用户名: 密码: 验证码:
半主动空气悬架混杂系统的多模式切换控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统悬架相比,半主动空气悬架能够实现车身高度的主动控制和阻尼的自适应调节,对于改善车辆在行驶过程中的乘坐舒适性、行驶安全性以及燃油经济性有着重要作用,已成为汽车工程界的研究热点。随着空气弹簧和可调阻尼减振器研究的日益成熟,控制系统的设计已经成为实现半主动空气悬架控制功能要求、提高半主动空气悬架自适应能力的瓶颈和关键。
     本文以变阻尼与变车身高度集成的某空气悬架轿车为研究对象,通过分析系统的工作原理和运行状态,将非线性的半主动空气悬架综合为包含悬架系统自身物理特性所约束的连续动态过程行为和多工况使能/失能切换输入、多工况控制输出等离散动态行为的集合。根据这两类不同性质行为之间的相互混合和相互影响,本文的主要内容将围绕半主动空气悬架控制策略的设计、半主动空气悬架混杂系统动态行为分析及其控制等工作进一步展开。
     构建半主动空气悬架混杂系统。分析了半主动空气悬架的控制模式和性能特点,进行了半主动空气悬架混杂特性的解析和研究,将半主动空气悬架的阻尼控制过程描述为一类混杂系统,引入混杂系统理论,构建了半主动空气悬架混杂系统功能模型结构和实现模型结构,为半主动空气悬架混杂系统的控制奠定基础。
     确定半主动空气悬架的控制模式与切换参数。根据半主动空气悬架混杂系统的控制特点,对其进行了多模式切换控制研究。将车身高度分为“高位、中位和低位”三种控制模式,并根据车辆的行驶路面与车速变化确定各个模式之间的切换参数。考虑车身高度控制与阻尼自适应调节之间的耦合关系,提出以车身高度切换优先为原则,将车身高度控制与阻尼控制解耦,并采用模糊控制算法实现三种车身高度间的稳定性调节。针对转向工况下不进行车身高度调节的特点,增加了转向工况控制模式。
     设计半主动空气悬架混杂系统局部控制器。根据悬架的偏频特性确定空气弹簧的可调高度,并在此基础上建立包含空气弹簧非线性的半主动空气悬架整车动力学模型,针对直线行驶工况下不同车身高度所反映的阻尼控制目标不同,分别设计了相应的阻尼力模糊PID控制算法,同时进行了转向工况下的基于模糊神经网络的阻尼力控制研究,对局部控制器的性能进行仿真分析,验证了控制算法的有效性。
     提出了半主动空气悬架混杂系统切换监督控制方法。建立了半主动空气悬架多工况性能评价指标体系,分析了系统无监督切换控制性能。针对系统在切换过程由于局部控制器输出跃变引起的失稳和振荡,基于模糊理论设计了混杂系统切换过程监督控制器,通过对局部控制器的输出进行加权和得到系统的最终控制输入,从而实现半主动空气悬架混杂系统的平滑切换,通过仿真验证了所设计的监督器的有效性。
     开发了基于MC9S08单片机的半主动空气悬架混杂系统多模式切换控制器,并进行了控制系统的软硬件设计。针对车辆的行驶平顺性和操纵稳定性分别进行了局部工况的实车道路性能验证,对试验结果进行了分析研究。
     研究结果表明,通过建立半主动空气悬架混杂系统,并对其进行多模式切换监督控制,既满足了悬架在不同行驶工况下的控制要求,同时改善了系统在控制模式切换过程中的振荡和冲击,悬架性能指标在模式切换过程中的超调幅度最高可降低19.4%。在局部工况随机路面试验中,半主动空气悬架混杂系统控制可使车辆的行驶平顺性平均提高11.15%;在蛇形试验中,车辆的车身侧倾角均值平均降低了6.18%、横摆角速度均值平均降低了7.24%、侧向加速度均值平均降低了5.43%,车辆的操纵稳定性达到并超越了原车的控制水平。
Because the semi-active air suspension could achieve active controls of body height and damping compared with traditional suspensions, it has played a significant role in improving the ride comfort, driving safety and fuel economy of the vehicle in the driving process and become a research hotspot of vehicle engineering. Along with the increasing maturity of researches about air spring and adjustable damping shock absorber, the design of control system has become a bottleneck to realize the control requirements and improve adaptive capacity of semi-active air suspension.
     This dissertation took a car with air suspension integrating variable damping and variable body height as the objects of study. By analyzing the working principles and running states of the vehicle system, the nonlinear semi-active air suspension system was described as an aggregation of continuous dynamic process behaviors constrained by the physical properties of suspension system and discrete dynamic behaviors such as multi-condition enable/disable switching inputs and multi-condition control outputs. According to the mixture and influence between the two different behaviors, the main tasks of the dissertation were to design the control strategy of semi-active air suspension, analyze the hybrid dynamic behaviors of the suspension system and then realize the corresponding control.
     A semi-active air suspension hybrid system was built in the dissertation firstly. By analyzing the control mode and performance characteristics and studying the hybrid characteristic of semi-active air suspension, the damping control process was described as a hybrid system. Based on hybrid system theory, the functional model structure and implementation model structure of semi-active air suspension hybrid system were built, which laid the foundation of control.
     A suitable control mode and switching parameters of semi-active air suspension were determined secondly. According to the control feature of semi-active air suspension hybrid system, a multi-model switching control was studied. The body height control was divided into three control modes, such as the high, the middle and the low. The parameters of modes'switch were determined based on the road conditions and the speed changes of vehicle. Because of the coupling relationship between the body height control and the damping self-adjustment, a new control strategy was put forward, which set the principles ensuring the priority of body height switching, then decoupled the body height control and damping control, and realized the stability of body height adjustment by fuzzy control algorithm finally. Because the vehicle height couldn't be adjusted in steering condition, the new control strategy added a steering control mode on the base of three body height control modes.
     A local controller of semi-active air suspension hybrid system was designed thirdly. The adjustable height of air spring was determined by offset frequency characteristic of suspension, and on this basis, a nonlinear dynamics vehicle model with semi-act've air suspension was then established. According to different damping control targets in accord with different body height modes under straight-line driving condition, three corresponding damping force fuzzy-PID control algorithms were designed. At the same time, the damping force control based on fuzzy neural network under steering condition was studied. The effectiveness of the control algorithms was verified by the performance simulation of the local controllers.
     A switching supervisory control method of semi-active air suspension hybrid system was proposed then in this dissertation. A multi-condition performance evaluation index system of semi-active air suspension was built, which could analyze the control performance of the unsupervised switching system. According to the instability and oscillation problem caused by the output jumps of local controllers during switching process, a switching process supervisory controller of hybrid system was designed based on fuzzy theory. The system's final control inputs obtained as the weighted sum of the local controller outputs could realize the smooth transitions between different control modes of semi-active air suspension hybrid system. The effectiveness of the designed supervisory controller was verified by simulation.
     Finally, with the single chip microcomputer MC9S08A, a multi-mode switching controller of semi-active air suspension hybrid system was explored and the control system's software and hardware were designed then. Under local conditions, real vehicle road tests were carried out individually to verify the ride comfort and handling stability, and the test results were analyzed and studied then.
     The research results showed that the semi-active air suspension hybrid system built in the dissertation and its corresponding multi-mode switching supervisory control strategy could not only meet the suspension control requirements under different driving conditions, but also ameliorate the vibration and shock performance in switching process of different modes. The overshoot amplitude of suspension performance in switching process could be reduced by19.4%in maximum. Compared with original car control, in the random rode tests under local conditions, the semi-active air suspension hybrid control of system could improve the ride comfort by11.15%on average. Additionally, in the pylon course slalom tests, the mean values of body side angles, yawing rates and lateral accelerations were respectively reduced by6.18%,7.24%and5.43%on average. The vehicle's manipulation stability with semi-active air suspension hybrid system reached and transcended the control effectiveness of the original car control system.
引文
[1]陈家瑞.汽车构造[M].第2版.北京:机械工业出版社,2009.
    [2]汪若尘.基于大系统理论的时滞半主动悬架研究[D].镇江:江苏大学博士学位论文,2006.
    [3]Chris Genger. Active and Semi-Active Suspension Control for Specific Point Isolation of Vehicles[D]. California:Master degree thesis at the University of California,2007.
    [4]刘科.BRT客车振动分析[D].青岛:青岛理工大学硕士学位论文,2010.
    [5]江洪,李坤,周文涛等.ECAS系统控制模式及控制策略[J].机械工程学报,2009,45(12):224-231.
    [6]崔晓利.车辆电子控制空气悬架理论与关键技术研究[D].长沙:中南大学博士学位论文,2011.
    [7]樊登柱.车辆磁流变半主动悬架控制系统仿真及试验研究[D].南京:南京林业大学硕士学位论文,2007.
    [8]许佳.汽车半主动悬架的首次穿越与随机最优控制研究[D],天津:天津大学硕士学位论文,2008.
    [9]刘燕.基于虚拟样机技术的轿车悬架总成开发、建模及性能仿真[D].西安:长安大学硕士学位论文,2008.
    [10]B.Richter,张兆奎.主动底盘系统的发展趋势[J].汽车工程,1992,14(1):12-18.
    [11]王国丽,顾亮,孙逢春.车辆主动悬架的现状和发展趋势[J].兵工学报,2000,21(增刊):80-83.
    [12]方子帆,邓兆祥,郑玲等.汽车半主动悬架系统研究进展[J].重庆大学学报,2003,26(1):104-108.
    [13]钱瑜.汽车悬架分类及半主动悬架[J].江南学院学报,1999,14(4):73-76.
    [14]陈兵.车辆智能悬架系统发展趋势研究[J].起重运输机械,2005,14(6):1-6.
    [15]C.Poussot-Vassal, O.Sename, L.Dugard. A new semi-active suspension control strategy through LPV technique[J]. Control Engineering Practice,2008,16:1519-1534.
    [16]Wen-Hwar Kuo,Tsong-Neng Wu, Jenhwa Guo.Design and performance evaluation of a serial multi-electrode electrorheological damper[J]. Journal of Sound and Vibration. 2006,292(3-5):694-709
    [17]Lyan-Ywan Lu.Semi-active modal control for seismic structures with variable friction dampers[J]. Engineering Structures.2004,26(4):437-454
    [18]李以农,赵树恩,郑玲.汽车半主动悬架智能分布式递阶控制[J].系统仿真学报,2009,21(19):6095-6090.
    [19]黄昆,喻凡.电动式主动馈能悬架综合性能的协调优化[J].上海交通大学学报,2009,2(43):226-230
    [20]楼少敏,付振,许沧粟.基于滑模理论的半主动悬架控制[J].汽车工程,2010(05):434-438.
    [21]王奇东,王祺明,陈无畏.磁流变半主动悬架变论域模糊控制研究[J].振动工程学报,2009,22(5):512-518
    [22]陈龙,江浩斌,汪若尘.基于大系统理论半主动悬架系统[J].机械工程学报,2008,44(8):97-101.
    [23]江浩斌,方恩,周孔亢.半主动悬架可调阻尼减振器及其控制时滞研究[J].汪苏大学学报(自然科学版),2004,25(5):393-396.
    [24]杨启耀.ECAS客车悬架系统的匹配与充放气研究[D].镇江:江苏大学博士学位论文,2008.
    [25]常辉.基于车高调节的空气悬架电子控制单元的设计与实现[D].镇江:江苏大学硕士学位论文,2009.
    [26]黄理法.大客车前双气囊空气悬架及前段车架结构有限元分析与试验研究[D].西安:长安大学硕士学位论文,2009.
    [27]赵华伟.客车整车空气悬架多体动力学建模与仿真研究[D].镇汪:江苏大学硕士学位论文,2010.
    [28]袁春元.车用空气弹簧设计理论和现代设计方法研究[D].镇江:汪苏大学博士学位论文,2007.
    [29]周文涛.基于ECAS系统阻尼控制策略的客车平顺性和操稳性研究[D].镇江:江苏大学硕士学位论文,2008.
    [30]Hirose Masanori,Matsushigc Seiichi,Buma Shuichi. TOYOTA ELECTRONIC MODULAT-ED AIR SUSPENSION SYSTEM FOR THE 1986 SOARER.[J]. IEEE 1986 Workshop on Automotive Applications of Electronics,1986,63-72.
    [31]Matsushita Hisashi,Noritsugu Toshiro,Wada Tsutomu.Optimal control of active air suspensi on[J]. Transactions of the Japan Society of Mechanical Engineers,1990,(56):1499-1504.
    [32]Schoenfeld Karl-H,Geiger Hartmut,Hesse Karl-H. Electronically controlled air suspension (ECAS) for commercial vehicles[J]. SAE Technical Paper Series 1991.
    [33]Grajnert Jacek,Krettek Otmar. Dynamic properties of air suspension systems for constant level control[J].Glasers Annalen,1991, (15):352-359.
    [34]Inseob lang,Hyunsup Kim,Hyeongchul Lee. Height Controland Failsafe Algorithm for Closed Loop Air Suspension Control System[C]. International Conference on Control, Automation and Systems,2007,373-378.
    [35]Hyunsup Kim and Hycongcheol Lee. Height and Leveling Control of Automotive Air Suspension System Using Sliding Mode Approach[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2011,60,2027-2041
    [36]Hyunsup Kim and Hyeongcheo Lee.Fault-Tolerant Control Algorithm for a Four-Corner Closed-Loop Air Suspension System[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2011,58,4866-4879.
    [37]Kim Hyunsup, Lee Hyeongcheo. Model-based fault-tolerant control for an automotive air suspension control system[J]. Journal of Automobile Engineering,,2008,225,1462-1480.
    [38]Suda Yoshihiro, Wang Wenjun,Komine Hisanao.Simulation of low speed transition curve negotiation and air suspension control to prevent wheel load reduction of railway vehicle[C].Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2005,2141-2147.
    [39]Christian Graf, Jurgen Maas. Commercial Vehicle Cabin with Active Air Suspension for Improved Ride Comfort[C].2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2011,259-264.
    [40]Luiz CC, Marli LS, Reobato AM, etal. Electronically Controlled Air Suspension[J].SAE, 1999.
    [41]Yamamoto Hiroshi, Zheng Ying, Okada Jun-Ichi.Optimum design method for a Two degree of freedom system supported with air suspensions[J]. Japan Soeiety of Mechanical Engineers,2008,74(5):1129-1136.
    [42]Donggil Ha, Hyunsup Kim, Hyeongeheol Lee. Height sensor fault diagnosis for electronic air suspension system[C]. Industrial Eleetronics 2009.IEEE International Symposium, 2009:211-216.
    [43]Wolf-Monheim Friedrieh, Sehumaeher Mathias, Frantzen Miehac.Interlinked air suspension systems:the influence on ride comfort in testing and simulation [J]. Auto Teehn ology,2009, 9(3):58-61.
    [44]Mahmoudian Pooya, Kashani Reza. Active stiffness and damping control of air mounted/su spended systems[C].2008 ASME Intermational Meehanieal Engineering Congress and Expositio.Boston,2009,531-544.
    [45]Hilgers Christian, Brandes Jens, Ilias Heike. Active air spring suspension for greater range between adjusting for comfort and dynamic driving [J].Auto Technology,2009,9(4):42-47.
    [46]Moshchuk Nikolai,Li Yunjun, Opiteck Steve. Air suspension system model and optimizati on[C]. SAE 2011 World Congress and Exhibition.2011,1047-1052.
    [47]王伟.基于最优控制的空气悬架仿真研究[J].机械工程与自动化,2007,144(3):26-28.
    [48]闵运东,洪家娣.半主动空气悬架最优控制[J].机械设计与制造,2008,20(4):52-54.
    [49]王辉,朱思洪.半主动空气悬架神经网络的自适应控制[J].农业机械学报,2006,37(1):28-31
    [50]李仲兴,李美,张文娜.车辆空气悬架PID控制系统的研究[J].拖拉机与农用运输车,2009,36(5):56-58.
    [51]陈一锴,何杰,李旭宏.基于模糊控制的重型货车空气悬架性能多目标优化[J].东南大学学报(自然科学版),2008,38(2):319-323.
    [52]陈龙,朱兴华,江若尘等.空气悬架系统的模糊控制与仿真[J].机械设计与制造,2010,5(6):121-123.
    [53]胡芳,陈无畏.基于非线性模型的汽车空气悬架系统模糊控制研究[J].合肥工业大学学报(自然科学版),2005,28(10):772-777.
    [54]朱思洪,吕宝占,王辉等.汽车半主动空气悬架的神经网络控制方法[J].交通运输工程 学报,2006,6(4):66-70.
    [55]姜立标,王登峰等.汽车半主动空气悬架自适应模糊神经网络控制[J].哈尔滨工业大学学报,2005,37(3):1747-1750.
    [56]杨启耀,周孔亢,周文娜等.半主动空气悬架Fuzzy-PID控制[J].农业机械学报,2008,39(9):24-29.
    [57]王宏杰.基于模糊控制的半主动空气悬架系统的仿真与试验研究[D].长春:吉林大学硕士学位论文,2005.
    [58]杨钫.基于PID控制空气悬架系统的仿真与试验研究[D].长春:吉林大学硕士学位论,2004.
    [59]陈燕虹,刘宏伟,雷海蓉.半主动空气悬架的参数自调整模糊控制仿真[J].吉林大学学报(工学版),2003,33(5):5-8.
    [60]陈燕虹.半主动空气弹簧悬架智能控制算法的仿真及试验研究[D].长春:吉林大学博士学位论文,2005.
    [61]尹增山.混杂系统优化控制理论研究[D].杭州:浙江大学博士学位论文,2001.
    [62]乔宇.汽车四轮转向的动力学特性与混杂控制研究[D].天津:天津大学博士学位论文,2003.
    [63]王瑛.智能PID算法的应用及混杂控制系统设计研究[D].南京:南京理工大学硕士学位论文,2002.
    [64]张聚.混杂系统理论及在非线性系统中的应应研究[D].杭州:浙江大学博士学位论文,2005.
    [65]仝庆贻.混杂系统稳定性及其在电力系统中的应用研究[D].杭州:浙江大学博士学位论文,2004.
    [66]Baotic M, Vasak M, Morari M, et al. Hybrid theory based optimal control of electronic throttle[C]. In Proc.of the Conf.on Decision and Control,2003.
    [67]张立焱.结合逻辑与规则的工业过程建模与优化控制研究[D].杭州:浙江大学博士学位论文,2003.
    [68]Borrelli F, Bemporad A, Fodor M, et al. An MPC/Hybrid System approach to Traction Control [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2006,14 :541-552.
    [69]Tomlin C. Hybrid Control of Air Traffic Management Systems [D]. Berkelcy:PhD thesis of Department of Electrical Engineering and Computer Sciences,University of California at Berkeley,1998.
    [70]胡春花,何仁,李楠.基于切换系统的HEV能量控制系统优化设计[J].江苏大学学报(自然科学版),2011,32(5):497-501.
    [71]Arjan vander Schaft, Hans Schumacher. An introduction to hybrid dynamical systems[M].宋永华,孙元章,秦世引等译,北京:清华大学出版社,2007.
    [72]李卫东.混杂动态系统的分析与控制[D].杭州:浙江大学博士学位论文,2003.
    [73]Witsenhausen H.S. A class of hybrid-state continuous-time dynamic systems[J]. IEEE Transactions on Automatic Control,1966,11 (2):161-167.
    [74]F.E.Cellier. Combined continuous/discrete system simulation by use of digital computer: Techniques and tools[D]. Zurich, Switzerland, Swiss Federal Institute of Technology,1979.
    [75]M.Athams. Command and control theory:a challenge to control science[J]. IEEE Transacti ons on Automatic Control,1987,32(4):286-293.
    [76]赵景波.汽车EPS混杂控制系统理论、设计及实现研究[D].镇江:江苏大学博士学位论文,2009.
    [77]郭磊.混合动态系统建模、稳定性及最优控制问题研究[D].济南:山东大学博士学位论文,2006.
    [78]Varaiya P.P. Smart cars on smart roads:Problems of control[J]. IEEE Transactions on Automatic Control,1993,38(2):195-207.
    [79]Back A., Guckenheimer J,Myers M.. A dynamical simulation facility for hybrid systems[J]. Hybrid Sytems, Springer,1993:255-267.
    [80]S. Sastry, G. Meyer, C. Tomlin, et al. Hybrid control in air traffic management systems[J]. IEEE Conference on Decision and Control,1995:1478-1483.
    [81]张悦.混杂系统建模与控制方法研究[D].保定:华北电力大学博士学位论文,2008.
    [82]王小捷.混合动态系统研究[D].北京:北京航空航天大学学位论文,1996.
    [83]Y.Zhang, A.K.Mackworth. A semantic model for hybrid dynamical system [I]. Theoretical computer science,1995,138:211-239.
    [84]高军伟.切换系统建模、控制理论与应用研究[D].北京:铁道科学研究院博士学位论文,2003.
    [85]Ilya Kolmanovsky, Elmer GGilbert. Multimode regulators for systems with state & control constraints and disturbance inputs[C]. Control Using Logic Based Switching, Lecture Notes in Control and Information Sciences, Berlin:Springer-Verlag,1996,105-117.
    [86]Albert Bemporad, A M Morari. Control of systems intergrating logic, Dynamics, and Const raint[J].Automatic,1999,35(3):407-427.
    [87]A.Vander Schaft, H.Schumacher. An introduction to hybrid dynamical systems [M].Berlin:Springer-Verlag,2000.
    [88]R.Alur, T.A.Henzinger, E.D.Sontag. Hybrid Systems Ⅲ Verification and Control-Lecture Notes in Computer Science[M].Berlin:Springer-Verlag,1996.
    [89]M.D.Lemmon, P.J.Antsaklis. Inductively inferring valid logical models of continuous-state dynamical systems[J].Theoretical Computer Science,1995,138(1):201-210.
    [90]R.Alur, C.Courcoubetis, T.A.Henzinger et al. Hybrid Automata:An Algorithmic Approach to the Specification and Verification of Hybrid Systcms[C].Lecture Notes in Computer Scie nce.LNCS 736, Springer-Verlag,1993,209-229.
    [91]M.Lemmon, K.X.He. Modeling hybrid systems using programming Petri nets[J].European. Automation,1999,32(9):1187-1208.
    [92]P.J.Antsaklis. Scanning the Issue on hybrid system:Theory and Applicati-ons [J].Proceeding of the IEEE 80(7):879-886.
    [93]GGoos, J.Hartmanis,Van Leeuwen J. Hybrid Systems:Computation and Control-Lecture Notes in Computer Science[M].Berlin:Springer-Verlag,2000.
    [94]P Peleties,R DeCarlo. Asymptotic stability of m-switched systems using Lyapunov-like functions[C]. In:Proceedings of the 1991 American Control Conference, Evanston, IL,USA :American Autom.Control Council,1991.1679-1684
    [95]M.S.Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[J]. IEEE Transactions on Automatic Control,1998,43(4):475-482.
    [96]H.Ling, A.N.Michel, Y.Hui. Stability analysis of switched systems[C].In:Proceedings of the 35th IEEE Conference on Decision and Control, New York, USA:IEEE,1996,1208-1212.
    [97]R.Mitra. Stability and performance analysis of hybrid manufacturing systems[D],Washingto n:Washington University,2000.
    [98]柏晓明.切换系统的最优控制和稳定性[D].武汉:华中科技大学博士学位论文,2007.
    [99]R. Alur, T.A. Henzinger, M.Y. Vardi. Parametric real-time reasoning[C]. Proceedings of the 25th ACM Symposium on Theory of Computing,1993,-592-601.
    [100]Bail J.Lc,H.Alla,R.David. Hybrid petrinets[C]. Proclst Int European Control Conf.Grenobl e,1991.1472-1477.
    [101]Albert Bemporad,M Morari. Optimization-Based Hybrid Control Tools [C]. Proceeding of the American Control conference,2001,1689-1703.
    [102]胡振华.温室温度混合逻辑动态建模与控制研究[D].合肥:中国科学技术大学硕士学位论文,2007.
    [103]Gollu A, Varaiya P P. Hybrid dynamical system[C]. Pro. IEEE Conf.Decision and control, 1989:2708-2712.
    [104]P.J. Antsaklis,X.D. Koutsoukos. Hybrid system control[J]. ISIS technical report in Encyclo pedia of physical science and technology,2002,3(7):445-458.
    [105]Michael S.B. Introduction to Hybrid system[J]. Hybrid Sytems,Springer,1995:91-116.
    [106]Brockett. R.W. Hybrid models for motion control system[J]. Essays in control,1993:29-53.
    [107]Xp Xu, Gs Zhai. On practical stability and stabilization of hybrid and switched systems[J]. Hybrid Systems:Computation and Control, Berlin:Springer-Verlag,2004,615-630.
    [108]John Lygcros. Lecture notes on hybrid systems[M]. Berlin:Springer-Verlag,2003.
    [109]Morse A.S. Supervisory control of families of linear set-point controllers-Part 1:exact matching [J].IEEE Trans. Automat. Control,1996,41 (10):1413-1431.
    [110]Morse A.S. Supervisory control of families of linear set-point controllers-Part 2:robustness [J]. IEEE Trans. Automat. Control,1997,42(11):1500-1515.
    [111]Efstratios S. Stability results for switched controller systems[J]. Automatica,1999, 35(2):553-564.
    [112]Tanaka K, Sano M. A robust stabilization of fuzzy control system and its application to backing up of a truck trailer [J]. IEEE Transactions on Fuzzy Systems,1994,2(2):119-134.
    [113]Ravindranathan M, Lcitch R. Model switching in intelligent control systems[J]. Artificial Intelligence in Engineering,1999,13(2):175-187.
    [114]任艳频.切换系统的建模、分析与仿真研究[D].北京:清华大学博士学位论文,1999.
    [115]谢广明.线性切换系统的分析与控制[D].北京:清华大学博士学位论文,2001.
    [116]李萍.切换时滞系统稳定性的若干问题研究[D].成都:电子科技大学博士学位论文,2010.
    [117]江洪,李仲兴,周文涛.基于遗传算法的ECAS系统中三级阻尼匹配优化设计[J].机械工程学报,2009,45(10):278-283.
    [118]耿玉军.ECAS客车车身高度调节系统设计及调校研究[D].镇江:江苏大学硕士学位论文,2009.
    [119]Stauner Thomas, Mueller Olaf, Fuchs Max. Using HYTECH to verify an automotive control system[J]. Lecture Notes in Computer Science,1997,1201,139-145.
    [120]傅立敏.汽车空气动力学[M].北京:机械工业出版社,1998.
    [121]余志生.汽车理论[M].第5版.北京:机械工业出版社,2010.
    [122]贾秋玲,袁冬莉,栾云凤.基于MATLAB 7.x/Simulink/Stateflow系统仿真、分析及设计[M].西安:西北工业大学出版社,2006.
    [123]陈杰平.基于磁流变减振器的汽车半主动悬架设计与控制研究[D].合肥:合肥工业大学博士学位论文,2010.
    [124]王望予.汽车设计[M].第4版.北京:机械工业出版社,2009.
    [125]吴志成,陈思忠,杨林等.基于有理函数的路面不平度时域模型研究[J].北京理工大学学报,2009,29(9):795-798.
    [126]张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报,2005,36(12):29-32.
    [127]赵珩,卢士富.路面对四轮汽车输入的时域模型[J].汽车工程,1999,21(2):112-117.
    [128]冯金芝,李君,郑松林等.车辆四轮随机输入模型研究[J].上海理工大学学报,2010,32(3):205-208.
    [129]徐兴.ECAS客车车身高度非线性系统控制的研究[D].镇江:江苏大学博士学位论文,2010.
    [130]孙涛陈大跃.电流变智能半主动悬架模糊PID控制[J].汽车工程,2006,4(2):605-608.
    [131]郭大蕾,周文,胡海岩.具有可调增益的模糊PID电液主动控制悬架[J].振动工程学报,2001,24(5):273-277.
    [132]Malcolm C. Smith, Fu-Cheng Wang. Controller Parameterization for Disturbance Respons e Decoupling:Application to Vehicle Active Suspension Control[J]. IEEE TRANSACTION S ON CONTROL SYSTEMS TECHNOLOGY,2002,10:393-407.
    [133]贝绍轶,赵景波,刘勺华.车辆半主动悬架系统平顺性联合仿真分析[J].噪声与振动控制[J],2010,6(3):87-90.
    [134]陈士安,邱峰,何仁等.一种确定车辆悬架LQG控制加权系数的方法[J].振动与冲击,2008,34(6):65-68.
    [135]聂佳梅.基于灰色预测的汽车SAS与EPS集成系统分层协调控制研究[D].镇汪:江苏大学博士学位论文,2009.
    [136]Pacejka HB, Sharp RS.Shear force development by pneumatic tyres in steady state conditions: a review of modeling aspects[J].Vehicle System Dynamics.1991,20:121-126.
    [137]Bakker E, Nyborg L, Pacejka H.B. Tyre modeling for use in vehicle dynamics studies of automobiles [J]. SAE Technical Paper,1987, No.870421.
    [1 38]陈军MSC.ADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2008.
    [139]李以农,郑玲.汽车非线性半主动悬架的模糊神经网络控制[J].汽车工程,2004,26(5):600-605.
    [140]胡仕泳.基于模糊神经网络的立辊传动智能控制系统的设计[D].武汉:武汉科技大学,2005.
    [141]Nizar Al-Holou, Tarek Lahdhiri, Dae Sung Joo. Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Suspension Systems [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,2002,10:234-246.
    [142]Laiq Khan, Shahid Qamar, Umair Khan. Adaptive Wavelets Based Fuzzy NN control for Active Suspension Model[J]. Communications in Computer and Information Science,2012, 281:249-260.
    [143]陈无畏,朱敏杰,于启瑞等.基于串联型模糊神经网络的汽车半主动悬架的研究[J].汽车工程,2000,22(2):104-108.
    [144]周润景,张丽娜.基于MATLAB与fuzzyTECH I的模糊与神经网络设计[M].北京:电子工业出版社,2010.
    [145]李朝青.单片机原理及接口技术(简明修订本)[M].北京:北京航空航天大学出版社,2003.
    [146]Ronald K Jurgen. Automotive eletronics handbook[M]. second edition,McGraw-Hill,I nc,1999.
    [147]余水权,汪明慧,黄英.单片机在控制系统中的应用[M].北京:电子工业出版社,2003.
    [148]Jean J.Labrosse著,邵贝贝译.嵌入式实时操作系统μC/OS-Ⅱ[M].北京:北京航空航天大学出版社,2003.
    [149]《汽车平顺性随机输入行驶试验方法》,GB/T4970-1996.
    [150]《汽车操纵稳定性试验方法——蛇形试验》,GB/T6323.1-1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700