16):16278-16283.
    [25] Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, Body-Malapel M,Inohara N, Nú ez G. RICK/RIP2mediates innate immune responses inducedthrough Nod1and Nod2but not TLRs. J Immunol.2007;178(4):2380-2386.
    [26] Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA,Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N,Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC,Reith W, Schreiber S, Steimle V, Ward PA. The NLR gene family: a standardnomenclature. Immunity.2008;28(3):285-287.
    [27] Ye Z, Ting JP. NLR, the nucleotide-binding domain leucine-rich repeat containinggenefamily. Curr Opin Immunol.2008;20(1):3-9.
    [28] Ting JP, Davis BK. CATERPILLER: a novel gene family important in immunity,cell death, and diseases. Annu Rev Immunol.2005;23:387-414.
    [29] Chamaillard M, Girardin SE, Viala J, Philpott DJ. Nods, Nalps and Naip: intracell-ular regulators of bacterial-induced inflammation. Cell Microbiol.2003;5(9):581-592.
    [30] Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D,Ni J, Nú ez G. Nod1, an Apaf-1-like activator of caspase-9and nuclearfactor-kappaB. J Biol Chem.1999;274(21):14560-14567.
    [31] Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, aNod1/Apaf-1family member that is restricted to monocytes and activatesNF-kappaB. J Biol Chem.2001;276(7):4812-4818.
    [32] Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F, Nunez G,Fernandez-Luna JL. Induction of Nod2in myelomonocytic and intestinal epithelialcells via nuclear factor-kappa B activation. J Biol Chem.2002;277(44):41701-41705.
    [33] Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, PodolskyDK. CARD15/NOD2functions as an antibacterial factor in human intestinalepithelial cells. Gastroenterology.2003;124(4):993-1000.
    [34] Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, Tedin K,Taha MK, Labigne A, Z hringer U, Coyle AJ, DiStefano PS, Bertin J, SansonettiPJ, Philpott DJ. Nod1detects a unique muropeptide from gram-negative bacterialpeptidoglycan. Science.2003;300(5625):1584-1587.
    [35] Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y,Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nu ez G,Inohara N. An essential role for NOD1in host recognition of bacterialpeptidoglycan containing diaminopimelic acid. Nat Immunol.2003;4(7):702-707.
    [36] Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, PhilpottDJ, Sansonetti PJ. Nod2is a general sensor of peptidoglycan through muramyldipeptide(MDP)detection. J Biol Chem.2003;278(11):8869-8872.
    [37] Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ,Sansonetti PJ, Mengin-Lecreulx D. Peptidoglycan molecular requirementsallowing detection by Nod1and Nod2. J Biol Chem.2003;278(43):41702-41708.
    [38] Inohara, Chamaillard, McDonald C, Nu ez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem.2005;74:355-383.
    [39] Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Nú ez G.An inducedproximity model for NF-kappa B activation in the Nod1/RICK and RIPsignaling pathways. J Biol Chem.2000;275(36):27823-27831.
    [40] Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR, Bertin J,DiStefano PS, Yaniv M, Sansonetti PJ, Philpott DJ. CARD4/Nod1mediatesNF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep.2001;2(8):736-742.
    [41] Inohara N, Ogura Y, Chen FF, Muto A, Nu ez G. Human Nod1confers responsi-veness to bacterial lipopolysaccharides. J Biol Chem.2001;276(4):2551-2554.
    [42] da Silva Correia J, Miranda Y, Leonard N, Ulevitch R. SGT1is essential for Nod1activation. Proc Natl Acad Sci U S A.2007;104(16):6764-6769.
    [43] Pan Q, Kravchenko V, Katz A, Huang S, Ii M, Mathison JC, Kobayashi K, FlavellRA, Schreiber RD, Goeddel D, Ulevitch RJ. NF-kappa B-inducing kinase regulatesselected gene expression in the Nod2signaling pathway. Infect Immun.2006;74(4):2121-2127.
    [44] Rietdijk ST, Burwell T, Bertin J, Coyle AJ. Sensing intracellular pathogens-NOD-like receptors. Curr Opin Pharmacol.2008;8(3):261-266.
    [45] Hall HT, Wilhelm MT, Saibil SD, Mak TW, Flavell RA, Ohashi PS. RIP2contributes to Nod signaling but is not essential for T cell proliferation, T helperdifferentiation or TLR responses. Eur J Immunol.2008;38(1):64-72.
    [46] Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatoryfunctions that bridge innate resistance and antigen-specific adaptive immunity.Annu Rev Immunol.1995;13:251-276.
    [47] Ruefli-Brasse AA, Lee WP, Hurst S, Dixit VM. Rip2participates in Bcl10signaling and T-cell receptor-mediated NF-kappaB activation. J Biol Chem.2004;279(2):1570-1574.
    [48] Nembrini C, Reissmann R, Kopf M, Marsland BJ. Effective T-cell immuneresponses in the absence of the serine/threonine kinase RIP2. Microbes Infect.2008;10(5):522-530.
    [49] Fairhead T, Lian D, McCully ML, Garcia B, Zhong R, Madrenas J. RIP2isrequired for NOD signaling but not for Th1cell differentiation and cellularallograft rejection. Am J Transplant.2008;8(6):1143-1150.
    [50] Shaw PJ, Barr MJ, Lukens JR, McGargill MA, Chi H, Mak TW, Kanneganti TD.Signaling via the RIP2adaptor protein in central nervous system-infiltratingdendritic cells promotes inflammation and autoimmunity. Immunity.2011;34(1):75-84.
    [51]袁慧,叶冬青. JAK/STAT信号通路与系统性红斑狼疮.中华疾病控制杂志.2010;14(8):787-790.
    [52]王茜,潘海峰,李文先,叶冬青. IgG型抗dsDNA抗体及其亚型与狼疮肾炎临床和病理关系探讨.中华疾病控制杂志.2008;12(5):420-424.
    [53]张宁,叶冬青. TLR7和TLR9在系统性红斑狼疮中的作用.中华疾病控制杂志.2010;14(12):1234-1238.
    [54]张宁. Toll样受体信号通路相关基因与系统性红斑狼疮发病的相关性研究合肥:安徽医科大学,2011.
    [55] Li J, Tian J, Ma Y, Cen H, Leng RX, Lu MM, Chen GM, Feng CC, Tao JH, PanHF, Ye DQ. Association of RIP2gene polymorphisms and systemic lupus erythe-matology in a Chinese population. Mutagenesis.2012;27(3):319-322.
    [56]郭杰芳,邹晓平,李兆申. CD第一个易感基因NOD2及其与CD易感性的研究进展.国外医学·消化系疾病分册.2003;23(2):75-77.
    [57] Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H,Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, KirschnerBS, Hanauer SB, Nu ez G, Cho JH. A frameshift mutation in NOD2associatedwith susceptibility to Crohn's disease. Nature.2001;411(6837):603-606.
    [58] Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S,Tysk C, O'MorainA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R,Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, ThomasG. Association of NOD2leucine-rich repeat variants with susceptibility to Crohn'sdisease. Nature.2001;411(6837):599-603.
    [59] Abbott DW, Wilkins A, Asara JM, Cantley LC. The Crohn's disease protein,NOD2, requires RIP2in order to induce ubiquitinylation of a novel site on NEMO.Curr Biol.2004;14(24):2217-2227.
    [60] Negroni A, Stronati L, Pierdomenico M, Tirindelli D, Di Nardo G, Mancini V,Maiella G, Cucchiara S. Activation of NOD2-mediated intestinal pathway in apediatric population with Crohn's disease. Inflamm Bowel Dis.2009;15(8):1145-1154.
    [61] Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCHK63-ubiquitinates the NOD2binding protein, RIP2, to influence inflammatorysignaling pathways. Curr Biol.2009;19(15):1255-1263.
    [62] Hollenbach E, Vieth M, Roessner A, Neumann M, Malfertheiner P, Naumann M.Inhibition of RICK/nuclear factor-kappaB and p38signaling attenuates theinflammatory response in a murine model of Crohn disease. J Biol Chem.2005;280(15):14981-14988.
    [63] Thiébaut R, Douchin V, Jung C, Merlin F, Colombel JF, Lemann M, Almer S,Tysk C, O'Morain C, Gassull M, Finkel Y, Zouali H, Pascoe L, Hugot JP. RIP2polymorphisms in inflammatory bowel diseases. Inflamm Bowel Dis.2011;17(4):1055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700