AlN基荧光材料的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在20世纪末,日本的LED产业巨头开发出了应用高亮度GaN蓝色发光二极管(light emitting diode,简称LED)为基础,涂覆黄色荧光粉YAG:C(?)产生白光的照明器件。相比于白炽灯和荧光灯,固态LED光源具有很多优点,包括:安全性高(LED使用低压电源)、节能(消耗能量较同光效的白炽灯减少80%)、适用性很强(每个单元LED芯片可小至0.2mmm,也可大到正在发展的10cm以上)、寿命长(10万小时,光衰为初始的50%)、响应时间短(白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级)、环保(无有害金属汞)等优点,因此,LED被称为第三代照明技术,在各个领域的应用越来越广泛,我国也出台了很多优惠政策加快LED产业的研发。
     在普通照明领域,获得类似于太阳光的白光照明是人们的关注焦点。目前实现白光LED的主要方式有:(1)全芯片结构,即用红绿蓝三基色的LED芯片组合在一起,形成一个发光矩阵;(2)单芯片结构。利用蓝光LED和可被蓝光激发的黄色荧光粉或者红、绿荧光粉,这样形成了蓝光加黄光、蓝光加红绿光的白光产生形式。也可采用利用紫外LED和可被紫外LED激发的红绿蓝荧光粉,三基色组合成白光。多芯片发光不仅成本高,而且各个芯片的发光效率也很难相同,难以获得色温合适的日光器件。此外,多芯片集成的器件,热量的积聚会导致LED芯片的光衰,CIE色坐标和色温也会发生偏移。因此,现阶段主流是单芯片加荧光粉的白光实现方式。荧光粉在白光LED中起着举足轻重的作用,其发光效率、发光性质和稳定性直接决定着LED器件的性能。
     传统的荧光粉主要是铝酸盐、硅酸盐、硫化物等。近年来,相继发现了发光离子掺杂氧氮化物基质的新型荧光材料,例如红色荧光粉M2Si5N8:Eu2+(M=Ca, Sr,Ba)、MAlSiN3:Eu2+(M=Ca,Sr),绿色荧光粉MSi2O2N2:Eu2+(M=Ca, Sr, Ba)和AlON:Mn2+, Mg2+、黄色荧光粉Ca-a-SiAlON:Eu2+,蓝色荧光粉AlN:Eu2+等。氧氮化物基质中,金属发光离子处在O/N离子组成的网络结构中,具有优异的化学和热稳定性,同时一般用于发光的稀土离子(Eu2+, Ce3+等)的5d能级裸露于离子外层,在晶格场的作用下会发生不同程度的分裂,N3-的电荷数高于O2-且N3-具有更强的共价性,从而富氮的晶体场环境能够引起较大的电子云重排效应(Nephelauxetic effect),导致发光离子(Eu2+, Ce3+等)的5d电子能级发生更大分裂,4f-5d跃迁能量向长波方向移动,荧光粉的激发和发射光谱发生红移,与蓝光LED匹配,产生黄光或红光。同时,可以调控基质晶格中的O/N比例,获
     得不同发射波长的荧光粉。因此氧氮化物荧光粉是白光LED用的理想荧光转换材料,本文主要探讨了AlN基(AlN和AlON)荧光材料的结构和发光性质,研究制备条件、晶体结构、发光性能的关系,并进行了理论计算,阐述稀土离子的发光机理。
     本文分为八章,第一章绪论部分介绍了照明发展历史和部分荧光粉,着重介绍了AlN基荧光材料的结构和发光性质。第二章为实验部分,介绍原料、设备、表征方法。
     第三章报道了通过碳热还原法合成了纯AIN:Eu2+荧光粉。系统研究了反应温度、保温时间、Eu2+掺杂浓度和C含量对AIN:Eu2+荧光粉晶体结构和发光性质的影响,结果表明在较低的1750℃下保温8小时是获得高纯、高发光强度荧光粉的最优条件;证明了Eu2+在单独掺杂AlN时,也可以固溶进AlN晶格,这是因为利用碳热还原法却可以获得低氧含量的AIN:Eu2+粉体,没有条件形成铝酸盐,因此可以获得纯AIN:Eu2+荧光粉;AIN:Eu2+荧光粉在紫外光激发下,发射出470nm左右的蓝光,来自于Eu2+的5d-4f跃迁,并可通过改变起始粉料中的C含量,使发射峰从蓝光波段调控至绿光波段;研究了了不同种类的助溶剂对AIN:Eu2+荧光粉晶体结构和发光性质的影响,表明BaF2可以有效促进AlN的结晶和提高荧光粉的发光强度。
     第四章介绍了利用气相还原法,可以获得极低氧含量、无C残留的高纯AlN:Eu2+荧光粉,在紫外光激发下发出540nm左右的绿光,相比于碳热还原法制备的荧光粉发射波长出现了明显红移。这是因为N的电子云膨胀效应,导致Eu2+的5d能级产生更大的劈裂。通过EDS、HRTEM、ED、EXAFS测试结果,证实了Eu取代了AlN中的Al格位。由于Eu2+和Al3+两者的半径相差太大,所以Eu的固溶度非常低,而且不可避免地会有Eu3+的存在。理论计算的结果与实验符合的非常好,进一步证实了Eu取代A1N晶格中的Al这一结论,从(P) DOS谱上可以看出,Eu的5d、Eu的6p以及Al的4s和4p态都对荧光粉的发光都有贡献。此外,初步探讨了AlN:Mn2+荧光粉的结构、发光性质和Mn在AlN晶格中的格位。
     第五章介绍了固相反应法制备的AlON:Eu2+和AlON:Eu2+, Mg2+荧光粉的结构和发光性质,在紫外光激发下,AlON:Eu2+,Mg2+荧光粉发射出非常强烈的490nm左右的蓝绿光。在Eu单掺AlON时,Eu并不能掺入AlON晶格,在Eu, Mg共掺AlON时,Eu便可固溶进AlON晶格,这可能是因为Mg的掺杂导致AlON晶格扩大,利于Eu的掺入。
     第六章报道了碳热还原法制备AlON:Eu2+, Mg2+荧光粉,相较于固相反应法,利用碳热还原法,可以在低温下制备得到AlON:Eu2+, Mg2+荧光粉。此外,碳热还原法制备的荧光粉颗粒小、杂相少、Eu2+含量多并且更多的Eu2+固溶进AlON晶格,这些因素导致荧光粉的发光强度远远大于固相反应法制备的荧光粉,且高于在365nm激发下的商业粉BAM。荧光粉的发光波长可通过改变起始粉料中的C含量,从蓝光调控至绿光区域。
     第七章报道了利用高能球磨工艺首次制备纯相的AlON:Eu2+,Mg2+荧光粉。在高能球磨过程中,起始粉体不断非晶化以达到原子尺度上均匀混合,粉体的反应活性得到提高,在较低的反应温度下,即可得到纯AlON:Eu2+,Mg2+荧光粉。Eu2+的固溶度从碳热还原法中的0.2%扩大到0.5%,并且具有更好的发光强度。
     第八章对Al2O3-AlN体系中存在的的多形体进行了展望,并以Al7O3N5为例,结果证明了可以在高温下合成Al7O3N5:Eu2+荧光粉,在紫外光激发下,发出高强度的460nm的蓝光,并对全文进行了总结。
In the end of20th centrury, LED industry leader of Japan developed a white luminescence device based on high bright GaN LED coated a yellow phosphor YAG: Ce3+. Compared with Incandescent bulb and fluorescent lamp, LED has many advantages, such as high safety (low voltage used), energy saving (reduced by80%compared with incandescent lamp), strong applicability (each LED size:0.2mm-10cm), long life (in100000hours, luminescence degration remains50%), short response time (LED:-ns, incandescent lamp:ms) and Environmental protection (Without harmful mercury). So LED is called the third generation luminescence technology, which is being applied in wide area. Besides, our country has introduced many preferential policies to speed up the development of LED industry. In genery lighting field, how to get white light similar to sunlight attracts people's attention. Nowdays, the ways to generate white light are:(1) full LED chips structure, which is the combination of red, green, blue three LED chip, forming a luminous matrix;(2) single LED chip. Blue LED is coated by yellow phosphor or red, green phosphor, which can be excited by blue light. Yellow and blue light or red, green, blue light can generate white light. Another way is the use of UV-LED coated by red, green and blue phosphor, which can be excited bu UV ray. Full chips cost too much and they have different luminous efficiency, leading to an improper colour temperature in lighting device. Full chips also make heat accumulation, which leads to a luminescence degration and a shift of CIE color coordinates and colour temperature. Therefore, the potential realization method is a single LED chip combined with phosphors.
     Traditional phosphors are majorly Sulfide, aluminate, Portland and so on. In recent years, some novel oxynitride based phosphors have been developed, such as red phosphors M2Si5N8:Eu2+(M=Ca, Sr, Ba) and MAISiN3:Eu2+(M=Ca,Sr), green phosphor MSi2O2N2:Eu2+(M=Ca, Sr, Ba)and AlON:Mn2+, Mg2+, yellow phosphor Ca-a-SiAlON:Eu2+and blue phosphor AlN:Eu2+.For oxynitrides, metal ions are located in the O/N network, which make phosphors excellent chemical and thermal stability.5d energy level of rare earth(Eu2+, Ce3+) is bare in the crystal field and will split to a different degree. The charge of N3-is more than O2-and N3-shows stronger covalence. An N-rich crystal environment will cause larger Nephelauxetic effect, which leads to a larger5d split.4f-5d transitions will shift to longer wavelength. The redshift of excitation and emission spectra can be observed. Matched with blue LED, phosphors will exibit yellow or red emission. Meanwhile, the emission wavlength can be adjusted by changing O/N ratio in the matrix. So oxynitride phosphors are ideal Fluorescence conversion materials used in white LED. This paper majorly talks about structure and luminescence of AlN based phosphors (AlN and AlON). The relationship of preparation conditions, crystal structure, and luminous property is researched. The theoretical calculation is adopted to explain the luminescence mechanism.
     This paper includes8chapters. The introduction as the first chapter starts with a description of the lighting history, part phosphors and mainly focus on the structure and optical property of AlN based phosphors. Chapter2is the experimental procedure, including raw materials, synthesis equipments, and characterization methods.
     In chapter3, single phase AlN:Eu2+phosphor is obtained by carbothermal reduction method. The effect of reaction temperature, holding time, Eu2+concentration and C content on the structure and optical property of AlN:Eu2+phosphor is systematically researched. The results indicate low synthesis temperature1750℃and holding time8h is the optimal condition for the syethesis of pure and high luminous phosphors, which proves Eu2+can be dissolved into AlN without other ions co-doping. AlN:Eu2+powders with low oxygen content are achived by carbothermal reduction. It seems easy to get pure AlN:Eu2+phosphor because Aluminate is impossible to generate in this process. Under UV excitation, AlN:Eu2+shows blue emission at470nm, which is ascribed to5d-4f transition of Eu2+. The result indicates1750℃for8h is the optimal condition for the synthesis of AlN:Eu2+with high purity and luminescence intensity. The emission can be adjusted from blue to green band by changing C content in the rew materials. The effect of different fluxes on the structure and optical property of AlN:Eu2+is researched, indicating BaF2can effectively promotes the crystallinity of AlN and increases the luminecnce intensity.
     In chapter4, high pure AlN:Eu2+phosphor with extreamly low oxygen content and no residual carbon is obtained by a novel gas reduction route. Under UV excitation, a green emission at540nm is observed. Compared with the emission in AlN:Eu2+phosphor prepared by carbothermal reduction, it shows a redshift here, which is due to larger5d split caused by nephelauxetic effect of N3-. EDS, HRTEM, ED and EXAFS results proves Eu substitution for Al sites in AlN crystal llatice. Because of the large different radius between Eu2+and Al3+, the solid solubility must be very low and Eu3+unavoidabley coexist in the products. The theoretical calculation result agrees well with the experimental, further proving that Eu2+ions occupy A13+sites.(P)DOS spectra show Eu5d, Eu6p, Al4s and Al4p all contribute to the luminescence of AlN:Eu2+phosphor. Besides, The structure and optical property and Mn location in AlN:Mn2+phosphor are also simply discussed.
     Chapter5reports the structure and optical property of AlON:Eu2+and AlON:Eu2+, Mg2+phosphors synthesized by solid-state reaction. Under UV excitation, AlON: Eu2+, Mg2+phosphor show very strong blue-green emission at490nm. In single Eu doped AlON. It is found Eu can't dissolve into AlON crystal lattice. But with the favor of Mg co-doping, the result is inverse, which is possiblely dute to expanded crstal lattice afer Mg doping.
     In chapter6, AlON:Eu2+, Mg2+phosphor is synthesized by carbothermal reduction method, which shows a character of low synthesis temperature compared with solid-state reaction. Besides, the phosphor synthesized by carbothermal reduction show much higher luminescence intensity than that by solid-state reaction due to the smaller particle size, better purity, laiger Eu2+ratio and more Eu2+content dissolved into AlON crystal lattice. Under the some365nm excitation, AlON:Eu2+, Mg2+phosphor shows better optical property, compared with famous commercial BAM phosphor.
     In chapter7, single phase AlON:Eu2+, Mg2+phosphor is firstly obtained by high-energy ball mill route. In the process of mechachemical acticvation, decrystallizatoin and homogeneous mixing at an atom scale is gradualy achived in the starting materials. The reaction activation of the powders is greatly improved, resulting pure AlON:Eu2+, Mg2+phosphor under a low synthesis temperature. The solid solubility of Eu2+in Mg-AION increases from0.2%in products prepared by carbothermal reduction to0.5%here, also leading a better luminescence intensity.
     Chapter8gives an outlook related polyroid in Al2O3-AIN system. Taken Al7O3N5as an example, the result proves Al7O3N5:Eu2+phosphor can be synthesized under high temperature, which is a blue phosphor with a emission460nm under UVexcitation. Furthermore, it is summarized through the full text.
引文
1孙家跃,杜海燕,胡文祥,“固体发光材料.”北京:化学工业出版社,2003,1-100.
    J. Y. Sun, J. B. Xian, Z. G. Xia et al., "Synthesis, structure and luminescence properties of Y(V,P)O4:Eu3+,Bi3+ phosphors," Journal of Luminescence 130 (10),1818-1824.
    3 B. V. Rao, Y. T. Nien, W. S. Hwang et al., "An Investigation on Luminescence and Energy Transfer of Ce3+ and Tb3+ in Ca3Y2Si3O12 Phosphors," Journal of the Electrochemical Society 156 (11), J338-J341 (2009).
    4 V. Natarajan, A. R. Dhobale, C. H. Lu, "Preparation and characterization of tunable YVO4: Bi3+, Sm3+ phosphors," Journal of Luminescence 129 (3),290-293 (2009).
    5 C. H. Lu, S. V. Godbole, M. Qureshi, "Luminescence and energy transfer characteristics of Tb3+-and Ce3+-codoped BaBPO5 phosphors," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45 (4A),2606-2611 (2006).
    6 G. H. Li, S. Lan, L. L. Li et al., "Tunable luminescence properties of NaLa(MoO4)2:Ce34,Tb3+ phosphors for near UV-excited white light-emitting-diodes," Journal of Alloys and Compounds 513,145-149.
    7 G. G. Li, D. L. Geng, M. M. Shang et al., "Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2through energy transfer and modulation of excitation:potential single-phase white/yellow-emitting phosphors," Journal of Materials Chemistry 21 (35),13334-13344.
    8 K. H. Kwon, W. Bin Im, H. S. Jang et al., "Luminescence Properties and Energy Transfer of Site-Sensitive Ca6-x-yMgx-z(PO4)4:Euy2+,Mnz2+ Phosphors and Their Application to Near-UV LED-Based White LEDs," Inorganic Chemistry 48 (24),11525-11532 (2009).
    9 G. F. Ju, Y. H. Hu, L. Chen et al., "Luminescent properties of Na3Gd1-xEux(PO4)2 and energy transfer in these phosphors," Journal of Alloys and Compounds 509 (18), 5655-5659.
    10 R. S. Liu, Y. H. Liu, N. C. Bagkar et al., "Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+ and Dy3+ ions," APPLIED PHYSICS LETTERS 91 (6) (2007).
    11 K. Wang, R. W. Martin, K. P. O'Donnell et al., "Selectively excited photoluminescence from Eu-implanted GaN," APPLIED PHYSICS LETTERS 87 (11) (2005).
    12 S. Sahai, M. Husain, V. Shanker et al., "Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots," Journal of Colloid and Interface Science 357 (2),379-383.
    13 H. Qu, L. X. Cao, G. Su et al., "Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles," Journal of Applied Physics 106 (9) (2009).
    14 A. Parada, M. Ponce-Silva, M. A. Juarez et al., in 2008 leee Power Electronics Specialists Conference, Vols 1-10 (2008), pp.483-486.
    15 M. Jang, S. M. Hong, J. K. Park, "Characterization and recovery of mercury from spent fluorescent lamps," Waste Management 25 (1),5-14 (2005).
    16 P. E. Hartman and W. H. Biggley, "Breakthrough of ultraviolet light from various brands of fluorescent lamps:Lethal effects on DNA repair-defective bacteria," Environmental and Molecular Mutagenesis 27 (4),306-313 (1996).
    17 S. Chen, C. M. Lo, M. K. Foo et al., Testing of fluorescent lamps for its flickering susceptibility towards interharmonic voltages. (2007), pp.326-331.
    18 Y. F. Wang, X. Xu, L. J. Yin et al., "High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+ Phosphors," Journal of the American Ceramic Society 93 (6),1534-1536.
    19 Jia-Ye Tang, Wen-Jie Xie, Kai Huang et al., "A High Stable Blue BaSi3Al3O4N5:Eu2+ Phosphor for White LEDs and Display Applications," Electrochemical and Solid-State Letters 14 (8), J45-J47.
    20 A. F. Khan, D. Haranath, R. Yadav et al., "Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layers," APPLIED PHYSICS LETTERS 93 (7) (2008).
    21 S. L. Jones, D. Kumar, R. K. Singh et al., "Luminescence of pulsed laser deposited Eu doped yttrium oxide films," APPLIED PHYSICS LETTERS 71 (3),404-406 (1997).
    22 Y. C. Kang, H. S. Roh, S. Bin Park, "Preparation of Y2O3:Eu phosphor particles of filled morphology at high precursor concentrations by spray pyrolysis," Advanced Materials 12 (6),451-+(2000).
    23 J. L. Sommerdijk and J. M. P. J. Verstegen, "Concentration dependence of the Ce3+and Tb3+ luminescence of Ce1-xTbxMgAl11O19," Journal of Luminescence 9 (5),415-419 (1974).
    24 J. M. P. J. Verstegen, J. L. Sommerdijk, J. G. Verriet, "Cerium and terbium luminescence in LaMgAl11O19," Journal of Luminescence 6 (5),425-431 (1973).
    25 J. L. Sommerdijk, J. A. W. van der Does de Bye, P. H. J. M. Verberne, "Decay of the Ce3+ luminescence of LaMgAl11O19:Ce3+ and of CeMgAl11O19 activated with Tb3+ or Eu3+," Journal of Luminescence 14 (2),91-99 (1976).
    26 Lixin Yu, Hongwei Song, Zhongxin Liu et al., "Remarkable improvement of brightness for the green emissions in Ce3+ and Tb3+ co-activated LaPO4 nanowires," Solid State Communications 134 (11),753-757 (2005).
    27 Philibert Iacconi, Michel Junker, Bernard Guilhot et al., "Thermoluminescence of a mixed rare earth phosphate powder La1-x-yCexTbyPO4," Optical Materials 17 (3),409-414 (2001).
    28 C. K. Lin, M. Yu, M. L. Pang et al., "Photoluminescent properties of sol-gel derived (La,Gd)MgB5O10:Ce3+/Tb3+ nanocrystalline thin films," Optical Materials 28 (8-9), 913-918(2006).
    29 T. Moon, G. Y. Hong, H. C. Lee et al., "Effects of Eu2+Co-Doping on VUV Photoluminescence Properties of BaMgAl10O17:Mn2+ Phosphors for Plasma Display Panels," Electrochemical and Solid State Letters 12 (7), J61-J63 (2009).
    30 S J Dhoble, "Preparation and characterization of the Sr5(PO 4) 3 Cl:Eu2+ phosphor," Journal of Physics D:Applied Physics 33 (2),158 (2000).
    31 S. X. Zhang, T. Kono, A. Ito et al., "Degradation mechanisms of the blue-emitting phosphor BaMgAl10O17:Eu2+under baking and VUV-irradiating treatments," Journal of Luminescence 106 (1),39-46 (2004).
    32 Thomas Justel, Helmut Bechtel, Walter Mayr et al., "Blue emitting BaMgAl10O17:Eu with a blue body color," Journal of Luminescence 104 (1-2),137-143 (2003).
    33 I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, "Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys," Journal of Applied Physics 89 (11),5815-5875 (2001).
    34 S. Strite and H. Morkoc, "GAN, AIN, AND INN-A REVIEW," Journal of Vacuum Science & Technology B 10 (4),1237-1266 (1992).
    35 S. Nakamura, T. Mukai, M. Senoh, "CANDELA-CLASS HIGH-BRIGHTNESS INGAN/ALGAN DOUBLE-HETEROSTRUCTURE BLUE-LIGHT-EMITTING DIODES," APPLIED PHYSICS LETTERS 64 (13),1687-1689 (1994).
    36 G. Gustafsson, Y. Cao, G. M. Treacy et al., "FLEXIBLE LIGHT-EMITTING-DIODES MADE FROM SOLUBLE CONDUCTING POLYMERS," Nature 357 (6378),477-479 (1992).
    37 T. Taguchi, "Present status of energy saving technologies and future prospect in white LED lighting," leej Transactions on Electrical and Electronic Engineering 3 (1),21-26 (2008).
    38 Y. Berencen, Josep Carreras, O. Jambois et al., "Metal-nitride-oxide-semiconductor light-emitting devices for general lighting," Opt. Express 19 (S3), A234-A244.
    39 J. F. Van Derlofske and M. McColgan, in Solid State Lighting Ii, edited by I. T. Ferguson, N. Narendran, S. P. DenBaars et al. (2002), Vol.4776, pp.195-205.
    40 C. H. Tsuei, J. W. Pen, W. S. Sun, "Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design," Optics Express 16 (23), 18692-18701 (2008).
    41 H. Nakamura, "RECENT DEVELOPMENT OF WHITE LEDS AND SOLID STATE LIGHTING," Light & Engineering 17 (4),13-17 (2009).
    42 Y. Narukawa, J. Narita, T. Sakamoto et al., "Ultra-high efficiency white light emitting diodes," Japanese Journal of Applied Physics Part 2-Letters & Express Letters 45 (37-41), L1084-L1086(2006).
    43 K. Wang, F. Chen, Z. Y. Liu et al., NOVEL APPLICATION-SPECIFIC LED PACKAGES INTEGRATED WITH COMPACTFREEFORMLENS, pp.685-691.
    44 M. T. Lin, C. C. Chang, R. H. Horng et al., Heat Dissipation Performance for the Application of Light Emitting Diode. (2009), pp.145-149.
    45 H. K. Ji, K. S. Jung, U. Y. Jang et al., Application of High Brightness LED for Shipboard Light Source. (2009), pp.82-86.
    46 K. M. Huang, in Test and Measurement Applications of Optoelectronic Devices, edited by A. K. Chin, N. K. Dutta, R. W. Herrick et al. (2002), Vol.4648, pp.148-155.
    47 S. W. S. Chi, T. P. Chen, C. C. Tu et al., in Third International Conference on Solid State Lighting, edited by I. T. Ferguson, N. Narendran, S. P. DenBaars et al. (2004), Vol.5187, pp.161-170.
    48 L. Boxler, in Eleventh International Conference on Solid State Lighting, edited by M. H. Kane, C. Wetzel, and J. J. Huang, Vol.8123.
    49 I. Niki, Y. Narukawa, D. Morita et al., in Third International Conference on Solid State Lighting, edited by I. T. Ferguson, N. Narendran, S. P. DenBaars et al. (2004), Vol.5187, pp.1-9.
    50 K. Li and C. Y. Shen, in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies:Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology, edited by Y. Jiang, B. Kippelen, and J. Yu, Vol.7658.
    51 X. K. Xu, W. Z. Zhu, Z. J. Wang et al., "Accumulation of rare earth elements in maize plants (Zea mays L.) after application of mixtures of rare earth elements and lanthanum," Plant and Soil 252 (2),267-277 (2003).
    52 D. Z. Wang, Q. Wan, Y. C. Yang, "Research and development of rare earth advanced materials in China," Journal of Rare Earths 14 (3),223-230 (1996).
    L. Liu, L. Q. Zhang, S. H. Zhao et al., "Review on rare earth/polymer composite," Journal of Rare Earths 20 (4),241-248 (2002).
    J. J. Zhang, J. W. Zhai, X. J. Chou et al., "Influence of rare-earth addition on microstructure and dielectric behavior of BaO6SrO4TiO3 ceramics," Materials Chemistry and Physics 111 (2-3),409-413 (2008).
    55 G P. Li, T. S. Sun, J. H. Qian, "Cluster based strategy to improve competitiveness of rare earth industry in China-Taking emerging rare earth industry cluster in Baotou as an example," Journal of Rare Earths 23,574-580 (2005).
    56 J. K. Kar, R. Stevens, C. R. Bowen, "Rare-earth cuprates for ceramic colouring application-An investigation," Journal of Alloys and Compounds 455 (1-2),121-129 (2008).
    57 J. A. Capobianco, F. Vetrone, J. C. Boyer et al., "Enhancement of red emission (F-4(9/2)-> 1-4(15/2)) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+," Journal of Physical Chemistry B 106 (6),1181-1187 (2002).
    58 Yajuan Sun, Yue Chen, Lijin Tian et al., "Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals," Journal of Luminescence 128 (1),15-21 (2008).
    59 R. J. Xie, N. Hirosaki, M. Mitomo et al., "Wavelength-tunable and thermally stable Li-alpha-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes," APPLIED PHYSICS LETTERS 89 (24) (2006).
    60 R. J. Xie and N. Hirosaki, "Silicon-based oxynitride and nitride phosphors for white LEDs-A review," Science and Technology of Advanced Materials 8 (7-8),588-600 (2007).
    61 T. Igarashi, M. Ihara, T. Kusunoki et al., "Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor," APPLIED PHYSICS LETTERS 76 (12), 1549-1551 (2000).
    62 Xu Li, Zhiping Yang, Li Guan et al., "Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method," Journal of Crystal Growth 310 (12),3117-3120 (2008).
    63 William W. Beers and Thomas G. Parham, "Fluorescent lamp containing aluminate phosphor Patent 4638214," (1987).
    64 A. Gary Sigai, Michael N. Alexander, Charles W. Struck, "Process for producing lanthanum cerium aluminate phosphors Patent 4818433," (1989).
    65 A. Gary Sigai, Michael N. Alexander, Charles W. Struck, "Process for production of lanthanum cerium aluminate phosphors Patent 5169557 " (1992).
    66 Robert W. Wolfe, "Ultraviolet emitting Ce alkaline earth aluminate lamp phosphors and lamps utilizing same Patent 4246630 " (1981).
    67 Yi Dong, Ning Wang, Shifan Cheng et al., "Aluminate-based blue phosphors Patent 7390437," (2008).
    68 Robert W. Wolfe, "Ultraviolet emitting CeYMg aluminate fluorescent lamp phosphor for psoriasis treatment Patent 4153572 " (1979).
    69 M. Veith, S. Mathur, A. Kareiva et al., "Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods," Journal of Materials Chemistry 9 (12),3069-3079 (1999).
    70 Y. X. Pan, M. M. Wu, Q. Su, "Tailored photoluminescence of YAG:Ce phosphor through various methods," Journal of Physics and Chemistry of Solids 65 (5),845-850 (2004).
    71 R. P. Rao, "Preparation and characterization of fine-grain yttrium-based phosphors by sol-gel process," Journal of the Electrochemical Society 143 (1),189-197 (1996).
    72 C. D. Marshall, J. A. Speth, S. A. Payne et al., "ULTRAVIOLET-LASER EMISSION PROPERTIES OF CE3+-DOPED LISRALF6 AND LICAALF6," Journal of the Optical Society of America B-Optical Physics 11 (10),2054-2065 (1994).
    73 Y. H. Zhou, J. Lin, M. Yu et al., "Synthesis-dependent luminescence properties of Y3Al5O12:Re3+(Re=Ce, Sm, Tb) phosphors," Materials Letters 56 (5),628-636 (2002).
    74 Y. C. Kang, I. W. Lenggoro, S. B. Park et al., "YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis," Materials Research Bulletin 35 (5),789-798 (2000).
    75 Malgorzata Sopicka-Lizer, Daniel Michalik, Julian Plewa et al., "The effect of Al-O substitution for Si-N on the luminescence properties of YAG:Ce phosphor," Journal of the European Ceramic Society (0).
    76 S. K. Hong, H. Y. Koo, S. H. Ju et al., in Advances in Nanomaterials and Processing, Pts 1 and 2, edited by B. T. Ahn, H. Jeon, B. Y. Hur et al. (2007), Vol.124-126, pp.419-422.
    77 H. S. Jang, L. H. Kano, Y. H. Won et al., "Origin of the discrepancy between photoluminescence brightness of TAG:Ce and electroluminescence brightness of TAG:Ce-based white LED expected from phosphor brightness," Optics Letters 33 (18), 2140-2142 (2008).
    78 S. W. Mhin, J. H. Ryu, K. M. Kim et al., "Pulsed-Laser-Induced Simple Synthetic Route for Tb3Al5O12:Ce3+ Colloidal Nanocrystals and Their Luminescent Properties," Nanoscale Research Letters 4 (8),888-895 (2009); M. Batentschuk, A. Osvet, G. Schierning et al., "Simultaneous excitation of Ce+ and Eu3+ ions in Tb3Al5O12," Radiation Measurements 38 (4-6),539-543 (2004).
    79 A. L. N. Stevels, "Ce3+ Luminescence in Hexagonal Aluminates Containing Large Divalent or Trivalent Cations," Journal of the Electrochemical Society 125 (4),588-594 (1978).
    80 A. L. N. Stevels and A. D. M. Schrama-de Pauw, "Effects of defects on the quantum efficiency of Eu2+-doped aluminates with the magnetoplumbite-type crystal structure," Journal of Luminescence 14 (2),147-152 (1976).
    81 A. L. N. Stevels and A. D. M. Schrama-de Pauw, "Eu2+ Luminescence in Hexagonal Aluminates Containing Large Divalent or Trivalent Cations," Journal of the Electrochemical Society 123 (5),691-697 (1976).
    82 H. T. Hintzen, R. Hanssen, S. R. Jansen et al., "On the existence of europium aluminum oxynitrides with a magnetoplumbite or beta-alumina type structure," Journal of Solid State Chemistry 142 (1),48-50 (1999).
    83 M. Handke and W. Jastrzebski, "Vibrational spectroscopy of the ring structures in silicates and siloxanes," Journal of Molecular Structure 704 (1-3),63-69 (2004).
    84 A. Nag and T. R. N. Kutty, "The light induced valence change of europium in Sr2Si04 Eu involving transient crystal structure," Journal of Materials Chemistry 14 (10), 1598-1604(2004).
    85 J. K. Park, K. J. Choi, C. H. Kim et al., "Optical properties of Eu2+-activated Sr2Si04 phosphor for light-emitting diodes," Electrochemical and Solid State Letters 7 (5), H15-H17(2004).
    86 J. K. Park, C. H. Kim, K. J. Choi et al., in Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 and 2, edited by S. G. Kang and T. Kobayashi (2004), Vol.449-4, pp.953-956.
    87 J. K. Park, M. A. Lim, C. H. Kim et al., "White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties," APPLIED PHYSICS LETTERS 82 (5), 683-685 (2003).
    88 H. G. Kang, J. K. Park, J. M. Kim et al., in Advances in Nanomaterials and Processing, Pts I and 2, edited by B. T. Ahn, H. Jeon, B. Y. Hur et al. (2007), Vol.124-126, pp. 511-514.
    89 J. K. Park, K. J. Choi, J. H. Yeon et al., "Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3Si05:Eu phosphor," APPLIED PHYSICS LETTERS 88 (4) (2006).
    90 M. P. Saradhi and U. V. Varadaraju, "Photoluminescence studies on Eu2+-activated Li2SrSi04-a potential orange-yellow phosphor for solid-state lighting," Chemistry of Materials 18 (22),5267-5272 (2006).
    91 Y. H. Lin, C. W. Nan, X. S. Zhou et al., "Preparation and characterization of long afterglow M2MgSi207-based (M:Ca, Sr, Ba) photoluminescent phosphors," Materials Chemistry and Physics 82 (3),860-863 (2003).
    92 J. S. Kim, K. T. Lim, Y. S. Jeong et al., "Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes," Solid State Communications 135 (1-2),21-24 (2005).
    93 J. S. Kim, Y. H. Park, J. C. Choi et al., "Temperature-dependent emission spectrum of Ba3MgSi208:Eu2+, Mn2+ phosphor for white-light-emitting diode," Electrochemical and Solid State Letters 8 (8), H65-H67 (2005).
    94 J. S. Kim, P. E. Jeon, J. C. Choi et al., "Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor," APPLIED PHYSICS LETTERS 84 (15),2931-2933 (2004).
    95 Z. P. Yang, Y. F. Lu, L. W. Wang et al., "Luminesce properties of the single white emitting phosphor Eu2+, Mn2+ co-doped Ca2SiO3C12," Acta Phys. Sin.56 (1),546-550 (2007).
    96杨志平,李盼来,王志军et al.,“白光LED用单一基质Ca10(Si2O7)3C12:Eu2+,Mn2+白色发光材料特性研究,”科学通报54(13),1855-1859(2009).
    97 Guang Cheng, Xiaoyan Wei, Liqun Cheng et al., "Effects of RE3+(RE= La, Ce, Pr, Sm, Dy, Ho, Er, and Tm) on the luminescence of Sr2MgSiO5:Eu2+phosphors," Rare Metals 30 (1),14-17(2011).
    98 C. C. Lin, Y. S. Zheng, H. Y. Chen et al., "Improving Optical Properties of White LED Fabricated by a Blue LED Chip with Yellow/Red Phosphors," Journal of the Electrochemical Society 157 (9), H900-H903.
    99 Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel et al., "Luminescence properties of red-emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED conversion phosphors," Journal of Alloys and Compounds 417 (1-2),273-279 (2006).
    100 R. J. Xie, N. Hirosaki, T. Suehiro et al., "A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes," Chemistry of Materials 18 (23),5578-5583 (2006).
    101 H. L. Li, R. J. Xie, N. Hirosaki et al., "Synthesis and Luminescence Properties of Orange-Red-Emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2," International Journal of Applied Ceramic Technology 6 (4),459-464 (2009).
    102 X. Q. Piao, T. Horikawa, H. Hanzawa et al., "Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination," APPLIED PHYSICS LETTERS 88 (16) (2006).
    103 L. Liu, X. L. Xu, J. M. Lei et al., "Nanostructured Metal-Enhanced Photoluminescence of Micro-Sr2Si5N8:Eu2+ Phosphors," Chinese Physics Letters 29 (1).
    104 A. G. Kirakosyan and D. Y. Jeon, "Low-Temperature Synthesis of Sr2Si5N8:Eu2+ Red-Emitting Phosphor by Modified Solid-State Metathesis Approach and Its Photoluminescent Characteristics," Journal of the Electrochemical Society 159 (2), J29-J33.
    105 T. Horikawa, M. Fujitani, X. Piao et al., "Synthesis and characterization of Sr2Si5N8:Eu2+ phosphor using strontium carboxylate," Journal of the Ceramic Society of Japan 115 (1346),623-627(2007).
    106 Hiromu Watanabe, Hisanori Yamane, and Naoto Kijima, "Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3," Journal of Solid State Chemistry 181 (8),1848-1852 (2008).
    107 H. Watanabe and N. Kijma, "Synthesis of Sr0.99Eu0.01AlSiN3 from intermetallic precursor," Journal of the Ceramic Society of Japan 117 (1361),115-119 (2009).
    108 K. Uheda, N. Hirosaki, Y. Yamamoto et al., "Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes," Electrochemical and Solid State Letters 9 (4), H22-H25 (2006).
    109 K. Uheda, N. Hirosaki, and H. Yamamoto, "Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode," Physica Status Solidi a-Applications and Materials Science 203 (11),2712-2717 (2006).
    110 X. Piao, K. Machida, T. Horikawa et al., "Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties," Chemistry of Materials 19 (18),4592-4599 (2007).
    111 B. F. Lei, K. Machida, T. Horikawa et al., "Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals," Chemistry Letters 39 (2),104-105.
    112 D. G. Porob, M. S. Kishore, N. P. Kumar et al., in Luminescence and Display Materials, edited by U. Happek, A. Setlur, J. Collins et al., Vol.33, pp.101-107.
    113 R. Mueller-Mach, G. Mueller, M. R. Krames et al., "Highly efficient all-nitride phosphor-converted white light emitting diode," Physica Status Solidi a-Applications and Materials Science 202 (9),1727-1732 (2005).
    114 L. X. Yang, X. Xu, L. Y. Hao et al., "Photoluminescence of lanthanide-doped CaSi2O2N2 phosphors and the energy-level diagram of lanthanide ions in CaSi2O2N2," Optical Materials 33 (11),1695-1699.
    115 Y. Q. Li, A. C. A. Delsing, G. de With et al., "Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-O2.δN2+2/3δ (M=Ca, Sr, Ba):A promising class of novel LED conversion phosphors," Chemistry of Materials 17 (12),3242-3248 (2005).
    116 Y. Q. Li, G. de With, and H. T. Hintzen, "Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-δN2+2/3δ:Ce3+(M=Ca, Sr, Ba)," Journal of Materials Chemistry 15 (42),4492-4496 (2005).
    117 H. C. Zhang, T. Horikawa, H. Hanzawa et al., "Photoluminescence properties of alpha-SiAlON:Eu2+ prepared by carbothermal reduction and nitridation method," Journal of the Electrochemical Society 154 (2), J59-J61 (2007).
    118 J. H. Ryu, Y. G Park, H. S. Won et al., "Luminescent properties of Ca-alpha-SiAlON: Eu2+ phosphors synthesized by gas-pressured sintering," Journal of the Electrochemical Society 155 (4), J99-J104 (2008).
    119 X. Q. Piao, K. I. Machida, T. Horikawa et al., "Synthesis and luminescent properties of low oxygen contained Eu2+-doped Ca-alpha-SiAlON phosphor from calcium cyanamide reduction," Journal of Rare Earths 26 (2),198-202 (2008).
    120 B. Dierre, R. J. Xie, N. Hirosaki et al., "Blue emission of Ce3+ in lanthanide silicon oxynitride phosphors," Journal of Materials Research 22 (7),1933-1941 (2007).
    121 R. J. Xie, N. Hirosaki, M. Mitomo et al., "Photoluminescence of cerium-doped alpha-SiAlON materials," Journal of the American Ceramic Society 87 (7),1368-1370 (2004).
    122 Y. Q. Li, N. Hirosaki, R. J. Xie et al., "Structural and Photoluminescence Properties of Ce3+-and Tb3+-Activated Lu-alpha-Sialon," Journal of the American Ceramic Society 92 (11),2738-2744(2009).
    123 C. M. Fang, Y. Q. Li, H. T. Hintzen et al., "Crystal and electronic structure of the novel nitrides MYSi4N7 (M=Sr, Ba) with peculiar NSi4 coordination," Journal of Materials Chemistry 13 (6),1480-1483 (2003).
    124 C. J. Duan, X. J. Wang, W. M. Otten et al., "Preparation, electronic structure, and photoluminescence properties of Eu2+ and Ce3+/Li+-activated alkaline earth silicon nitride MSiN2 (M= Sr, Ba)," Chemistry of Materials 20 (4),1597-1605 (2008).
    125 J. W. H. van Krevel, H. T. Hintzen, R. Metselaar et al., "Long wavelength Ce3+ emission in Y-Si-O-N materials," Journal of Alloys and Compounds 268 (1-2),272-277 (1998).
    126 A. Koroglu, D. C. Apperley, R. K. Harris et al., "Oxygen-nitrogen ordering in yttrium nitrogen melilite," Journal of Materials Chemistry 6 (6),1031-1034 (1996).
    127 W. Y. Ching, L. Z. Ouyang, H. Z. Yao et al., "Electronic structure and bonding in the Y-Si-O-N quaternary crystals," Physical Review B 70 (8) (2004).
    128E. Monroy, J. Zenneck, G. Cherkashinin et al., "Luminescence properties of highly Si-doped AIN," APPLIED PHYSICS LETTERS 88 (7) (2006).
    129. Taniyasu, M. Kasu, T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441 (7091),325-328 (2006).
    130 R. Weingartner, O. Erlenbach, A. Winnacker et al., presented at the Meeting of the European-Materials-Research-Society, Strasbourg, FRANCE,2005 (unpublished).
    131 R. Weingartne, O. Erlenbach, A. Winnacker et al., "Thermal activation, cathodo-and photoluminescence measurements of rare earth doped (Tm,Tb,Dy,Eu,Sm,Yb) amorphous/nanocrystalline AIN thin films prepared by reactive rf-sputtering," Optical Materials 28 (6-7),790-793 (2006).
    132 F. S. Liu, H. W. Dong, Q. L. Liu et al., "Characterization and photoluminescence of AlN:Eu films," Optical Materials 28 (8-9),1029-1036 (2006).
    133 M. Peres, A. Cruz, M. J. Soares et al., "Optical and structural studies in Eu-implanted AIN films," Superlattices and Microstructures 40 (4-6),537-544 (2006).
    134 V. I. Dimitrova, P. G. Van Patten, H. H. Richardson et al., "Visible emission from electroluminescent devices using an amorphous AIN:Er3+thin-film phosphor," APPLIED PHYSICS LETTERS 77 (4),478-479 (2000).
    135 N. Hirosaki, R. J. Xie, K. Inoue et al., "Blue-emitting AIN:Eu2+nitride phosphor for field emission displays," APPLIED PHYSICS LETTERS 91 (6),-(2007).
    135 K. Inoue, N. Hirosaki, R. J. Xie et al., "Highly Efficient and Thermally Stable Blue-Emitting AlN:Eu2+ Phosphor for Ultraviolet White Light-Emitting Diodes," Journal of Physical Chemistry C 113 (21),9392-9397 (2009).
    137 Zhongqi Shi, Wanli Yang, Shujie Bai et al., "Preparation of Eu2+-doped AIN phosphors by plasma activated sintering," Ceramics International In Press, Corrected Proof.
    138 Takashi Takeda, Naoto Hirosaki, Rong-Jun Xie et al., "Anomalous Eu layer doping in Eu, Si co-doped aluminium nitride based phosphor and its direct observation," Journal of Materials Chemistry 20 (44),9948-9953 (2010).
    139 J. W. McCauley, "SIMPLE-MODEL FOR ALUMINUM OXYNITRIDE SPINELS," Journal of the American Ceramic Society 61 (7-8),372-373 (1978).
    140 JAMES W. McCAULEY and N. D. CORBIN, "Phase Relations and Reaction Sintering of Transparent Cubic Aluminum Oxynitride Spinel (ALON)," Journal of the American Ceramic Society 62 (9-10),476-479 (1979).
    141 Akihiro Shimpo, Hideo Ide, Masanori Ueki, "ALON and its composite ceramics," Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan 100 (1160),504-508 (1992).
    142 R. Klement, S. Rolc, R. Mikulikova et al., "Transparent armour materials," Journal of the European Ceramic Society 28 (5),1091-1095 (2008).
    143 M. Vlasova, N. Kakazey, I. Rosales et al., "Synthesis of Composite AlN-AlON-Al2O3 Powders and Ceramics Prepared by High-Pressure Sintering," Science of Sintering 42 (3), 283-295.
    144 R. J. Xie, N. Hirosaki, X. J. Liu et al., "Crystal structure and photoluminescence of Mn2+-Mg2+ codoped gamma aluminum oxynitride (gamma-AlON):A promising green phosphor for white light-emitting diodes," APPLIED PHYSICS LETTERS 92 (20),-(2008).
    145 F. Zhang, S. W. Wang, X. J. Liu et al., "Upconversion luminescence in Er-doped gamma-AlON ceramic phosphors," Journal of Applied Physics 105 (9) (2009).
    146 Fang Zhang, Liqiong An, Xuejian Liu et al., "Upconversion Luminescence in Y-AlON:Yb3+,Tm3+ Ceramic Phosphors," Journal of the American Ceramic Society 92 (8), 1888-1890(2009).
    147 L. Y. Deng, J. X. Lei, Y. Shi et al., "Photoluminescence of Tb3+/Ce3+ co-doped aluminum oxynitride powders," Materials Letters 65 (4),769-771.
    148 S. Kikkawa, N. Hatta, T. Takeda, "Preparation of aluminum oxynitride by nitridation of a precursor derived from aluminum-glycine gel and the effects of the presence of europium," Journal of the American Ceramic Society 91 (3),924-928 (2008).
    149 R. J. Xie, N. Hirosaki, K. Sakuma et al., "Eu2+-doped Ca-alpha-SiAlON:A yellow phosphor for white light-emitting diodes," APPLIED PHYSICS LETTERS 84 (26), 5404-5406 (2004).
    150 R. J. Xie, N. Hirosaki, M. Mitomo et al., "Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors," APPLIED PHYSICS LETTERS 88 (10) (2006).
    151 K. Takahashi, K. Yoshimura, M. Harada et al., "On the origin of fine structure in the photoluminescence spectra of the beta-sialon:Eu2+ green phosphor," Science and Technology of Advanced Materials 13 (1).
    152 T. C. Liu, B. M. Cheng, S. F. Hu et al., "Highly Stable Red Oxynitride beta-SiAlON:Pr3+ Phosphor for Light-Emitting Diodes," Chemistry of Materials 23 (16),3698-3705.
    153 R. J. Xie, N. Hirosaki, H. L. Li et al., "Synthesis and photoluminescence properties of beta-sialon:Eu2+(Si6-zAlzOzN8-z:Eu2+)," Journal of the Electrochemical Society 154 (10), J314-J319 (2007).
    154 B. Dierre, X. L. Yuan, N. Hirosaki et al., "Luminescence properties of Ca-and Yb-codoped SiAlON phosphors," Materials Science and Engineering B-Solid State Materials for Advanced Technology 146 (1-3),80-83 (2008).
    155 Y. Q. Li, N. Hirosaki, R. J. Xie et al., "Yellow-Orange-Emitting CaAlSiN3:Ce3+ Phosphor: Structure, Photoluminescence, and Application in White LEDs," Chemistry of Materials 20(21),6704-6714(2008).
    156 T. Schlieper, W. Milius, W. Schnick, "NITRIDO-SILICATES.2. HIGH-TEMPERATURE SYNTHESES AND CRYSTAL-STRUCTURES OF SR2SI5N8 AND BA2SI5N8," Zeitschrift Fur Anorganische Und Allgemeine Chemie 621 (8),1380-1384 (1995).
    157 C. C. Chung and J. H. Jean, "Synthesis of Ca-alpha-SiAlON:Eux phosphor powder by carbothermal-reduction-nitridation process," Materials Chemistry and Physics 123 (1), 13-15.
    158 T. Kurushima, G. Gundiah, Y. Shimomura et al., "Synthesis of Eu2+-Activated MYSi4N7(M=Ca,Sr,Ba) and SrYSi4-xAlxN7-xOx (x=0-1) Green Phosphors by Carbothermal Reduction and Nitridation," Journal of the Electrochemical Society 157 (3), J64-J68.
    159 X. Q. Piao, T. Horikawa, H. Hanzawa et al., "Photoluminescence properties of Ca2Si5N8: Eu2+ nitride phosphor prepared by carbothermal reduction and nitridation method," Chemistry Letters 35 (3),334-335 (2006).
    160 Qinghong Zhang and Lian Gao, "Synthesis of Nanocrystalline Aluminum Nitride by Nitridation of δ-Al2O3 Nanoparticles in Flowing Ammonia," Journal of the American Ceramic Society 89 (2),415-421 (2006).
    161 T. Yamakawa, J. Tatami, T. Wakihara et al., "Synthesis of AlN nanopowder from gamma-Al2O3 by reduction-nitridation in a mixture of NH3-C3H8," Journal of the American Ceramic Society 89,171-175 (2006).
    162 T. Suehiro, N. Hirosaki, R. J. Xie et al., "Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors," Chemistry of Materials 17 (2),308-314 (2005).
    163 Xianqing Piao, Ken-ichi Machida, Takashi Horikawa et al., "Self-propagating high temperature synthesis of yellow-emitting Ba 2Si 5N 8:Eu2+ phosphors for white light-emitting diodes," APPLIED PHYSICS LETTERS 91 (4),041908 (2007).
    164 J. J. Rehr, J. M. Deleon, S. I. Zabinsky et al., "THEORETICAL X-RAY ABSORPTION FINE-STRUCTURE STANDARDS," Journal of the American Chemical Society 113 (14), 5135-5140(1991).
    165 J. J. Rehr and R. C. Albers, "Theoretical approaches to x-ray absorption fine structure," Reviews of Modern Physics 72 (3),621-654 (2000).
    166 J. M. Deleon, J. J. Rehr, S. I. Zabinsky et al., "ABINITIO CURVED-WAVE X-RAY-ABSORPTION FINE-STRUCTURE," Physical Review B 44 (9),4146-4156 (1991).
    167 M. Newville, "IFEFFIT:interactive XAFS analysis and FEFF fitting," Journal of Synchrotron Radiation 8,322-324 (2001).
    168 A. Suzuki, T. Muroga, B. A. Pint et al., "Corrosion behaviour of AlN for self-cooled Li/V blanket application," Fusion Engineering and Design 69 (1-4),397-401 (2003).
    169 N. Kuramoto and K. Takada, in Advanced Ceramics and Composites, edited by H. Suzuki, K. Komeya, and M. Sakai (2003), Vol.247, pp.467-472.
    170 C. H. Yan, H. Yao, A. C. Abare et al., in Light-Emitting Diodes:Research, Manufacturing, and Applications Iv, edited by H. W. Yao, I. T. Ferguson, and E. F. Schubert (2000), Vol. 3938, pp.113-123.
    171 N. Skoulidis, V. Vargiamidis, and H. M. Polatoglou, "Study of the structural and optical properties of GaN/AIN quantum dot superlattices," Superlattices and Microstructures 40 (4-6),432-439 (2006).
    172 W. Jiang, W. Lin, S. P. Li et al., "Optical anisotropy of AlN epilayer on sapphire substrate investigated by variable-angle spectroscopic ellipsometry," Optical Materials 32 (9), 891-895.
    173 C. Caliendo and P. Imperatori, "Structural, optical, and acoustic characterization of high-quality AlN thick films sputtered on Al2O3(0001) at low temperature for GHz-band electroacoustic devices applications," Journal of Applied Physics 96 (5),2610-2615 (2004).
    174 T. Wakihara, Y. Saito, J. Tatami et al., in Siaions and Non-Oxides, edited by K. Komeya, Y. B. Cheng, J. Tatami et al. (2009), Vol.403, pp.141-144.
    175 Y. W. Cho and J. A. Charles, "SYNTHESIS OF NITROGEN CERAMIC POWDERS BY CARBOTHERMAL REDUCTION AND NITRIDATION.3. ALUMINUM NITRIDE," Materials Science and Technology 7 (6),495-504 (1991).
    176 Y. Qiu and L. A. Gao, "Nitridation reaction of aluminum powder in flowing ammonia," Journal of the European Ceramic Society 23 (12),2015-2022 (2003).
    177 Xin Xu, JiaYe Tang, Toshiyuki Nishimura et al., "Synthesis of Ca-[alpha]-SiAlON phosphors by a mechanochemical activation route," Acta Materialia 59 (4),1570-1576.
    178 A. M. Srivastava, H. A. Comanzo, S. Camardello et al., "Unusual luminescence of octahedrally coordinated divalent europium ion in Cs2M2+P2O7 (M2+=Ca, Sr)," Journal of Luminescence 129 (9),919-925 (2009).
    F. Ruiperez, L. Seijo, Z. Barandiaran, "Prediction of pressure-induced redshift of f1-d(t2g)1 excitations in Cs2NaYCl6:Ce3+ and its connection with bond-length shortening," J. Chem. Phys.122 (23),4 (2005).
    180 S. S. Yi, J. S. Bae, B. K. Moon et al., "Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si100 substrate," APPLIED PHYSICS LETTERS 86 (7) (2005).
    181 S. S. Yi, J. S. Bae, K. S. Shim et al., "Enhanced luminescence of Gd2O3:Eu3+ thin-film phosphors by Li doping," APPLIED PHYSICS LETTERS 84 (3),353-355 (2004).
    182 S. S. Yi, J. S. Bae, B. K. Moon et al., "Enhanced luminescence of pulsed-laser-deposited Y2O3:Eu3+ thin-film phosphors by Li doping," APPLIED PHYSICS LETTERS 81 (18), 3344.3346 (2002).
    183 J. C. Park, H. K. Moon, D. K. Kim et al., "Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages," APPLIED PHYSICS LETTERS 77 (14),2162-2164 (2000).
    184 U. Vetter, J. Zenneck, H. Hofsass, "Intense ultraviolet cathodoluminescence at 318 nm from Gd3+-doped AlN," APPLIED PHYSICS LETTERS 83 (11),2145-2147 (2003).
    185 G. J. Yan, G. D. Chen, H. M. Lu, "Synthesis and optical properties of hexagonal aluminum nitride nanocrystals," Acta Chimica Sinica 64 (16),1688-1692 (2006).
    186 L. Ozawa, M. Koike, M. Itoh, "Mechanisms of flux action for growth of ZnS phosphor particles," Materials Chemistry and Physics 93 (2-3),420-428 (2005).
    187 S. H. Lee, H. Y. Koo, J. H. Kim et al., "BaMgAl10O17:Eu2+Phosphor Powders Prepared from Precursor Powders with a Hollow and Thin Wall Structure Containing NH4F Flux," Electronic Materials Letters 6 (2),81-86.
    188 S. H. Lee, H. Y. Koo, D. S. Jung et al., "Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis," Optical Materials 31 (6),870-875 (2009).
    189 G. Y. Hong, K. Yoo, S. J. Moon et al., "Enhancement of luminous intensity of spherical Y2O3:Eu phosphors using flux during aerosol pyrolysis," Journal of the Electrochemical Society 150 (4), H67-H71 (2003).
    190 D. S. Jung, S. K. Hong, H. J. Lee et al., "Gd2O3:Eu phosphor particles prepared from spray solution containing boric acid flux and polymeric precursor by spray pyrolysis," Optical Materials 28 (5),530-535 (2006).
    191 Y. B. Chen, M. L. Gong, and K. W. Cheah, "Effects of fluxes on the synthesis of Ca3Sc2Si3O12:Ce3+ green phosphors for white light-emitting diodes," Materials Science and Engineering B-Advanced Functional Solid-State Materials 166 (1),24-27.
    192 S. H. Shin, J. H. Kang, D. Y. Jeon et al., "Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions," Journal of Luminescence 114 (3-4),275-280 (2005).
    193 Z. Y. Feng, W. D. Zhuang, X. W. Huang et al., "Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor," Journal of Rare Earths 28 (3),351-355.
    194 J. S. Cho, D. S. Jung, and Y. C. Kang, "Fine-sized BaMgAl10O17:Eu2+ phosphor powders with plate-like morphology prepared by AIF3 flux-assisted spray pyrolysis," Journal of the Ceramic Society of Japan 116 (1352),584-588 (2008).
    195 Z. W. Tao, X. Y. Fei, Q. Zhou et al., "Morphology conversion and highly enhanced green emission of ZnO phosphors by annealing of ZnS in KCl flux," Journal of Alloys and Compounds 470 (1-2),536-538 (2009).
    196 D. S. Jung, S. K. Hong, S. H. Ju et al., "Direct synthesis of high-brightness (CeTb)MgAl11O19 phosphor particles by spray pyrolysis with boric acid flux," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45 (1A),116-120 (2006).
    197 D. S. Jung, S. K. Hong, H. J. Lee et al., "Effect of boric acid flux on the characteristics of (CeTb)MgAl11O19 phosphor particles prepared by spray pyrolysis," Journal of Alloys and Compounds 398 (1-2),309-314 (2005).
    198 H. K. Park, K. Y. Ko, Y. R. Do et al., Luminescent properties of LiF-doped Y2O3:Eu3+ thin-film phosphors by RF-magnetron sputtering technique. (2007), pp.989-991.
    199 K. Komeya, E. Mitsuhashi, and T. Meguro, "SYNTHESIS OF AIN POWDER BY CARBOTHERMAL REDUCTION-NITRIDATION METHOD-EFFECT OF ADDITIVES ON REACTION-RATE," Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan 101 (4),377-382 (1993).
    200 T. Ide, K. Komeya, T. Meguro et al., "Synthesis of AIN powder by carbothermal reduction-nitridation of various Al2O3 powders with CaF2," Journal of the American Ceramic Society 82 (11),2993-2998 (1999).
    201 LiangJun Yin, Xin Xu, LuYuan Hao et al., "Synthesis and photoluminescence of Eu2+-Mg2+co-doped [gamma]-AlON phosphors," Materials Letters 63 (17),1511-1513 (2009).
    202 K. Li, Z. G. Liu, M. Y. Yu et al., "Preparation of AIN nanoparticles by a water induced, solid state reaction," Acta Chimica Sinica 62 (12),1144-1147 (2004).
    203 Maria Bosca, Lidia Pop, Gheorghe Borodi et al., "XRD and FTIR structural investigations of erbium-doped bismuth-lead-silver glasses and glass ceramics," Journal of Alloys and Compounds 479 (1-2),579-582 (2009).
    204 Y. H. Lin; Z. T. Zhang, Z. L. Tang et al., "The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3," Materials Chemistry and Physics 70 (2),156-159 (2001).
    205 Y. M. Yang, L. X. Yu, C. Y. Tao et al., "Luminescence of YA13(BO3)4:Eu2+, Dy3+phosphor and its luminescence decay characteristics," Journal of Electroceramics 25 (1),56-59.
    206 L. Y. Xiao, Q. Xiao, Y. L. Liu, "Preparation and characterization of flower-like SrAl2O4:Eu2+, Dy3+ phosphors by sol-gel process," Journal of Rare Earths 29 (1),39-43.
    207 S. Nagamani and B. S. Panigrahi, "Luminescence Properties of SrO-Al2O3:Eu2+,Dy3+ Prepared at Different Temperatures," Journal of the American Ceramic Society 93 (11), 3832-3836.
    208 S. W. Kim and J. S. Kim, "Research on Afterglow Brightness of Sr4-x+y+zAl14O25:Eux, Dyy, Agz by Solid State Synthesis," Korean Journal of Metals and Materials 49 (4),348-354.
    209 X. Y. Chen, S. P. Bao, and Y. C. Wu, "Controlled synthesis and luminescent properties of Eu2+ Eu3+, Dy3+-doped Sr3Al2O6 phosphors by hydrothermal treatment and postannealing approach," Journal of Solid State Chemistry 183 (9),2004-2011.
    210 M. Ayvacikli, A. Ege, and N. Can, "Radioluminescence of SrAl2O4:Ln3+(Ln= Eu, Sm, Dy) phosphor ceramic," Optical Materials 34 (1),138-142.
    211 Z. F. Qiu, Y. Y. Zhou, M. K. Lu et al., "Combustion synthesis of three-dimensional reticular-structured luminescence SrAl2O4:Eu,Dy nanocrystals," Solid State Sciences 10 (5),629-633 (2008).
    212 I. Omkaram and S. Buddhudu, "Photoluminescence properties of MgAl2O4:Dy3+ powder phosphor," Optical Materials 32 (1),8-11 (2009).
    213 M. Pedroza-Montero, B. Castaneda, M. I. Gil-Tolano et al., "Dose effects on the long persistent luminescence properties of beta irradiated SrAl2O4:Eu2+, Dy3+ phosphor," Radiation Measurements 45 (3-6),311-313.
    214 J. Hu, K. J. Wang, X. Q. Zhu et al., in High-Performance Ceramics V, Pts 1 and 2, edited by W. Pan and J. H. Gong (2008), Vol.368-372, pp.383-385.
    215 X. X. Duan, S:H. Huang, F. T. You et al., "Electrooptical characteristics of nanoscale and bulk long persistent phosphor SrAl2O4:Eu, Dy," Journal of Experimental Nanoscience 4 (2),169-176(2009).
    216 J. T. Chen, F. Gu, and C. Z. Li, "Influence of precalcination and boron-doping on the initial photoluminescent properties of SrAl2O4:Eu,Dy phosphors," Crystal Growth & Design 8 (9),3175-3179 (2008).
    217 W. Y. Jia, H. B. Yuan, L. Z. Lu et al., "Crystal growth and characterization of Eu2+, Dy3+: SrA12O4 and Eu2+, Nd3+:CaAl2O4 by the LHPG method," Journal of Crystal Growth 200 (1-2),179-184(1999).
    218 Y. H. Lin, Z. T. Zhang, F. Zhang et al., "Preparation of the ultrafine SrA12O4:Eu,Dy needle-like phosphor and its optical properties," Materials Chemistry and Physics 65 (1), 103-106(2000).
    219 A. Nag and T. R. N. Kutty, "Role of B2O3 on the phase stability and long phosphorescence of SrA12O4:Eu, Dy," Journal of Alloys and Compounds 354 (1-2), 221-231 (2003).
    220 T. Y. Peng, L. Huajun, H. P. Yang et al., "Synthesis of SrA12O4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties," Materials Chemistry and Physics 85 (1),68-72 (2004).
    221 T. Y. Peng, H. P. Yang, X. L. Pu et al., "Combustion synthesis and photoluminescence of SrA12O4:Eu,Dy phosphor nanoparticles," Materials Letters 58 (3-4),352-356 (2004).
    222 Z. L. Tang, F. Zhang, Z. T. Zhang et al., "Luminescent properties of SrA12O4:Eu, Dy material prepared by the gel method," Journal of the European Ceramic Society 20 (12), 2129-2132(2000).
    223 J.Mares, R. Baltramiejunas, V. Narkevicius et al., "LUMINESCENT PROPERTIES OF Eu2+ IONS IN AlN AT LOW AND HIGH INTENSITY OF EXCITATION," Crezh. J. Phys. B 25,934-942 (1975).
    224 H. Verdiguel, J. Hernandez, C. Flores et al., "PRECIPITATION OF BA-2+IONS IN KCL USING EU-2+ AS AN OPTICAL PROBE," Physical Review B 43 (2),1781-1786 (1991).
    225 A. Ellens, F. Zwaschka, F. Kummer et al., "Sm2+ in BAM:fluorescent probe for the number of luminescing sites of Eu2+ in BAM," Journal of Luminescence 93 (2),147-153 (2001).
    2 M. A. Zaitoun, T. Kim, and C. T. Lin, "Observation of electron-hole carrier emission in the Eu3+-doped silica xerogel," Journal of Physical Chemistry B 102 (7),1122-1125 (1998).
    227 R. Iwamura, N. Higashiyama, K. Takemura et al., "LUMINESCENCE PROPERTIES OF DIVALENT EUROPIUM COMPLEXES OF POLYMER LIGANDS CONTAINING [2.2.2]CRYPTAND AND [2.2.1]CRYPTAND UNITS," Chemistry Letters (6),1131-1134 (1994).
    228 E. Antic-Fidancev, G. Corbel, N. Mercier et al., "Evidence of anionic disorder in fluoride borate Eu-3(BO3)2F-3 from Eu2+ luminescence:Comparison with fluoride carbonate Ba2Eu(CO3)2F-3," Journal of Solid State Chemistry 153 (2),270-274 (2000).
    229 Y. Zhang and M. Q. Wang, "The structural information given by R curve of Eu3+ probe during the heat treatment process of SiO2-B2O3 gel glasses," Materials Letters 41 (3), 149-152(1999).
    L. K. Sha and B. W. Chappell, "Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis," Geochimica Et Cosmochimica Acta 63 (22),3861-3881 (1999).
    231 F. Loncke, H. Vrielinck, P. Matthys et al., "Paramagnetic Eu2+ center as a probe for the sensitivity of CsBr x-ray needle image plates," APPLIED PHYSICS LETTERS 92 (20) (2008).
    232 M. Watanabe, Y. Mori, T. Ishikawa et al., "Thermal reaction of polycrystalline AlN with XeF2," Journal of Vacuum Science & Technology A 23 (6),1647-1656 (2005).
    233 G. Scholz, C. Nieke, D. Menz et al., "NDDO AND ABINITIO MOLECULAR-ORBITAL STUDIES OF VAPOR-PHASE COMPLEXES BETWEEN HF AND ALF3 MOLECULES," Theochem-Journal of Molecular Structure 77,95-102 (1991).
    234 E. Robert, J. E. Olsen, V. Danek et al., "Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies," Journal of Physical Chemistry B 101 (46),9447-9457 (1997).
    235 O. T. Gustavsen and T. Ostvold, Activities in the system KF-AIF3. (1999), pp.461-466.
    236 L. A. Curtiss and G. Scholz, "THE VAPOR-PHASE COMPLEX HF-ALF3-A NEW ABINITIO MOLECULAR-ORBITAL STUDY," Chemical Physics Letters 205 (6), 550-554 (1993).
    237 V. V. Zakorzhevskii, I. P. Borovinskaya, N. V. Sachkova, "Combustion Synthesis of Aluminum Nitride," Inorganic Materials 38 (11),1131-1140 (2002).
    238 H. Watanabe, M. Imai, and N. Kijima, "Nitridation of AEAISi for Production of AEAlSiN3:Eu2+Nitride Phosphors (AE=Ca, Sr)," Journal of the American Ceramic Society 92 (3),641-648 (2009).
    239 A. C. Tas, "Chemical Preparation of the Binary Compounds in the Calcia-Alumina System by Self-Propagating Combustion Synthesis," Journal of the American Ceramic Society 81 (11),2853-2863 (1998).
    240 J. Shin, D. H. Ahn, M. S. Shin et al., "Self-propagating high-temperature synthesis of aluminum under lower nitrogen pressures," Journal of the American Ceramic Society 83 (5),1021-1028 (2000).
    241 V. Rosenband and A. Gany, "Activation of combustion synthesis of aluminum nitride powder," Journal of Materials Processing Technology 147 (2),197-203 (2004).
    242 J. S. Moya, J. E. Iglesias, J. Limpo et al., "Single crystal aln fibers obtained by self-propagating high-temperature synthesis (SHS)," Acta Materialia 45 (8),3089-3094 (1997).
    243 K. J. Lee, D. H. Ahn, Y. S. Kim, "Aluminum Nitride Whisker Formation during Combustion Synthesis," Journal of the American Ceramic Society 83 (5),1117-1121 (2000).
    244 G. J. Jiang, H. R. Zhuang, W. L. Li et al., "Mechanisms of the Combustion Synthesis of Aluminum Nitride in High Pressure Nitrogen Atmosphere (2)," Journal of Materials Synthesis and Processing 9 (1),49-56 (2001).
    245 R. Fu, K. Chen, X. Xu et al., "Highly crystalline AlN particles synthesized by SHS method," Materials Letters 59 (19-20),2605-2609 (2005).
    246 S. M. Bradshaw and J. L. Spicer, "Combustion Synthesis of Aluminum Nitride Particles and Whiskers," Journal of the American Ceramic Society 82 (9),2293-2300 (1999).
    247 S. M. Allameh and K. H. Sandhage, "Synthesis of Celsian (BaA12Si208) from Solid Ba-Al-A12O3-SiO2 Precursors:Ⅰ, XRD and SEM/EDX Analyses of Phase Evolution," Journal of the American Ceramic Society 80 (12),3109-3126 (1997).
    248 Yoshikazu Kameshima, Masaki Irie, Atsuo Yasumori et al., "Low temperature synthesis of AlN by addition of various Li-salts," Journal of the European Ceramic Society 24 (15-16),3801-3806 (2004).
    249 H. L. Li, R. J. Xie, N. Hirosaki et al., "Phase purity and luminescence properties of fine Ca-alpha-SiAlON:Eu phosphors synthesized by gas reduction nitridation method," Journal of the Electrochemical Society 155 (6), J175-J179 (2008).
    250 H. L. Li, N. Hirosaki, R. J. Xie et al., "Fine yellow alpha-SiAlON:Eu phosphors for white LEDs prepared by the gas-reduction-nitridation method," Science and Technology of Advanced Materials 8 (7-8),601-606 (2007).
    251 H. L. Li, R. J. Xie, N. Hirosaki et al., "Synthesis and Photoluminescence Properties of Sr2Si5N8:Eu2+Red Phosphor by a Gas-Reduction and Nitridation Method," Journal of the Electrochemical Society 155 (12), J378-J381 (2008).
    252 Tomohiro Yamakawa, Junichi Tatami, Katsutoshi Komeya et al., "Synthesis of AlN powder from Al(OH)3 by reduction-nitridation in a mixture of NH3-C3H8 gas," Journal of the European Ceramic Society 26 (12),2413-2418 (2006).
    253 T. Suehiro, N. Hirosaki, K. Komeya, "Synthesis and sintering properties of aluminium nitride nanopowder prepared by the gas-reduction-nitridation method," Nanotechnology 14 (5),487-491 (2003).
    254 T. Suehiro, J. Tatami, T. Meguro et al., "Synthesis of spherical AlN particles by gas-reduction-nitridation method," Journal of the European Ceramic Society 22 (4), 521-526 (2002).
    255 Xidong Wang, Wenchao Li, Seshadri Seetharaman, "Thermodynamic study and synthesis of gamma-aluminum oxynitride," Scandinavian Journal of Metallurgy 31 (1),1-6 (2002).
    256 Hyoung-SeoK Do, Sung-Woo Choi, and Seong-Hyeon Hong, "Blue-emitting AlN:Eu2+ Powder Phosphor Prepared by Spark Plasma Sintering," Journal of the American Ceramic Society 93 (2),356-358.
    Bonghyun Lee, Sangjun Lee, Hyung Gon Jeong et al., "Solid-State Combinatorial Screening of (Sr,Ca,Ba,Mg)2Si5N8:Eu2+ Phosphors," ACS Combinatorial Science 13 (2), 154-158.
    L. X. Yang, X. Xu, L. Y. Hao et al., "Optimization mechanism of CaSi2O2N2:Eu2+ phosphor by La3+ ion doping," Journal of Physics D-Applied Physics 44 (35),5.
    259 U. Vetter, H. Hofsass, T. Taniguchi, "Visible cathodoluminescence from Eu-implanted single-and polycrystal c-BN annealed under high-temperature, high-pressure conditions," APPLIED PHYSICS LETTERS 84 (21),4286-4288 (2004).
    260 T. Miyajima, Y. Kudo, T. Uruga et al., in Physica Status Solidi C-Current Topics in Solid State Physics, Vol 3, No 6, edited by S. Hildebrandt and M. Stutzmann (Wiley-Vch, Inc, New York,2006), Vol.3, pp.1742-1745.
    261 P. A. Lee and G. Beni, "NEW METHOD FOR CALCULATION OF ATOMIC PHASE-SHIFTS-APPLICATION TO EXTENDED X-RAY ABSORPTION FINE-STRUCTURE (EXAFS) IN MOLECULES AND CRYSTALS," Physical Review B 15 (6),2862-2883 (1977).
    262 S. J. Gurman, N. Binsted, and I. Ross, "A RAPID, EXACT CURVED-WAVE THEORY FOR EXAFS CALCULATIONS," Journal of Physics C-Solid State Physics 17 (1), 143-151 (1984).
    263 J. J. Rehr, R. C. Albers, S. I. Zabinsky, "HIGH-ORDER MULTIPLE-SCATTERING CALCULATIONS OF X-RAY-ABSORPTION FINE-STRUCTURE," Physical Review Letters 69 (23),3397-3400 (1992).
    264 Y. R. Wang, H. Kageyama, T. Mori et al., "Local structures around Y and Ce cations in 10 mol% Y2O3 doped ceria ceramics by EXAFS spectroscopy," Solid State Ionics 177 (19-25),1681-1685 (2006).
    265 T.T. Van, J. Hoang, R. Ostroumov et al., "Nanostructure and temperature-dependent photoluminescence of Er-doped Y2O3 thin films for micro-optoelectronic integrated circuits," Journal of Applied Physics 100 (7) (2006).
    266 T. T. Van,J. R. Bargar,J.P. Chang, "Er coordination in Y2O3 thin films studied by extended x-ray absorption fine structure," Journal of Applied Physics 100 (2) (2006).
    267 Zeming Qi, Chaoshu Shi, Weiwei Zhang et al., "Local structure and luminescence of nanocrystalline Y2O3:Eu," APPLIED PHYSICS LETTERS 81 (15),2857-2859 (2002).
    268 Y. L. Soo, S. W. Huang, Y. H. Kao et al., "Controlled agglomeration of Tb-doped Y2O3 nanocrystals studied by x-ray absorption fine structure, x-ray excited luminescence, and photoluminescence," APPLIED PHYSICS LETTERS 75 (16),2464-2466 (1999).
    269 M. Liu, Z. M. Qi, C. S. Shi et al., "EXAFS study the local structure of nanocrystalline Lu2O3:Eu," High Energy Physics and Nuclear Physics-Chinese Edition 29,93-96 (2005).
    270 Z. M. Qi, M. Liu, Y. H. Chen et al., "Local structure of nanocrystalline Lu2O3:Eu studied by X-ray absorption spectroscopy," Journal of Physical Chemistry C 111 (5),1945-1950 (2007).
    271 Y. Y. Ren, Y. Shi, D. Zhou et al., "EXAFS investigation and luminescent properties of nanosized Tb:Lu2O3 phosphors," Journal of Rare Earths 28 (6),883-887.
    272 O. Ersen, M. H. Tuilier, A. Thobor-Keck et al., "Relation between interfacial structure and mechanical properties in AIN/TiN bilayers investigated by EXAFS," Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 234 (3),308-320 (2005).
    273 W. Hume-Rothery, G. F. Lewin, and P. W. Reynolds, "The lattice Spacings of certain primary solid solutions in silver and copper," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 157 (A890),0167-0183 (1936).
    274 W. Hume-Rothery and G. V. Raynor, "The equilibrium and lattice-spacing relations in the system magnesium-cadmium," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 174 (A959),0471-0486 (1940).
    275 W. Hume-Rothery and G. V. Raynor, "Factors affecting the liquidus, solidus, and solid-solubility curves in some alloys of magnesium," Journal of the Institute of Metals 63,227-246(1938).
    276 W. Hume-Rothery and G. V. Raynor, "Atomic and ionic radii. Ⅱ. Application to the theory of solid solubility in alloys," Philosophical Magazine 26 (173),143-152 (1938).
    W. Hume-Rothery and G. V. Raynor, "Atomic and ionic radii. I. Numerical values and their bearing on the compressibilities of metals," Philosophical Magazine 26 (173), 129-143(1938).
    278 H. D. Nussler and O. Kubaschewski, "THERMOCHEMISTRY OF THE SYSTEM MGO-NIO," Zeitschrift Fur Physikalische Chemie-Wiesbaden 121 (2),187-191 (1980).
    279 R. D. Shannon and C. T. Prewitt, "Effective ionic radii in oxides and fluorides," Acta Crystallographica Section B 25 (5),925-946 (1969).
    280 P. Hohenberg and W. Kohn, "INHOMOGENEOUS ELECTRON GAS," Physical Review B 136 (3B),B864-& (1964).
    281 J. P. Perdew, "DENSITY-FUNCTIONAL APPROXIMATION FOR THE CORRELATION-ENERGY OF THE INHOMOGENEOUS ELECTRON-GAS," Physical Review B 33 (12),8822-8824 (1986).
    282 W. Kohn and L. J. Sham, "QUANTUM DENSITY OSCILLATIONS IN AN INHOMOGENEOUS ELECTRON GAS," physical review 137 (6A),1697-& (1965).
    283 Ch Seidel, "Highlights of condensed-matter theory. Proceedings of the international school of physics "Enrico Fermi", Course LXXXIX at Varenna on Lake Como,28 June-16 July 1983. Hg. von F. BASSANI, F. FUMI und M. P. TOSI. ISBN 0-444-86976-X. Amsterdam/Oxford/New York/Tokyo:North Holland Physics Publishing 1985. ⅩⅧ,916 s., Lwd., Dfl.340.00," Acta Polymerica 38 (10),588-588 (1987).
    284 Sham L, "Density function theory and computational materials physics," Kluwer Academic Publishers (1996).
    285 C. H. Han, H. J. Kim, H. Chang et al., "Luminescent properties of YNbO4:Bi phosphors," Journal of the Electrochemical Society 147 (7),2800-2804 (2000).
    286 J. Zhu, W. D. Cheng, H. Zhang et al., "Two potassium rare-earth polyphosphates KLn(PO3)4 (Ln= Ce, Eu):Structural, optical, and electronic properties," Journal of Luminescence 129 (11),1326-1331 (2009).
    287 J. Zhu, W. D. Cheng, D. S. Wu et al., "Crystal and band structures, and optical characterizations of sodium rare earth phosphates NaLnP2O7 and NaLn(PO3)4 (Ln= Ce, Eu)," Journal of Alloys and Compounds 454 (1-2),419-426 (2008).
    288 X. Y. Ma, J. W. Song, Z. S. Yu, "The light emission properties of ZnS:Mn nanoparticles," Thin Solid Films 519 (15),5043-5045.
    289 Z. P. Ci and Y. H. Wang, "Preparation, Electronic Structure, and Photoluminescence Properties of Eu2+-Activated Carbonate Sr1-xBaxCO3 for White Light-Emitting Diodes," Journal of the Electrochemical Society 156 (9), J267-J272 (2009).
    290 C. J. Duan, Z. J. Zhang, S. Rosler et al., "Preparation, Characterization, and Photoluminescence Properties of Tb3+-, Ce3+-, and Ce3+/Tb3+-Activated RE2Si4N6C (RE= Lu, Y, and Gd) Phosphors," Chemistry of Materials 23 (7),1851-1861.
    291 H. Onuma, I. Yamashita, K. Serizawa et al., Electronic Structure Calculation and QSPR Analysis of Eu2+-doped Oxide Phosphors:Relationship between Emission Wavelength and Crystal Structure. (2009), pp.254-257.
    292 JiaYe Tang, JunHua Chen, LuYuan Hao et al., "Green Eu2+-doped Ba3Si6O12N2 phosphor for white light-emitting diodes:Synthesis, characterization and theoretical simulation," Journal of Luminescence 131 (6),1101-1106.
    293 K. Shioi, N. Hirosaki, R. J. Xie et al., "Luminescence properties of SrSi6Ng:EU2+ Journal of Materials Science 43 (16),5659-5661 (2008).
    294 Y. Q. Li, A. C. A. Delsing, R. Metslaar et al., "Photoluminescence properties of rare-earth activated BaSi7N10," Journal of Alloys and Compounds 487 (1-2),28-33 (2009).
    295 X. Y. Cui, B. Delley, A. J. Freeman et al., "First-principles investigation of Mn delta-layer doped GaN/AlN/GaN (0001) tunneling junctions," Journal of Applied Physics 106 (4) (2009).
    296 X. Y. Cui, J. E. Medvedeva, B. Delley et al., "Built-in electric field assisted spin injection in Cr and Mn delta-layer doped AlN/GaN(0001) heterostructures from first principles," Physical Review B 78 (24) (2008).
    297 Y. Endo, T. Sato, A. Takita et al., "Magnetic, electrical properties, and structure of Cr-AIN and Mn-AIN thin films grown on Si substrates," Ieee Transactions on Magnetics 41 (10), 2718-2720 (2005).
    298 Y. Q. Fan and A. L. He, "Half-Metallic Properties of Mn-AIN and Cr-AIN Based on First-Principles," Acta Physico-Chimica Sinica 26 (10),2801-2806.
    299 H. Li, H. Q. Bao, B. Song et al., "Ferromagnetic properties of Mn-doped AlN," Physica B-Condensed Matter 403 (21-22),4096-4099 (2008).
    300 M. K. Li, C. B. Li, C. S. Liu et al., "Optical and magnetic measurements of Mn+-implanted AlN," Journal of Applied Physics 95 (2),755-757 (2004).
    301 M. K. Li, C. B. Li, C. S. Liu et al., "Cathodoluminescence and magnetic properties of Mn+implanted AlN," Chinese Physics Letters 21 (2),393-395 (2004).
    302 T. Sato, Y. Endo, Y. Kawamura et al., "Study on Absence of Room-Temperature Ferromagnetism in the Mn-AlN Films With Various Mn Concentrations," Ieee Transactions on Magnetics 44 (11),2688-2691 (2008).
    303 Y. Yang, Q. Zhao, X. Z. Zhang et al., "Mn-doped AlN nanowires with room temperature ferromagnetic ordering," APPLIED PHYSICS LETTERS 90 (9) (2007).
    304 F. KAREL and J. MARES, "ELECTRON STATES OF MANGANESE LUMINESCENCE CENTRES IN AlN," Czech J. Phys. B 22 (1972).
    305 F. KAREL and J. PASTRNAK, "THE LUMINESCENCE PROPERTIES OF AIN WITH MANGANESE AND RARE EARTH ACTIVATORS UNDER ULTRAVIOLET AND CATHODE-RAY EXCITATION," Czech. J. Phys. B 20 (1970).
    306 Y. K. Xu and S. Adachi, "Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching," Journal of Applied Physics 105 (1) (2009).
    307 T. Takahashi and S. Adachi, "Synthesis of K2SiF6:Mn4+ Red Phosphor from Silica Glasses by Wet Chemical Etching in HF/KMnO4 Solution," Electrochemical and Solid State Letters 12 (8), J69-J71 (2009).
    308 T. Takahashi and S. Adachi, "Mn4+-Activated Red Photoluminescence in K2SiF6 Phosphor," Journal of the Electrochemical Society 155 (12), E183-E188 (2008).
    309 Wenjie Xie, Jiaye Tang, Luyuan Hao et al., "Blue and red luminescence from Mn2+-Ce3+ co-doped MgYSi2O5N phosphors," Optical Materials 32 (2),274-276 (2009).
    310 Sangjun Lee and Kee-Sun Sohn, "Effect of inhomogeneous broadening on time-resolved photoluminescence in CaAlSiN3:Eu2+," Opt. Lett.35 (7),1004-1006.
    311 U. Kempe, S. M. Thomas, G. Geipel et al., "Optical absorption, luminescence, and electron paramagnetic resonance (EPR) spectroscopy of crystalline to metamict zircon: Evidence for formation of uranyl, manganese, and other optically active centers," American Mineralogist 95 (2-3),335-347.
    312 James W. McCauley, Parimal Patel, Mingwei Chen et al., "AlON:A brief history of its emergence and evolution," Journal of the European Ceramic Society 29 (2),223-236 (2009).
    313 N. D. Corbin, "Aluminum oxynitride spinel:A review," Journal of the European Ceramic Society 5 (3),143-154(1989).
    314 D. Goeuriotlaunay, P. Goeuriot, F. Thevenot et al., "STRUCTURAL EVOLUTION OF ALUMINA GAMMA-ALUMINUM OXYNITRIDE COMPOSITES DURING HIGH-TEMPERATURE COMPRESSION CREEP," Journal of Materials Science 27 (2), 358-364(1992).
    315 G. Gilde, P. Patel, and M. Patterson, in Window and Dome Technologies and Materials ⅵ, edited by R. W. Tustison (1999), Vol.3705, pp.94-104.
    316 D. C. Harris, in Window and Dome Technologies and Materials IX, edited by R. W. Tustison (2005), Vol.5786, pp.1-22.
    317 M. C. L. Patterson, A. A. DiGiovanni, L. Fehrenbacher et al., in Window and Dome Technologies ⅷ, edited by R. W. Tustison (2003), Vol.5078, pp.71-79.
    318 C. T. Warner, T. M. Hartnett, D. Fisher et al., in Window and Dome Technologies and Materials IX, edited by R. W. Tustison (2005), Vol.5786, pp.95-111.
    319 T. M. Hartnett, S. D. Bernstein, E. A. Maguire et al., "Optical properties of ALON (aluminum oxynitride)," Infrared Physics & Technology 39 (4),203-211 (1998).
    320 J. P. Cheng, D. Agrawal, Y. J. Zhang et al., "Microwave reactive sintering to fully transparent aluminum oxynitride (ALON) ceramics," Journal of Materials Science Letters 20 (1),77-79 (2001).
    321 J. Q. Qi, J. C. Zhou, W. Pang et al., "Study on the preparation of ALON powder by solid state reaction method," Rare Metal Materials and Engineering 36,88-91 (2007).
    322 J. M. Xue, Q. Liu, T. P. Xiu et al., in High-Performance Ceramics V, Pts 1 and 2, edited by W. Pan and J. H. Gong (2008), Vol.368-372, pp.450-452.
    323 Michael E. Thomas, William J. Tropf, and Summer L. Gilbert, "Vacuum-ultraviolet characterization of sapphire, ALON, and spinel near the band gap," Optical Engineering 32(6),1340-1343(1993).
    324 H. X. Willems, G. de With, and R. Metselaar, "Thermodynamics of Alon Ⅲ:Stabilization of Alon with MgO," Journal of the European Ceramic Society 12 (1),43-49 (1993).
    325 A. Granon, P. Goeuriot, F. Thevenot et al., "Reactivity in the Al2O3-AlN-MgO system. The MgAlON spinel phase," Journal of the European Ceramic Society 13 (4),365-370 (1994).
    326郭新荣,“矾土基MgAlON复合刚玉材料性能与结构的研究,”郑州大学硕士学位论文(2004).
    327孔凡茂,and杨秋菊,”透明AlON陶瓷材料的研究现状及进展,”硅酸盐通报26(4),784-788(2007).
    328 E. Soignard, D. Machon, P. F. McMillan et al., "Spinel-structured gallium oxynitride (Ga3O3N) synthesis and characterization:An experimental and theoretical study," Chemistry of Materials 17 (22),5465-5472 (2005).
    329 D. Jia and W. M. Yen, "Enhanced V-K3+ center afterglow in MgAl2O4 by doping with Ce3+," Journal of Luminescence 101 (1-2),115-121 (2003).
    330 Wenbin Dai, Wei Lin, Akira Yamaguchi et al., "Synthesis of Magnesium Aluminum Oxynitride by Carbothermal Reduction and Nitridation Process," Journal of the Ceramic Society of Japan 115 (1337),42-46 (2007).
    331 N. Kimura, K. Sakuma, S. Hirafune et al., "Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode," APPLIED PHYSICS LETTERS 90 (5),3 (2007).
    332 GAO Xiaoming, QIU Kehui, ZHANG Peicong et al., "A Study of Preparation of SrAI204: Eu2+ Luminescent Material," Materials Review 17,260-261 (2003).
    333 Jianfeng Gu and Bing Yan, "Hydrothermal synthesis and luminescent properties of Ca2V2O7:Eu3+ phosphors," Journal of Alloys and Compounds 476 (1-2),619-623 (2009).
    334 Wataru Nakao and Hiroyuki Fukuyama, "Gibbs Energy Change of Carbothermal Nitridation Reaction of y-AION and Its Thermodynamic Stability," Journal of the American Ceramic Society 88 (11),3170-3176 (2005).
    335 H. X. Willems, M. M. R. M. Hendrix, G. de With et al., "Thermodynamics of Alon Ⅱ: Phase relations," Journal of the European Ceramic Society 10 (4),339-346 (1992).
    336 C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science 46 (1-2),1-184(2001).
    337 A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Materialia 48 (1),279-306 (2000).
    338 J. S. Benjamin, "DISPERSION STRENGTHENED SUPERALLOYS BY MECHANICAL ALLOYING," Metallurgical Transactions 1 (10),2943 (1970).
    339 P. G. McCormick, "APPLICATION OF MECHANICAL ALLOYING TO CHEMICAL REFINING," Materials Transactions Jim 36 (2),161-169 (1995).
    340李鹏亮,周敬恩,席生岐,“高能球磨制备立方AlN及其高温相变,”无机材料学报21(4)(2006).
    341郝海涛,梁建,李春华et al.,“高能球磨与反应烧结合成YAG:Ce3+荧光粉的研究,”材料导报20(z1)(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700