含相变材料皮芯复合结构发制品纤维的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,中国发制品进入快速发展时期,合成纤维制得发制品不受资源制约,且容易根据市场需求变换花色品种,附加值高,已成为发制品发展的主流。从全球来看,目前发制品主要用于装饰、特种工作需求(律师、演员)、教学(美容美发行业)和弥补生理缺陷等。发制品更多地视为“头上时装”用于“扮靓”。随着人们生活水平的不断提高,自然舒适及功能型的发制品更加受到青睐。保温凉爽型发制品纤维的研制对不同季节穿戴假发的消费者来说将是一种福音。
     本课题采用的相变材料为十八烷(C18H38),相变温度为25-32℃(相转变温度范围和人体温度变化范围相似)。由于低分子量的纯十八烷,其各方面力学性能较差,本课题的皮芯复合结构发制品纤维芯层为十八烷和EVA30/30的共混物。在十八烷中添加EVA30/30以提高其力学性能,除了有利于纤维加工成型外,EVA30/30和十八烷包覆体系的热性能、封装效果及持久稳定性都较好。相变材料十八烷与EVA30/30的网络状结构相互间有排挤现象,使EVA30/30的网络状结构被挤压后变得松散。因此十八烷的含量越多,EVA30/30的网络状结构被挤压松散得越严重:EVA30/30/十八烷共混体系在非等温过程中,晶粒的增长受阻,体系的结晶能力更加地降低;EVA30/30/十八烷共混膜的断裂强度和断裂伸长率都下降;EVA30/30/十八烷共混膜样片渗漏测试时渗漏现象越明显,当十八烷的含量≤55%时,质量损失率随着取样时间的增加而增加,但是变化相当缓慢,当十八烷含量≥60%时,质量损失率随着取样时间的增加而增加,变化非常明显。因此本课题皮芯复合结构发制品纤维的芯层选取十八烷的含量为55%的EVA30/30/十八烷共混物。
     由于芯层所含的相变材料十八烷为低温相变材料,熔点和分解点都较低,皮层材料的熔融纺丝温度也要较低才能与之匹配,以防止在纺丝过程中芯层所含的低温相变材料因温度过高而分解。本课题皮层采用EVA28/150/HDPE共混物,选择EVA28/150为皮层的主要原料是因为一、其纺丝温度够低;二、制得的纤维的皮层和芯层中分别含有大量的EVA28/150和EVA30/30,具有良好的相容性,在今后的使用中不易相互脱落。选择HDPE共混在皮层中主要是因为可以提高共混纤维的强度,同时又可以兼顾到EVA28/150的低熔点。实验发现,HDPE的含量为15%时,EVA28/150/HDPE共混物的可纺性好,共混纤维的力学性能最佳,因此本课题皮芯复合结构发制品纤维的皮层选取HDPE的百分含量为15%的EVA28/150/HDPE共混物。
     本课题采用双组份复合纺丝机熔融纺制备皮芯复合结构发制品纤维。红外光谱分析说明相变材料十八烷已填充进皮芯复合结构发制品纤维;牵伸温度为50℃左右,牵伸倍数分别为2.5,3,3.5,4倍。随着牵伸倍数的增加,复合纤维断裂强度上升,断裂伸长率下降,其断裂强度、断裂伸长率随着芯层含量的增加而下降。当定伸长率≤75%,定负荷<40cN,无论是一次拉伸还是反复5次拉伸,皮芯复合结构发制品纤维都具有良好的弹性回复率。随着芯层含量的增加即相当于十八烷含量的增加,纤维的弹性回复率降低;当皮芯结构完整时,在EVA30/30共混包覆十八烷比较理想的效果下有了皮层共混物的进一步包覆,整个皮芯复合结构纤维所含的相变材料可保持不渗漏的,达到理想状态;按相变材料含量=(│ΔH1│)/(│ΔH2│)计算所得的相变材料十八烷在皮芯复合结构发制品纤维中的实际含量基本符合理论值;皮芯复合结构发制品纤维经历50次冻融循环之后,相变特性变化较小,具有较好的冻融循环稳定性。
     本课题解决了常规发制品纤维不能在周围形成温度基本恒定的微气候,从而实现温度调节功能的问题,弥补了现有技术生产的传统假发不能智能调温的不足。
In recent years, chinese hair products are going into an rapid development period. Synthetic wig fibers aren't subject to resource limit,and change color, a great variety of design according to market, and own high added-value, and therefore become the mainstream of hair products. From a global point of view, hair products are mainly used for decoration, special need works(lawyers, actors or actresses), teaching (beauty salon industry), and compensation for defects. Hair products are more as "fashion of head" for "Dressing". With the continuous improvement of living standards, comfortable and functional hair products are favored much better. Development of wig fibers cool in summer and warm in winter would benefit consumers wearing wigs in different seasons.
     Phase change material octadecane (C18H38) is used in this study with phase transition temperature of 25-32℃(phase transition temperature range is similar to the temperature range of human body). Octadecane is a kind of low molecular weight and poor mechanical property materials, and the core of core-sheath bicomponent wig fibers are EVA30/30/octadecane blends. Therefore, EVA30/30 is added into octadecane to improve its mechanical property, processing behavior, thermal property, package effect and lasting stability. The EVA30/30 network-like structure becomes loose because of the clash of octadecane and network-like structure. It is found that the more the content of octadecane is, the looser the network-like structure of EVA30/30 becomes:during non-isothermal process, the grain growth in EVA30/3o/octadecane blends is blocked and the crystallization ability of the system further declines; the tensile strength and elongation at break of EVA3o/3o/octadecane blend membrane decline; leaking test of EVA3o/3o/octadecane blend membrane indicates that leakage is more obvious, when octadecane is <55wt%, the mass loss rate increases very slowly with the increase of sampling time. When octadecane is≥60wt%, however, the mass loss rate increases obviously with the increase of sampling time. Therefore, the appropriate amount of core for core-sheath bicomponent wig fibers are EVA30/30/octadecane blends with 55wt% octadecane.
     Octadecane in the core is low-temperature phase change material with low melting point and decomposition temperature, so the sheath materials must have a low melt spinning temperature to prevent phase change material from decomposing in the spinning process. The sheath are EVA28/150/HDPE blends with EVA28/150 as based raw materials, the reasons are listed as follows: first, the spinning temperature is low enough; second, a lot of EVA28/150 and EVA30/30 having good compatibility with each other are obtained in the sheath and core respectively, so the sheath and core are not easy to fall off during the application. HDPE in the sheath can increase the strength of blend fibers and match to the low melting point of EVA28/150.It's found that when the HDPE content of blends is about 15%, the spinnability of blends and the mechanical property of blend fibers are the best. Therefore, the composition for sheath of core-sheath bicomponent wig fibers is EVA28/150/HDPE blends with 15% HDPE.
     Bicomponent melt spinning machine is used in this study. FTIR shows that octadecane has been packed into core-sheath bicomponent wig fibers; draw temperature is 50℃, draw ratios are 2.5,3,3.5 and 4 respectively. The result shows that with the increase of draw ratio, the tensile strength of bicomponent fibers increases and elongation at break decreases; the tensile strength and elongation at break decrease with the increase of core content; when the given elongation is≤75% and the given load is≤40cN, whether it is stretched one time or five times, the core-sheath bicomponent wig fibers have good elastic recovery; with the increase of core content equivalent to the increase of octadecane, the fiber elastic recovery decreases; the phase change material will not leak out from the core-sheath bicomponent wig fibers; the content of phase change material in the fibers measured by DSC meets that of theoretical calculation; the core-sheath bicomponent wig fibers show good freeze-thaw cycle stability after experiencing 50 freeze-thaw cycles.
引文
[1]曹艳霞,范利丹等.人造毛发用合成纤维研究进展[J].化学推进剂与高分子材料,2007,5(5):24-27.
    [2]钟渊化学工业株式会社.用于人造毛发的聚氯乙烯纤维及其生产[P].CN:89106572.5,1989.
    [3]钟渊化学工业株式会社.氯乙烯纤维及其制备方法[P].CN:98800273.6,1998.
    [4]韩国尤诺纤维有限公司.热收缩率改善的聚氯乙烯纤维[P].CN:00120022.4,2000.
    [5]电气化学工业株式会社.聚氯乙烯纤维、生产该氯乙烯纤维的方法及其应用[P].CN:200480007206.1,2004.
    [6]Denki K. K., Kabushiki K.. Polyvinyl chloride fiber, process for producing the same, and artificial hair[P].JP:2004006627,2004.
    [7]Kaneka Corporation.Vinyl chloride fibers and process for preparing the same[P]. US:6312804,2001.
    [8]意大利蒙特纤维公司.改良丙烯腈共聚物的制备方法及制得的共聚物[P].CN:95108694.4,1995.
    [9]钟渊化学工业株式会社.蓬松性优异的人造毛发用纤维及其用途[P].CN:96104935.4,1996.
    [10]钟渊化学工业株式会社.具有兽毛样手感的丙烯酸合成纤维[P].CN:98101796.7,1998.
    [11]钟渊化学工业株式会社.人造头发用纤维及其制造方法[P].CN:03818360.9,2003.
    [12]帝人株式会社.人工毛发[P].JP:5104201,1993.
    [13]钟渊化学工业株式会社.聚酯型纤维和使用该纤维制造的人造发[P].CN:0281735.3,2002.
    [14]KaneKa Corporation. Polyester based fiber and artificial hair using the same[P]. US:0195543,2004.
    [15]北京化学纤维研究所.聚丙烯纤维阻燃配方新体系[P].CN:86102260A,1986.
    [16]江苏省纺织研究所.共混改性阻燃聚丙烯长丝生产方法[P].CN:87102486A,1987.
    [17]南京市化学工业研究设计院.高浓度聚丙烯纤维阻燃母粒及其制备方法[P].CN:02148553.4,2002.
    [18]骆强,苏永明.假发用低温阻燃聚丙烯纤维[P].CN:101713105A,2010.
    [19]钟渊化学工业株式会社.改进的再生胶原纤维及制造方法[P].CN:98117804.9,1998.
    [20]钟洲化学工业株式会社.具有优良耐热性的再生胶原纤维[P].CN:00810216.3,2000.
    [21]保利源(南通)实业有限公司.动物蛋白质人工毛发及生产方法[P].CN:200510040450.4,2005.
    [22]Meisenheimer H.,Zens A.. Handbook of Speciality Elastomers[M]. Boca Raton: CRC Press,2008,39.
    [23]张庆虎.高性能乙烯-醋酸乙烯酯(EVM)橡胶的特性及应用[J].世界橡胶工业,2000,(05):41-49.
    [24]张庆虎.乙烯-醋酸乙烯酯(EVM)橡胶的特性及应用[J].特种橡胶制品,2001,(02):18-22.
    [25]禹海洋.乙烯-醋酸乙烯酯橡胶和无机填料改性尼龙1010的结构与性能研究[D]:[博士论文].上海:上海交通大学,2009.
    [26]杨旭俭.PP/EVA共混改性熔融纺丝制备皮芯复合中空纤维及性能[D]:[硕士论文].天津:天津工业大学,2006.
    [27]陈乐怡.合成树脂及塑料速查手册[M].北京:机械工业出版社,2006,48.
    [28]洪定一.塑料工业手册(聚烯烃)[M].北京:化学工业出版社,1999,678-688.
    [29]陈国康,陈铭等.我国EVA市场现状及其发展战略[J].石油化工技术与经济,2009,25(1):1-4.
    [30]Riva A,Zanetti M,Braglia M.Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposittes[J].Polymer Degradation and Stability,2002, (77):299-304.
    [31]Qiu Longzhen,Xie Rongcai,Ding Peng.Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant properties of its nanocomposites with EVA[J].Composite Structures,2003,(62):391-395.
    [32]邱龙臻,吕建平等.纳米氢氧化镁的结构表征和阻燃特性[J].半导体学报,2003,(24):81-84.
    [33]垣内智树,关口浩二等.中空纤维膜及其生产方法[P].CN:1306883A,2001.
    [34]田雁晨.相变储能材料[J].化学建材,2009,25(4):32-34.
    [35]崔海亭,袁修于等.蓄热技术的研究进展与应用[J].化工进展,2002,121(1):23-25.
    [36]张冬霞.相变材料在调温服装中的应用[J]针织工业,2007,3:28-31.
    [37]石海峰.微胶囊技术在蓄热调温纺织品中的应用[J].产业用纺织品,2001,19(12):1-5.
    [38]崔海亭,杨峰.储热技术及其应用[M].北京:化学工业出版社,2004,27.
    [39]Nagano K,Ogawa K,et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat[J]. Applied Thermal Engineering,2004,24 (2):221-232.
    [40]王鹏,姜龙等.相变储能材料的研究进展[J].化学工程与装备,2010,(1):150-157.
    [41]Mohammed M,Farid, et al.A review on Phase change energy storage:materials and applications[J].Energy Conversion and Management,2004,45(9-10):1597-1615.
    [42]Murat K,Khamid M. Solar Energy Storage Using Phase Change Materials[J]. Rene Sust Energ Re,2006,5:5-20.
    [43]张静,丁益民,陈念贻.相变储能材料的研究及应用[J].盐湖研究,2005,3(13):52-57.
    [44]蔡洪兵,税安泽等.新型相变材料的研究及展望[J].陶瓷学报,2008,29(4):379-383.
    [45]Xiaowu Wang, Enrong Lu, et al. Micromechanism of heat storage in a binary system of two kinds of polyacohols as solid-solid phase change material[J]. Energ Convers Manage,2000,(41):136.
    [46]丁文赢.新型聚合物基定形相变蓄热材料的制备及性能表征[D]:[硕士论文].北京:北京化工大学,2009.
    [47]Zalba B,Marin J M,et al.Review on thermal energy storage with Phase change:materials,heat transfer analysis and applications[J].Applied Thermal Engineering,2003,23(3):251-283.
    [48]蔡以兵.阻燃FSPCM及苯乙烯-丙烯腈基聚合物/粘土纳米复合材料的制备与性能研究[D]:[博士学位论文].合肥:中国科学技术大学,2007.
    [49]李金辉,刘晓兰等.新型相变储能材料研究进展[J].化工新型材料,2006,35(8):18-21.
    [50]Sharma A,Tyagi V V, et al.Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews,2009, 13(2):318-345.
    [51]Maha Ahmad,Andre Bontemps, et al. Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material[J].Energy and Buildings,2006,38(4):357-366.
    [52]Miroslaw,Zukowski.Experimetal study of short term thermal energy storage unit based on enclosed phase change material in polyethylene film bag[J].Energy Conversion and Management,2007,48(1):166-173.
    [53]K.Darkwa,P.W.O'Callaghan.Simulation of phase change drywalls in a passive solar building[J].Applied Thermal Engineering,2006,26(8-9):853-858.
    [54]Yoshinari T,Hiroshi Y, et al.Preparation of PCM microcapsules by using oil absorbable polymer particles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1-3):41-47.
    [55]李建立,薛平等.相变调温板材自调温效果研究[J].太阳能学报,2009,30(7):921-927.
    [56]叶宏,葛新石等.定形相变贮能材料及其制备方法[P].CN:1506434,2004.
    [57]Liu Xing,Liu Hongyan, et al.Preparation and thermal properties of form-stable paraffin phase change material encapsulation[J].Solar Energy,2006,80(12): 1561-1567.
    [58]Xiao M,Feng B,Gong K.Preparation and Performance of shape stabilized phase change thermal storage materials with high thermal conductivity[J].Energy Conversion and Management,2002,43(1):103-108.
    [59]胡大为,胡小芳,林丽莹.环氧树脂基含水定形相变材料制备[J].合成材料老化与应用,2006,35(3):12-15.
    [60]原小平,丁恩勇.纳米纤维素/聚乙二醇固-固相变材料的制备及其储能性能的研究[J].林产化学,2007,27(2):67-70.
    [61]Yibing Cai,Yuan Hu, et al.Preparation and flammability of high density Polyethylene/Paraffin/organophilic montmorillonite hybrids as a form stable phase change material [J].Energy Conversion and Management,2007,48(2): 462-469.
    [62]汪树军,刘星等.一种微胶囊封装定形相变材料的制备方法[P].CN:1657587,2005.
    [63]Sari A.Form-stable Paraffin/high density Polyethylene composites as solid-liquid phase change material for themal energy storage:preparation and thermal properties[J]. Energy Conversion and Management,2004,45(13-14):2033-2042.
    [64]李辉,方贵银.具有多孔基体复合相变储能材料研究[J].材料科学与工程学报,2003,21(6):842-844.
    [65]Zhang Y P,Lin K P,Yang R.Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings[J].Energy and Buildings,2006, 38(10):1262-1269.
    [66]郑立辉,宋光森等.石膏载体定形相变材料的制备及其热性能[J].新型建筑材料,2006,(1):49-50.
    [67]马银陈,周宁琳等.二元脂肪酸/蒙脱土复合相变储能材料的制备及性能研究[J].化工新型材料,2007,35(10):7-9.
    [68]张东,周剑敏等.颗粒型相变储能复合材料[J].复合材料学报,2004,21(5):103-109.
    [69]陈中华,肖春香.十二醇/蒙脱土复合相变储能材料的制备及性能研究[J].功能材料,2008,4:629-631.
    [70]M.N.A. Hawlader, M.S.Uddin, Mya Mya Khin. Microencapsulated PCM thermal-energy storage system[J].Applied Energy,2003,74:195-202.
    [71]Hawlader MNA,Uddin M S,Zhu H J.Preparation and Evaluation of A Novel Storage Material Microencapsulated Paraffin[J].Int.of Solar Energy,2000,20: 227-238.
    [72]李建立,薛平等.定形相变材料研究现状[J].化工进展,2007,26(10):1425-1428.
    [73]顾振亚,陈莉.智能纺织品设计与应用[M].北京:化学工业出版社,2006,57.
    [74]朱平.功能纤维及功能纺织品[M].北京:中国纺织出版社,2006,31.
    [75]Vigo,T.L.,Bruno,J.S..ImProvement of Various Properties of Fiber Surfaces Containing Crosslinked Polyethylene Glycols[J].Journal of Applied Polymer Science,1989,37(2):371-379.
    [76]王玮玲.相变纤维的性能与表征[D]:[硕士论文].上海:东华大学,2004.
    [77]陈利丽,胡敬海等.水性涂层胶涂层整理常见问题分析及对策[J].印染助剂,2009,26(2):49-50.
    [78]闫丽佳.相变材料微胶囊的制备与应用[D]:[硕士论文].北京:北京服装学院,2009.
    [79]潘云芳.聚氨酯干法涂层的应用[J].南通纺织职业技术学院学报,2002,2(3):37-39.
    [80]王建平,张兴祥.相变材料微胶囊研究进展[J].材料导报,2007,21(4):107-110.
    [81]Pause,B-Development of Heat and Cold Insulating Membrane Structures with Phase Change Material[J].Journal of Coated Fabries,1995,25(7):59-68.
    [82]Jurg,R.Interactive textiles regulate body temperature[J]. Intern Textile Bullerin, 1999,45(1):58-59.
    [83]王春莹,张兴样.调温微胶囊的研制[J].印染,2002,(6):13-18.
    [84]Hansen,C.D..Temperature-adaptable Fabries[P].USA:3607591,1971.
    [85]Vigo,T.L.,Frost,C.M.. Temperature-adaptable fabries[J].Textile Res.Institute,1985, 12:737-743.
    [86]于俊荣,陈自力等.高密度聚乙烯熔纺纤维的拉伸工艺[J].合成纤维工业,1999,22(2):1-5.
    [87]张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2006,162-167.
    [88]沈新元.高分子材料加工原理[M].北京:中国纺织出版社,2006,241-242.
    [89]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1998,263/275-276.
    [90]李文刚,戴钧明,黄象安.PET-PBT共聚酯的流变性能研究[J].合成纤维,2001,07(30):16.
    [91]邹汉涛,徐卫林等.PTT-PBT共聚酯的流变性能研究[J].天津工业大学学报,2008,2(27):6.
    [92]Wang B, Li CY, et al. Poly (trimethylene terephthalate) crystal structure and morphology in different length scales [J]. Polymer,2001,42:7171.
    [93]Bassett D C.Principles of polymer morpholog [D]:[Doctoral Thesis].Cambridge: Cambridge University Press,1981.
    [94]李玉蓉,夏定国等.石蜡类复合定形相变材料的制备研究[J].化工技术与开发,2007,36(8):4-7.
    [95]刘星,刘红研,汪树军.石蜡定形相变材料的包裹及热性能[J].精细化工,2006,23(1):8-11.
    [96]Song Qingwen,Li Yi, et al.Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J].Polymer,2007,48 (11):3317-3323.
    [97]Zhang Dong,Tian Shengli,Xiao Deyan.Experimental study on the phase change behavior of phase change material confined in pores[J].Solar Energy,2007,81(5): 653-660.
    [98]Cemil Alkan,Ahmet Sari.Fatty acid/poly(methyl methacrylate)(PMMA)blends as form-stable phase change materials for latent heat thermal energy storage[J].Solar Energy,2008,82(2):118-124.
    [99]范璐,王美美等.涂石蜡大米傅立叶变换红外吸收光谱识别分析[J].分析试验室,2007,26(12):22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700