含大规模风光互补电力的电力系统动态经济调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大量的风电场和太阳能光伏电站的建设完成,为了减弱单一风电场或者光伏电站并网后输出功率的波动间歇特性造成的影响,提高可再生能源电力的并网率,风电场和光伏电站集群互补入网调度与控制已逐步开始应用。由于风电场和光伏电站的并网增加了系统中的不确定量,使得系统更加复杂更加难以应对,为了及时正确的应对系统中风电、光伏电力以及负荷的波动性,系统的运算处理速度就显得尤为关键。对含有大规模风光互补电力的电力系统进行动态经济调度的研究,就是在保证系统安全稳定可靠运行的前提下,考虑到系统中的各种约束条件,使系统的经济实用性达到最佳。
     本文针对风电场和太阳能光伏电站互补并网,首先分析了风能和太阳能资源的特性,风力发电系统和太阳能光伏发电系统的数学模型。然后,针对火电机组的排污特性引入环境污染惩罚项,针对风电场和太阳能光伏电站输出功率的间歇波动特性引入备用容量惩罚项,同时考虑了电力系统动态经济调度中的系统供需平衡、机组爬坡率等约束建立了含有风光互补电力的电力系统动态经济调度数学模型。接着以等耗量微增率准则为核心,分析推导了高速动态经济调度算法。根据风能和太阳能的天然互补特性,给出了风电场和光伏电站的互补调度策略,并以风电和光伏电力同负荷一起作为“广义负荷”,给出了考虑风光互补调度策略的高速动态经济调度新算法。最后,在IEEE-30节点测试系统中,应用新高速动态经济调度算法,对实例进行了动态经济调度,验证了模型和新调度策略的合理性及优越性。仿真结果表明,新高速动态经济调度算法能够快速的解决含有大量可再生能源电力的电力系统动态经济调度问题,风光互补调度策略可以平抑单一风电的出力波动,提高风电和光伏电力的并网率。
Wind and solar power have natural complementary characteristics. With the completion of the construction of large number of wind and solar photovoltaic power plant, in order to reduce the fluctuation of output power of intermittent characteristics of single wind or photovoltaic power grid integration and improve the renewable energy power grid-connected rate, connecting wind power and photovoltaic power station cluster complementary to grid scheduling and control have gradually began to be applied. Wind power and photovoltaic power station increased the uncertainties in the system, making the system more complex and more difficult to deal with. Processing speed is particularly important to properly deal with the fluctuation of wind power as well as photovoltaic power and load. Research on the dynamic economic dispatch of power system contain large capacity's wind-photovoltaic complementary power, is to guarantee the stable security and reliable operation of system, taking into account the various constraints in the system, so that the utility system to achieve the best.
     This paper in the light of connecting wind farm and solar photovoltaic power station complementary to grid, Firstly, quiet analysis the wind and solar energy resources, and introducing the mathematical model of wind power generation system and solar photovoltaic power generation system. Then, introducing punitive measures to thermal power unit because of it's output pollute the environment, and to wind and solar photovoltaic power station because of their output is intermittent fluctuation add the requirement of spare capacity. At the same time, Considering the supply-demand balance, unit ramp rate etc constraints of the dynamic economic dispatch of power system formed the mathematical model of power system dynamic economic dispatch with wind-photovoltaic complementary grid-connect. Secondly, With equal consumed energy ratio criterion as the core, deduce and analyse the high speed dynamic economic dispatch algorithm. According to the complementary characteristics of wind and solar power, proposed wind power and photovoltaic power complementary dispatch strategy. Treating wind power and photovoltaic power with the load as "generalized load", give new high-speed dynamic economic dispatch algorithm consideration of wind-photovoltaic complementary dispatch strategy. Lastly, In the IEEE-30node test system, using new high-speed dynamic economic dispatch algorithm deal with the practical examples, verified the rationality of the model and scheduling policies and the superiority of new high-speed dynamic economic dispatch algorithm. The results show that, new high-speed dynamic economic dispatch algorithm can fast solve dynamic economic dispatch problem of power system containing large amount of renewable power, wind-photovoltaic complementary dispatch strategy can stabilize the fluctuation of output of single wind power, and increasing the rate of Grid-connected wind power and photovoltaic power.
引文
[1]汪建文.可再生能源[M].北京:机械工业出版社.2012:18-60
    [2]康乐,李兴亮.新疆哈密十三间房地区大型并网太阳能电站和风力发电站的互补性研究[J].阳光能源.2010(4):68-71.
    [3]帅军庆.特大型电网高级调度中心关键技术[M].北京:中国电力出版社.2010:527-545
    [4]张峻岭,殷建英,党政.风光互补发电系统及应用[J].能源研究与利用.2011(4):1903-1906.
    [5]孙楠,邢德山,杜海玲.风光互补发电系统的发展与应用[J].山西电力.2010(4):54-56.
    [6]侯国彦,王彪,丁理杰,等.微电网并网时的环保经济调度[J].四川电力技术.2011,34(5):80-83.
    [7]洪博文,郭力,王成山,等.微电网多目标动态优化调度模型与方法[J].电力自动化设备.2013,33(3):100-107.
    [8]宋洪磊,吴俊勇,冀鲁豫,等.风光互补独立供电系统的多目标优化设计[J].电工技术学报.2011,26(7):104-111.
    [9]陈亚爱,张卫平,刘元超,等.风光互补发电系统实验模型的建立[J].北方工业大学学报.2004,16(3):57-61.
    [10]杨琦,张建华,刘自发,等.风光互补混合供电系统多目标优化设计[J].电力系统自动化.2009,33(17):86-90.
    [11]谭青春,徐玉杰,陈海生,刘佳.风光互补的压缩空气储能与发电一体化系统特性分析[J].中国电机工程学报.2012(20):88-96.
    [12]普子恒,倪浩,黄杨珏.浅析风光互补发电系统及其应用前景[J].科协论坛(下半月).2009(6):82-83.
    [13]李涛,孙韵琳,杜晓荣.风光互补发电系统应用分析[J].青海师范大学学报(自然科学版).2011,27(3):24-27.
    [14]何超军,王优胤,吴赛男.辽宁电网风光互补发电应用研究[J].东北电力技术.2009,30(12):27-31.
    [15]朱芳,王培红.风能与太阳能光伏互补发电应用及其优化[J].上海电力.2009,29(1):23-26.
    [16]刘波,郭家宝,袁智强,等.风光互补发电系统特性研究[J].华东电力.2010(12):1903-1906.
    [17]张峻岭,殷建英,王文军.鄂尔多斯新能源产业示范区的风光互补最优容量匹配[J].电力与能源.2011,32(3):224-227.
    [18]崔杏杏.风光互补发电系统最佳功率点跟踪的研究[D].保定:河北大学,2011.
    [19]郭伟钊.抽水蓄能、风力和光伏电站群联合运行研究[D].北京:华北电力大学,2011.
    [20]蔡国伟,孔令国,杨德友,等.大规模风光互补发电系统建模与运行特性研究[J].电网技术.2012,36(1):65-71
    [21]D. W. Ross and S. Kim. Dynamic economic dispatch of generation [J]. IEEE Transactions on Power Apparatus and Systems.1980,99(6):2060-2068.
    [22]W. G. Wood. Spinning reserve constrained static and dynamic economic dispatch [J]. IEEE Transactions on Power Apparatus and Systems.1982,101(2):381-388.
    [23]D. N. Simopoulos, S. D. Kavatza, and C. D. Vournas. Unit commitment by an enhanced simulated annealing algorithm [J]. IEEE Transactions on Power Systems.2006,21(1):68-76.
    [24]C. L. Chen. Simulated annealing-based optimal wind-thermal coordination scheduling [J].IET Generation Transmission & Distribution.2007, 1(3):447-455.
    [25]A. Y. Abdelaziz, M. Z. Kamh, S. F. Mekhamer, and M. A. L. Badr. A hybrid HNN-QP approach for dynamic economic dispatch problem [J]. electric power systems research.2008,78(10):1784-1788.
    [26]F. N. Lee, L. Lemonidis, and K. C. Liu. Price-based ramp-rate model for dynamic dispatch and unit commitment[J] IEEE Transactions on Power Systems.1994,9(3):1233-1242.
    [27]J. P. Chiou. A variable scaling hybrid differential evolution for solving large-scale power dispatch problem [J]. IET Generation Transmission & Distribution.2009,3(2):154-163.
    [28]C. B. Somuah and N. Khunaizi. Application of linear programming redispatch technique to dynamic generation allocation [J]. IEEE Transactions on Power Systems.1990,5(1):20-26.
    [29]W. R. Barcelo and P. Rastgoufard. Dynamic economic dispatch using the extended security constrained economic dispatch algorithm [J]. IEEE Transactions on Power Systems.1997, 12(2):961-967.
    [30]G. Irisarri, L. M. Kimball, K. A. Clements, A. Bagchi, and P. W. Davis. Economic dispatch with network and ramping constrained via interior point methods [J]. IEEE Transactions on Power Systems.1998,13(1):236-242.
    [31]X. S. Han, H. B. Gooi, and D. S. Kirschen. Dynamic economic dispatch:Feasible and optimal solutions [J]. IEEE Transactions on Power Systems.2001,16(1):22-28.
    [32]赵俊华,文福拴,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化.2010,34(20):22-29.
    [33]夏澍,周明,李庚银.含大规模风电场的电力系统动态经济调度[J].电力系统保护与控制.2011,39(13):71-77.
    [34]王召旭.含风电场的电力系统动态经济调度的研究[D].北京:华北电力大学,2011.
    [35]田廓,曾鸣,鄢帆,等.考虑环保成本和风电接入影响的动态经济调度模型[J].电网技术.2011,35(6):55-59.
    [36]袁铁江,晁勤,吐尔逊·伊不拉音,等.大规模风电并网电力系统动态清洁经济优化调度的建模[J].中国电机工程学报.2010,30(31):7-13.
    [37]张鹏,刘继春,吕林,等.基于风蓄协调的节能调度方法[J].电力系统保护与控制.2011,39(2):29-34.
    [38]Cheung K W, Rios-Zalapa R. Smart dispatch for large grid operations with integrated renewable resources[C]. ISGT. Alstom Grid, Redmond, WA, USA; IEEE,2011:1-7.
    [39]Yorino N, Hafiz H M, Sasaki Y, et al. High-Speed Real-Time Dynamic Economic Load Dispatch[J]. IEEE Transactions on Power Systems,2012,27(2):621-630.
    [40]牛凯,耿静,严正,等.上海电网节能调度经济性影响研究[J].华东电力.2011,39(2):191-194.
    [41]龙军,莫群芳,曾建.基于随机规划的含风电场的电力系统节能优化调度策略[J].电网技术.2011,35(9):133-138.
    [42]王士柏,韩学山,杨明.计及机组备用响应能力的电力系统区间经济调度[J].中国电机工程学报.2013,33(7):99-108.
    [43]Sathyajith Mathew,许锋飞.风能原理、风资源分析及风电场经济性[M].机械工业出版社.2011:33-67.
    [44]李玉敦,谢开贵.含多个风电场的电力系统可靠性评估[J].电力科学与技术学报.2011,26(1):73.76.
    [45]刘鉴民.太阳能利用:原理·技术·工程[M].北京:电子工业山版社,2010:35-78.
    [46]施钰川.太阳能原理与技术[M].西安:西安交通大学出版社,2009:126-127。
    [47]陈成钧,连晓峰等.太阳能物理[M].北京:机械工业出版社,2012:150-178.
    [48]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报.2005,17(5):1248-1251.
    [49]尚金成.兼顾市场机制的主要节能发电调度模式比较研究[J].电网技术.2008,32(4):78-85.
    [50]宋宗峰,杨俊华,张伯泉.风-光互补发电系统的频率控制研究[J].水电能源科学.2008,26(2):195-197.
    [51]Piltan S, Pourakbari-Kasmaei M, Montavani J R S, et al. An unproblematic method to solve economic and emission dispatch[C].10th International Conference on EEEIC. Rome:IEEE, 2011:1-5.
    [52]郭晓丽,李智,张新松.大规模风电接入火电系统的最优旋转备用容量研究[J].电力系统保护与控制.2012,40(13):110-114.
    [53]姚瑶,于继来.计及风电备用风险的电力系统多目标混合优化调度[J].电力系统自动化.2011,35(22):118-124.
    [54]Shoults R R, Show K C, Steve H, et al. A Practical Approach to Unit Commitment, Economic Dispatch and Savings Allocation for Multiple-Area Pool Operation with Import/Export Constraints[J]. IEEE Transactions on Power Apparatus and Systems.1980,99(2):625-635.
    [55]陈珩.电力系统稳态分析[M].北京:中国电力出版社,2007:176-183.
    [56]Yorino N, Hafiz H M, Sasaki Y, et al. Feasible operation region for dynamic economic load dispatch[C].TENCON 2010-2010 IEEE Region 10 Conference. Fukuoka, Japan IEEE, 2010:563-567.
    [57]Yorino N, Hafiz H M, Zoka Y, et al. Dynamic Economic Dispatch with Generator's Feasible Operation Region[C]. Power and Energy Engineering Conference (APPEEC),2010 Asia-Pacific. Cheng du, China IEEE,2010:1-5.
    [58]侯佑华,房大中,齐军,等.大规模风电入网的有功功率波动特性分析及发电计划仿真[J].电网技术.2010,34(5):60-66.
    [59]Fox, Brendan,刘长泡,冯双磊.风电并网:联网与系统运行[M].北京:机械工业出版社,2011:75-110
    [60]杨德清,贺强.二连浩特风光互补城市供电示范项目风光互补容量的确定分析[J].内蒙古电力技术.2012,30(2):33-36.
    [61]郭志东,徐国禹.用二次规划法解算互联系统经济调度[J].电力系统自动化.1998,22(1):40-44.
    [62]袁铁江,晁勤,吐尔逊·伊不拉音,等.面向电力市场的含风电电力系统的环境经济调度优化[J].电网技术.2009,33(20):131-135.
    [63]张晓辉,董兴华.含风电场多目标低碳电力系统动态经济调度研究[J].电网技术.2013,37(1):24-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700