利用非转染人角膜基质细胞系体外重建组织工程人角膜基质的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角膜位于眼球最前端中央处,是组成眼球外壁的透明纤维膜,主要具有防御和屈光等多种功能。人角膜基质(Human Corneal Stroma,HCS)层由人角膜基质细胞(HumanCorneal Stromal Cell,HCSC)和200余层胶原纤维层构成,约占角膜厚度的90%,位于角膜上皮层和内皮层之间。各种疾病造成的角膜基质不可逆性混浊是致盲的主要原因,角膜病是仅次于白内障的第二大致盲因素,严重影响视力且患者人数每年还在增加。角膜移植是目前治疗角膜盲的主要有效方法,但由于捐献的角膜供体高度匮乏,无法满足众多角膜病患者复明的需求。体外重建的组织工程人角膜组织,作为捐献角膜的等效替代物,是目前解决角膜供体材料来源缺乏的有效途径,也是使众多HCS异常眼病患者复明的希望,更为组织工程全层人角膜的体外重建奠定了基础,因此急需开展组织工程人角膜基质(Tissue-engineered Human Corneal Stroma,TE-HCS)的体外重建研究。
     组织工程角膜就是利用组织工程技术以及生物材料或人工合成材料为载体,将角膜的种子细胞接种在载体支架上进行培养,在体外重建出形态结构和功能与在体人角膜相近的角膜组织替代物。而TE-HCS体外重建的两个基本要素分别是HCS种子细胞和载体支架材料。目前,作为角膜基质的种子细胞主要有原代细胞和转染的永生化细胞,但均存在缺陷并限制了在TE-HCS中的应用。本研究室建立了非转染、无致瘤性的HCSC细胞系解决了种子细胞来源的这一难题。胶原是构成动物细胞外基质的主要成分,不同种类动物来源的胶原的化学及生物学特征具有高度相似性,同时胶原具有低免疫原性、低毒性、低抗原性,而且来源广泛,其具有良好的生物相容性和生物可降解性,很早就被应用于组织工程的天然生物材料,本文选用胶原蛋白制备复合胶原凝胶支架作为TE-HCS体外重建的载体支架。
     为了检验业已建立的非转染HCS细胞系细胞用作TE-HCS体外重建种子细胞的可行性,本文对HCSC的细胞属性及功能进行了进一步鉴定。对第100代HCSC的生长曲线和染色体组型分析检测结果显示,培养在含10%胎牛血清的DMEM/F12(1:1)培养液的HCSC在低密度状态下保持树枝状,长满单层时呈纤维样,细胞生长分裂旺盛,其群体倍增时间为41.44h,其特征性染色体数目仍然为2n=46。对第100代HCSC的细胞免疫化学鉴定结果显示,HCSC能够表达HCSC特异性标志蛋白——波形蛋白;连接蛋白——整联蛋白β1和间隙连接蛋白-43的表达为阳性;功能蛋白——乙醛脱氢酶3A1、钠钾泵和钙泵表达为阳性,这表明该细胞仍具有HCSC的细胞属性、能形成细胞间连接和发挥功能HCSC的功能。对第100代HCSC的致瘤性检测结果显示,该细胞系细胞无致瘤性,可以安全用于TE-HCS的体外重建及其临床应用研究。可见,业已建立的非转染HCS细胞系细胞可被用作TE-HCS体外重建的种子细胞。
     为了获得TE-HCS体外重建的理想载体支架,本文利用人源Ⅰ型、V型和Ⅳ型胶原蛋白以及人源纤连蛋白和硫酸软骨素为原料,以EDC/NHS(1-[3-二甲基氨基丙基]-3-乙基碳化二亚胺/N-羟基琥珀酰亚胺)为交联剂制备了复合胶原凝胶(COL-CS-Gel)支架,并根据不同类型胶原的所占总胶原量的比例做了不同的组合。通过石蜡切片苏木精-伊红(HE)染色、扫描电镜对制备的复合胶原凝胶支架进行了鉴定。结果显示:COL-CS-Gel1(组1)表面具有一定的空隙结构,内部结构松散;COL-CS-Gel2表面错落相叠压,没有规则的空隙,内部结构有连接,但不均匀;COL-CS-Gel3表面结构致密,没有形成空隙,内部结构不均匀;COL-CS-Gel4表面具有一定的空隙结构,但没有形成完整的孔隙,内部结构均匀;COL-CS-Gel5表面孔径在100μm左右,内部结构均匀,是最佳的一个组合。另外对COL-CS-Gel5进行了鉴定,结果表明其透光性良好,透光率在90%左右,含水量为89.3%±4%。因此,COL-CS-Gel5适合用于TE-HCS体外重建。
     为了检测所制备COL-CS-Gel5的最适细胞迁入时间及生物相容性,本文通过冰冻切片HE染色及组织免疫化学方法对其进行了鉴定。在接种3d、5d、7d及9d后,HCSC在支架内部迁入良好、均匀分布。免疫化学鉴定显示HCSC中波形蛋白、整联蛋白β1、间隙连接蛋白-43、乙醛脱氢酶3A1、钠钾泵、钙泵等表达为阳性,说明COL-CS-Gel5与HCSC的生物相容性较好,可以用于TE-HCS体外重建。
     为了建立TE-HCS的体外重建的方法,本文利用生长状态良好、非转染、无致瘤性的HCSC为种子细胞,以复合胶原凝胶COL-CS-Gel5为载体支架,使用含10%胎牛血清的DMEM/F12(1:1)培养液,于37℃、5%CO2的培养条件下,进行了TE-HCS的体外重建研究,并利用冰冻切片HE染色、免疫化学、扫描电镜和透射电镜等方法对重建TE-HCS的形态结构、潜在功能等方面进行了鉴定。结果显示在培养3d后,细胞在重建TE-HCS内均匀分布,细胞平展于胶原面上,并多处形成细胞-基质之间的连接。同时,细胞-细胞间也存在细胞连接。免疫化学鉴定显示波形蛋白、整联蛋白β1、间隙连接蛋白-43、乙醛脱氢酶3A1、钠钾泵、钙泵等表达为阳性。这表明体外重建的TE-HCS具有与正常角膜基质相似的形态结构,且体外重建的TE-HCS具有发挥HCS生物学功能的潜能。最后,对所得TE-HCS利用新西兰兔角膜基质移植进行了初步的功能检测,在体观察到10d。
     综上所述,第100代非转染HCSC生长状态良好、增殖分裂旺盛;染色体特征正常;HCSC的标志性蛋白、连接蛋白、功能蛋白表达为阳性,且无致瘤性。同时,利用人源Ⅰ型、V型和Ⅳ型胶原蛋白以及人源纤连蛋白和硫酸软骨素为原料,以EDC/NHS为交联剂制备的复合胶原凝胶支架COL-CS-Gel5对HCSC的生物相容性好。然后利用本研究室所建立的非转染、无致瘤性HCSC及新制备的复合胶原凝胶支架COL-CS-Gel5成功体外构建出了TE-HCS。
Cornea is the transparent fiber membrane in the forefront of the eye ball, it has a varietyof important functions such as defense and refractive. Human corneal stroma is composed ofhuman corneal stromal cell and more than200layers of collagen fiber lamellar. It accountsfor about90%of the thickness of the cornea and locates between the corneal epithelial andcorneal endothelium. Corneal stromal opacity caused by various diseases is not reversible,which is the main reason for blindness. The number of blindness caused by corneal stromalopacity is second to cataract. And a large number of blindness increase every year. Cornealtransplantation is the main effective method for the treatment of corneal blindness. Thecorneas that donated are lack, and can’t meet the demand. Reconstructed corneal tissue invitro by tissue engineering techniques has a similar structure and functions with the normalcornea. They can meet the demand of corneal transplant. TE-HCS as equivalent substitutesof the donor cornea is an effective way to resolve the lack of donor cornea. It also bringshope to the patients who have abnormal corneal stroma. It laid the foundation forreconstruction of full-thickness corneal tissue engineering in vitro too. So, it is urgent tocarry out reconstruction of TE-HCS in vitro.
     Tissue engineering of cornea is to reconstruction human cornea corneal tissue substitutewith tissue engineering technology and biological materials or synthetic materials in vitro.The substitute has the similar morphology and function with the normal human cornea.Seeder cells and biological materials are the two basic elements of the tissue engineeringcorneal stromal. The seeder cells that used in the tissue engineering corneal stromal areeither primary cells or transfected cells, which limit the application of tissue engineeringcorneal stromal. The untransfected and no-tumorigenic human cornea stromal cell lineestablished by our laboratory solve this problem. Collagen is the main component ofconnective tissue, its chemical and biological characteristics of different animal origin arevery similar. Collagen has low immunogenicity, low toxicity, low antigenicity, and have hasgood biocompatibility and biodegradability. Collagen as natural biological materials has longbeen used in tissue engineering. It is used as scaffolds to reconstruction of TE-HCS in thiswork.
     To ensure the features of the human corneal stromal cell line, the human cornealstromal cell line is conducted by using microscope observation, growth characteristics,chromosome morphological observation, immunocytochemistry analysis and tumorigenicitytest. According to the results of optical microscope observation, the human corneal stromalcells that cultured in vitro are dendritic at low density, and fibroblast-like with monolayer.Population doubling time of the human corneal stromal cells is41.44h indicated it keepstrong ability to cleavage. Chromosome analysis showed that the human corneal stromal celllines have their predominant chromosome number in46. The immunofluorescence showedthat human corneal stromal cell lines expressed the marker protein----vimentin, theconnection protein----integrin β1and connexin-43, the function protein----Aldehydedehydrogenase3A1, Na+/K+-ATPase and Ca2+-ATPase positively, which suggested that thehuman corneal stromal cells still had normal phenotypes and the potential to form normalhuman corneal stromal. Besides, it is safe to use in TE-HCS and clinical application as thecells had no tumorigenicity. So, the HCSC is suitable for TE-HCS.
     Human type I, type IV, type V, fibronectin and chondroitin sulfate are used to build3-D collagen scaffold. The crosslinker are EDC/NHS (1-Ethyl-3-(3-dim-ethyllaminopropyl)carbodiimide hydrochloride/N-Hydroxysuccinimide) in the3-D collagen scaffold formprogress. Paraffin section HE, immunohistochemical staining, SEM, light transmittance,water content were used to determine the characteristics of the collagen scaffold. The resultsshowed that: COL-CS-Gel1’s surface with certain apertures, and the internal structureorganization is loosely; COL-CS-Gel2’s surface shows scaly, and the internal structureorganization is uneven. COL-CS-Gel3’s surface structure is pyknotic, there is no aperturesexistence. COL-CS-Gel4’s surface structure is irregular, and the internal structureorganization is uniform. COL-CS-Gel5’s apertures are about100μm, and the internalstructure organization is uniform. COL-CS-Gel5has a good light transmission, thetransmittance is about90%, and water content is89.3%±4%. So, the-Gel is suitable forTE-HCS.
     Frozen section HE and immunohistochemical staining were used to determine the timeof human cornea stromal cells migrate into the COL-CS-Gel scaffold and thebiocompatibility of COL-CS-Gel scaffold. The results showed that: the cells distribution inthe form is uniform after culturing for3days,5days,7days and9days respective.Immunohistochemical staining showed that vimentin, integrin β1, connexin-43, Aldehydedehydrogenase3A1, Na+/K+-ATPase and Ca2+-ATPase expressed positively, whichsuggested the biocompatibility of collagen scaffold form is good, and it can be used in TE-HCS.
     Tissue engineering human corneal stromal was reconstructed in vitro by using passage100human cornea stromal cells as seeder cells and3D-collagen scaffold as scaffold carries,which was produced in DMEM/F12(1:1) medium containing10%fetal bovine serum at37°C with5%CO2. Frozen section HE, immunohistochemical staining, SEM and TEMwere used to identify the tissue engineering human corneal stromal morphology andpotential functions. The results showed that the cells distribution in the form is uniform afterculturing for3days. The cells spread on the collagen surface and link to collagen. There arepresent junctions between cells also. Immunohistochemical staining showed that vimentin,integrin β1, connexin-43, Aldehyde dehydrogenase3A1, Na+/K+-ATPase and Ca2+-ATPaseexpressed positively. All those suggested tissue engineering human corneal stromal has thesimilar morphology and potential function with normal corneal stromal. At last, the surgicaloperation of corneal transplant were carry out with New Zealand rabbit and tests the functionof TE-HCS.
     In conclusion, the cells have higher transparency and plump conformation,and have astrong ability to cleavage also. Karyotype analysis showed that the cells have a typicaldiploid karyotype. The immunofluorescence showed that the cell lines expressed the markerprotein, the connection protein and the function protein positively. The biocompatibility ofcollagen scaffold is good. At last, tissue engineering human corneal stromal wasreconstructed successfully in vitro.
引文
鲍慧婧,邹俊,尹烁,崔磊.脂肪干细胞构建组织工程化角膜基质组织[J].复旦学报(医学版),2010,37(6):631-636
    陈建苏,徐锦堂.活性人工角膜的研究[J].中国实用眼科杂志,2002,20(2):91-94
    陈义,侯光辉,吴静,徐锦堂.培养兔角膜基质细胞的一种新方法--悬浮基质片法[J].眼科新进展,2010,30(2):124-127
    池慧,杨国忠.组织工程学简介[J].中华整形烧伤外科杂志,1999,15(3):231-133
    丁勇,徐锦堂,陈建苏.组织工程角膜材料研究进展[J].中国病理生理杂志,2002,18(12):1557-1560
    范丽霞,王锡彬,杨先会.细菌纤维素生物理化特性及其应用[J].海南医学院学报,2004,10(4):279-281
    房兴峰,赵靖,谢立信.组织工程角膜支架材料研究现状[J].眼视光学杂志,2007,9(5):354-356
    韩贻仁.分子细胞生物学[M].北京:高等教育出版社,2007, p71-73
    郝继龙.角膜基质细胞缝隙连接调控机制及胶原降解作用的研究[D].吉林大学博士毕业论文,2005,p16-17
    洪佳旭,徐建江,崔磊,尹烁.组织工程角膜基质的构建[J].中国组织工程研究与临床康复,2007,11(45):9157-9160
    胡晓洁,商庆新,曹谊林.角膜基质细胞-PGA生物支架复合物体外培养研究[J].眼科研究,2001,19(4):308-311
    胡晓洁,王敏,柴岗,张艳,李伟国,刘伟,曹谊林.组织工程技术构建兔角膜基质组织的实验研究[J].中华眼科杂志,2004,40(8):517-521
    黄冰,王智崇,葛坚,陈系古,刘敬波,范志刚,陶靖,刘炳乾,郭芬芬.利用皮肤干细胞的横向分化重建角膜上皮的初步研究[J].中华医学杂志,2004,84(10):838-842
    霍霄鲲,原林,黄涛,夏虎,余磊,戴景兴,秦建强.兔角膜基质细胞的体外培养及生物学特性[J].第一军医大学学报,2002,22(7):624-636
    贾卉,贾原媛,王娇,胡源,张媛,周余来,王苹.细菌纤维素构建组织工程角膜基质的方法及其评价[J].吉林大学学报(医学版),2010,36(2):303-307
    贾卉,王娇,胡源,张媛,张冰.胶原-壳聚糖和角膜基质细胞复合膜的构建及其生物相容性[J].吉林大学学报(医学版),2009,35(3):440-443
    李晓霞,陈建苏,余榕捷,苏杭,李娟,田振彩,戴静,赵秀丽,李红阳,招志毅.一种培养原代小鼠角膜基质细胞的新方法[J].眼科新进展,2011,31(6):524-526
    梁爽,杨建海,刘贵培,刘文广.负载蛋白质的胶原聚两性电解质IPN角膜替代物[J].高等学校化学学报,2010,31(4):821-828
    刘白玲.胶原在生物医学领域的应用[J].皮革科学与工程,1999,9(3):36-42
    卢建民,马翔.骨髓间充质干细胞及其在眼科应用的研究进展[J].国际眼科杂志,2009,9(10):1952-1956
    罗丽辉,刘祖国,陈家祺,肖启国,张梅,陈龙山,蒋爱华.正常角膜基质细胞密度和角膜厚度的研究[J].眼科研究,2004,22(5):512-515
    商庆新,胡晓洁,曹谊林.组织工程技术构建角膜基质层的实验研究[J].中华眼科杂志,2001,37(4):252-255
    唐光霞,陈建苏,徐锦堂,夏潮涌,丁勇.肾纤维囊作为载体培养角膜基质细胞的研究[J].广东医学,2009,30(1):23-25
    唐光霞,陈建苏,徐锦堂.肾纤维囊为载体培养角膜内皮细胞的实验研究[J].眼科新进展,2011,31(4):304-307
    唐红,张超.组织工程化角膜研究进展[J].国际眼科杂志,2011,11(4):637-639
    王爱丽,胡晓洁,李卿,崔磊,刘伟,曹谊林.角膜基质细胞体外长期培养过程中生物学特性的改变[J].上海第二医科大学学报,2004,24(4):307-309
    王常勇,吕双红.组织工程种子细胞的研究进展[J].基础医学与临床,2001,21(6):506-510
    王宏伟,邱姣,赵青.硫酸软骨素在甘油冷冻液中对角膜内皮保护作用的实验研究[J].国际眼科杂志,2011,11(9):1525-1527
    王丽娜,黄素珍.胶原蛋白的研究进展[J].肉类研究,2010,1:16-22
    王丽强,黄一飞,黄靖香,钱海燕.细胞及胶原质量浓度对组织工程化三维重建兔角膜基质凝胶收缩的影响[J].中国组织工程研究与临床康复,2007,11(6):1083-1086
    王琳婷,朱良均,闵思佳,张海萍.丝素蛋白在生物医学领域的应用研究[J].北方蚕业,2009,30(3):1-3
    王迎军,杨春蓉,汪凌云. EDC/NHS交联对胶原物理化学性能的影响[J].华南理工大学学报(自然科学版),2007,35(12):66-70
    王迎军,赵晓飞,卢玲,任力,陈晓峰,葛坚,刘炳乾.角膜组织工程支架壳聚糖-胶原复合膜的性能[J].华南理工大学学报(自然科学版),2006,34(8):1-5
    王智崇,葛坚,徐锦堂,陈家棋.角膜不同组织免疫原性分析[J].中华眼科杂志,2002,38(9):535-538
    谢立信,史伟云,郭萍,袁风波,李绍伟.正常人活体角膜组织结构的共焦显微镜观察[J].中华眼科杂志,2000,36(3):235-237
    谢立信.角膜移植学[M].北京:人民卫生出版社,2000, p17-19
    邢荣志,公衍道,张秀芳,张志诚,丁晓岚,赵南明.戊二醛处理对胶原蛋白结构的影响[J].生物物理学报,1998,14(1):27-32
    徐浩翔,闫言.波形蛋白表达和功能的研究进展[J].北京大学学报(医学版),2009,41(5):605-607
    杨吉成.细胞工程[M].北京:化学工业出版社,2008, p78-79
    杨礼富.细菌纤维素研究新进展[J].微生物学通报,2003,30(4):95-98
    张超,金岩,刘建民,胡丹,聂鑫,刘源,雷娟.异种脱细胞角膜基质材料的生物相容性研究[J].国际眼科杂志,200,5(2):250-252
    张健,邹留河,李莹,李航,郭丽.应用共聚焦显微镜观察正常老年人角膜形态学的特点[J].国际眼科杂志,2009,9(2):260-264
    张立军,谢立信.圆锥角膜的光镜及透射电镜研究[J].眼科研究,2002,20(6):527-529.
    张士元,邹留河,高永庆,狄亚,于行方,王向东.全国盲及低视力的流行病调查[J].中华眼科杂志,1992,28(5):260-265
    郑美英,陈坚,伦世仪.谷氨酰胺转胺酶——理化性质、生产方法及其在食品工业中的应用[J].生物工程进展,2001,21(1):33-37
    钟一声,王康孙,石海云.猴、兔角膜细胞成分原代培养的研究[J].眼科研究,1999,17(3):191-194
    朱梅红,韩晓丽,徐国兴.角膜基质细胞研究进展[J].国际眼科纵览,2007,31(6):389-391
    Abedinia M, Pain T, Algar EM, Holmes R S. Bovine corneal aldehyde dehydrogenase: the major solublecorneal protein with a possible dual protective role for the eye[J]. Exp Eye Res,1990,51(4):419-426
    Aeschlimann D, Paulsson M. Transglutaminases: protein cross-linking enzymes in tissues and bodyfluids[J]. Thromb Haemost,1994,71(4):402-415
    Ambrósio RJr, Kara-José N, Wilson SE. Early keratocyte apoptosis after epithelial scrape injury in thehuman cornea[J]. Exp Eye Res,2009,89(4):597-599
    Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, Kinner B, Englert C, Ruszczak Z,Mehrl R, Mueller R. Influence of different collagen species on physico-chemical properties ofcrosslinked collagen matrices[J]. Biomaterials,2004,25(14):2831-2841
    Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez-Delgado J, Nistal M, Alio JL, De MiguelMP. Adipose-derived stem cells are a source for cell therapy of the corneal stroma[J]. Stem Cells,2008,26(2):570-579
    Bairaktaris G, Lewis D, Fullwood NJ, Nieduszynski IA, Marcyniuk B, Quantock AJ, Ridgway AE. Anultrastructural investigation into proteoglycan distribution in human corneas[J]. Cornea,1998,17(4):396-402
    Barton K, Monroy DC, Nava A, Pflugfelder SC. Inflammatory cytokines in the tears of patients withocular rosacea[J]. Ophthalmology,1997,104(11):1868-1874
    Beauregard C, Huq SO, Barabino S, Zhang Q, Kazlauskas A, Dana MR. Keratocyte apoptosis and failureof corneal allografts[J]. Transplantation,2006,81(11):1577-1582
    Bellamkonda R, Ranieri JP, Aebischer P. Laminin oligopeptide derivatized agarose gels allowthree-dimensional neurite extension in vitro[J]. J Neurosci Res,1995,41(4):501-509
    Birk DE, Fitch JM, Babiarz JP, Linsenmayer TF. Collagen type I and type V are present in the same fibrilin the avian corneal stroma[J]. J Cell Biol,1988,106(3):999-1008
    Bray LJ, George KA, Ainscough SL, Hutmacher DW, Chirila TV, Harkin DG. Human corneal epithelialequivalents constructed on Bombyx mori silk fibroin membranes[J]. Biomaterials,2011,32(22):5086-5091
    Builles N, Janin-Manificat H, Malbouyres M, Justin V, Rovère MR, Pellegrini G, Torbet J, Hulmes DJ,Burillon C, Damour O, Ruggiero F. Use of magnetically oriented orthogonal collagen scaffolds forhemi-corneal reconstruction and regeneration[J]. Biomaterials,2010,31(32):8313-8322
    Chakravarti S, Wu F, Vij N, Roberts L, Joyce S. Microarray studies reveal macrophage-like function ofstromal keratocytes in the cornea[J]. Invest Ophthalmol Vis Sci,2004,45(10):3475-3484
    Chau DY, Collighan RJ, Verderio EA, Addy VL, Griffin M. The cellular response totransglutaminase-cross-linked collagen[J]. Biomaterials,2005,26(33):6518-6529
    Chirila TV, Hicks CR, Dalton PD, Vijayasekaran S, Xia Lou, Ye Hong, Clayton AB, Ziegelaar BW,Fitton JH, Platten S, Crawford GJ, Constable IJ. Artificial cornea[J]. Progr Polymer Sci,1998,23(3):447-473
    Denis Meissner. Action Plan for the prevention of avoidable blindness and visual impairment[R]. WorldHealth Organization,2009-2013
    Du Y, Carlson EC, Funderburgh ML, Birk DE, Pearlman E, Guo N, Kao WW, Funderburgh JL. Stem celltherapy restores transparency to defective murine corneas[J]. Stem Cells,2009,27(7):1635-1642
    Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL. Multipotent stem cells in humancorneal stroma[J]. Stem Cells,2005,23(9):1266-1275
    Du Y, Roh DS, Funderburgh ML, Mann MM, Marra KG, Rubin JP, Li X, Funderburgh JL.Adipose-derived stem cells differentiate to keratocytes in vitro[J]. Mol Vis,2010,16:2680-2689
    Estey T, Piatigorsky J, Lassen N, Vasiliou V. ALDH3A1: a corneal crystallin with diverse functions[J].Exp Eye Res,2007,84(1):3-12
    Fagerholm P, Lagali NS, Carlsson DJ, Merrett K, Griffith M. Corneal regeneration followingimplantation of a biomimetic tissue-engineered substitute[J]. Clin Transl Sci,2009,2(2):162-164
    Fan T, Xu B, Zhao J, Yang H, Wang R, Hu X. Establishment of an untransfected human corneal epithelialcell line and its biocompatibility with denuded amniotic membrane[J]. Int J Ophthalmol,2011,4(3):228-234
    Fan T, Zhao J, Ma X, Xu X, Zhao W, Xu B. Establishment of a continuous untransfected human cornealendothelial cell line and its biocompatibility to denuded amniotic membrane[J]. Mol Vis,2011,17:469-480
    Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea[J]. Prog Retin Eye Res,1999,18(4):529-551
    Friess W. Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm,1998,45(2):113-136
    Funderburgh JL, Mann MM, Funderburgh ML. Keratocyte phenotype mediates proteoglycan structure: arole for fibroblasts in corneal fibrosis[J]. J Biol Chem,2003,278(46):45629-45637
    Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL. PAX6expression identifiesprogenitor cells for corneal keratocytes[J]. FASEB J,2005,19(10):1371-1373
    Germain L, Carrier P, Auger FA, Salesse C, Guérin SL. Can we produce a human corneal equivalent bytissue engineering?[J]. Prog Retin Eye Res,2000,19(5):497-527
    Gil ES, Park SH, Marchant J, Omenetto F, Kaplan DL. Response of human corneal fibroblasts on silkfilm surface patterns[J]. Macromol Biosci,2010,10(6):664-673
    Goissis G, Marcantonio EJr, Marcant nio RA, Lia RC, Cancian DC, de Carvalho WM. Biocompatibilitystudies of anionic collagen membranes with different degree of glutaraldehyde cross-linking[J].Biomaterials,1999,20(1):27-34
    Graf J, Ogle RC, Robey FA, Sasaki M, Martin GR, Yamada Y, Kleinman HK. A pentapeptide from thelaminin B1chain mediates cell adhesion and binds the67,000laminin receptor[J]. Biochemistry,1987,26(22):6896-6900
    Greenberg CS, Birckbichler PJ, Rice RH. Transglutaminases: multifunctional cross-linking enzymes thatstabilize tissues[J]. FASEB J,1991,5(15):3071-3077
    Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA.Functional human corneal equivalents constructed from cell lines[J]. Science,1999,286(5447):2169-2172
    Gupta A, Monroy D, Ji Z, Yoshino K, Huang A, Pflugfelder SC. Transforming growth factor beta-1andbeta-2in human tear fluid[J]. Curr Eye Res,1996,15(6):605-614
    Higa K, Takeshima N, Moro F, Kawakita T, Kawashima M, Demura M, Shimazaki J, Asakura T, TsubotaK, Shimmura S. Porous Silk Fibroin Film as a Transparent Carrier for Cultivated Corneal EpithelialSheets[J]. J Biomater Sci Polym Ed,2010,22(17):2261-2276
    Hightower KR, McCready JP, Borchman D. Membrane damage in UV-irradiated lenses[J]. PhotochemPhotobiol,1994,59(4):485-490
    Hong J, Xu J, Sun X, Cui L. Tissue-Engineered Corneal Stroma by Using Autologous Adipose DerivedStem Cell Tissue and Polylacticcocglycolic Acid[J]. IFMBE Proceedings,2009,25(11):1-5
    Inouye K, Kurokawa M, Nishikawa S, Tsukada M. Use of Bombyx mori silk fibroin as a substratum forcultivation of animal cells[J]. J Biochem Biophys Methods,1998,37(3):159-164
    Jester JV, Barry PA, Lind GJ, Petroll WM, Garana R, Cavanagh HD. Corneal keratocytes: in situ and invitro organization of cytoskeletal contractile proteins[J]. Invest Ophthalmol Vis Sci,1994,35(2):730-743
    Jester JV, Budge A, Fisher S, Huang J. Corneal keratocytes: phenotypic and species differences inabundant protein expression and in vitro light-scattering[J]. Invest Ophthalmol Vis Sci,2005,46(7):2369-2378
    Jester JV, Petroll WM, Barry PA, Cavanagh HD. Temporal,3-dimensional, cellular anatomy of cornealwound tissue[J]. J Anat,1995,186:301-311
    Kane BP, Jester JV, Huang J, Wahlert A, Hassell JR. IGF-II and collagen expression by keratocytes duringpostnatal development[J]. Exp Eye Res,2009,89(2):218-223
    Kao WW, Liu CY. Roles of lumican and keratocan on corneal transparency[J]. Glycoconj J,2002,19(4-5):275-285
    Khor E. Methods for the treatment of collagenous tissues for bioprostheses[J]. Biomaterials,1997,18(2):95-105
    Kim WJ, Rabinowitz YS, Meisler DM, Wilson S E. Keratocyte apoptosis associated with keratoconus[J].Exp Eye Res,1999,69(5):475-481
    Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocularsurface reconstruction[J]. Exp Eye Res,2004,78(3):483-491
    Kokawa N, Sotozono C, Nishida K, Kinoshita S. High total TGF-beta2levels in normal human tears[J].Curr Eye Res,1996,15(3):341-343
    Kubo-Watanabe S, Satoh Y, Saino T. Adenosine-5'-triphosphate-induced intracellular calcium changesthrough gap-junctional communication in the corneal epithelium[J]. Jpn J Ophthalmol,2002,46(5):479-487
    Kumar NM, Gilula NB. The gap junction communication channel[J]. Cell,1996,84(3):381-388
    Lai JY, Li YT, Cho CH, Yu TC. Nanoscale modification of porous gelatin scaffolds with chondroitinsulfate for corneal stromal tissue engineering[J]. International Journal of Nanomedicine,2012,7:1101-1114
    Lande MA, Birk DE, Nagpal ML, Rader RL. Phagocytic properties of human keratocyte cultures[J].Invest Ophthalmol Vis Sci,1981,20(4):481-948
    Langer R, Vacanti JP. Tissue engineering[J]. Science,1993,260(14):920-926
    Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for corneatissue engineering[J]. Biomaterials,2009,30(7):1299-1308
    Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycanscaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation andbiosynthesis[J]. Biomaterials,2001,22(23):3145-3154
    Lee JM, Edwards HHL, Pereira CA, Samii SI. Crosslinking of tissue-derived biomaterials in1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)[J]. Biomed Med,1996,7(4):531-541
    Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y,Munger R, Shinozaki N, Li F, Griffith M. Collagen-phosphorylcholine interpenetrating networkhydrogels as corneal substitutes[J]. Biomaterials,2009,30(8):1551-1559
    Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N,Lagali N, Munger R, Li F. Recombinant human collagen for tissue engineered corneal substitutes[J].Biomaterials,2008,29(9):1147-1158
    Mathes RL, Dietrich UM, Krunkosky TM, Hurley DJ, Reber AJ. Establishing a reproducible method forthe culture of primary equine corneal cells[J]. Vet Ophthalmol,2009,12Suppl1:41-49
    Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, Watsky MA, Munger R,Kato Y, Li F, Marmo C J, Griffith M. Tissue-engineered recombinant human collagen-based cornealsubstitutes for implantation: performance of type I versus type III collagen[J]. Invest Ophthalmol VisSci,2008,49(9):3887-3894
    Minami Y, Sugihara H, Oono S. Reconstruction of cornea in three-dimensional collagen gel matrixculture[J]. Invest Ophthalmol Vis Sci,1993,34(7):2316-2324
    M ller-Pedersen T, Ehlers N. A three-dimensional study of the human corneal keratocyte density[J]. CurrEye Res,1995,14(6):459-464
    Monti D, Chetoni P, Burgalassi S, Najarro M, Saettone MF. Increased corneal hydration induced bypotential ocular penetration enhancers: assessment by differential scanning calorimetry (DSC) and bydesiccation[J]. Int J Pharm,2002,232(1-2):139-147
    Mustonen RK, McDonald MB, Srivannaboon S, Tan AL, Doubrava MW, Kim CK. Normal humancorneal cell populations evaluated by in vivo scanning slit confocal microscopy[J]. Cornea,1998,17(5):485-492
    Myrna KE, Pot SA, Murphy CJ. Meet the corneal myofibroblast: the role of myofibroblast transformationin corneal wound healing and pathology[J]. Vet Ophthalmol,2009,12Suppl1:25-27
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, MaedaN, Watanabe H, Okano T, Tano Y. Corneal reconstruction with tissue-engineered cell sheetscomposed of autologous oral mucosal epithelium[J]. N Engl J Med,2004,351(12):1187-1196
    Nishida T, Yasumoto K, Otori T, Desaki J. The network structure of corneal fibroblasts in the rat asrevealed by scanning electron microscopy[J]. Invest Ophthalmol Vis Sci,1988,29(12):1887-1890
    Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking ofdermal sheep collagen using a water-soluble carbodiimide[J]. Biomaterials,1996,17(8):765-773
    Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. In vitrodegradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide[J].Biomaterials,1996,17(7):679-684
    Pang K, Du L, Wu X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix,epithelial cells and keratocytes[J]. Biomaterials,2010,31(28):7257-7265
    Pappa A, Estey T, Manzer R, Brown D, Vasiliou V. Human aldehyde dehydrogenase3A1(ALDH3A1):biochemical characterization and immunohistochemical localization in the cornea[J]. Biochem J,2003,376(Pt3):615-623
    Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thicknessmeasurement by using confocal microscopy in vivo[J]. Invest Ophthalmol Vis Sci,2001,42(2):333-339
    Piatigorsky J. Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the "refracton"hypothesis[J]. Cornea,2001,20(8):853-858
    Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JL, van den Berg WB,Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization,and potential for cartilage engineering[J]. Biomaterials,2002,23(15):3183-3192
    Proulx S, d'Arc Uwamaliya J, Carrier P, Deschambeault A, Audet C, Giasson CJ, Guérin SL, Auger FA,Germain L. Reconstruction of a human cornea by the self-assembly approach of tissue engineeringusing the three native cell types[J]. Mol Vis,2010,16:2192-2201
    Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M. PEG-stabilizedcarbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering[J]. Biomaterials,2008,29(29):3960-3972
    Rault I, Freiv V, Herbage D, Abdul-Malak N, Huc A. Evaluation of different chemical methods forcross-linking collagen gel, films and sponges[J]. J Mater Sci: Mater inMed,1996,7(2):215-221
    Reichl S, Bednarz J, Müller-Goymann C C. Human corneal equivalent as cell culture model for in vitrodrug permeation studies[J]. Br J Ophthalmol,2004,88(4):560-565
    Schneider AI, Maier-Reif K, Graeve T. Constructing an in vitro cornea from cultures of the three specificcorneal cell types[J]. In Vitro Cell Dev Biol Anim,1999,35(9):515-526
    Song J, Lee YG, Houston J, Petroll WM, Chakravarti S, Cavanagh HD, Jester JV. Neonatal cornealstromal development in the normal and lumican-deficient mouse[J]. Invest Ophthalmol Vis Sci,2003,44(2):548-557
    Foster CS, Azar DT, Dohlman CH.角膜理论基础与临床实践[M](李莹,主译).天津:天津科技翻译出版公司,2007, p10
    Tuominen I, Vesaluoma M, Teppo AM, Gr nhagen-Riska C, Tervo T. Soluble Fas and Fas ligand inhuman tear fluid after photorefractive keratectomy[J]. Br J Ophthalmol,1999,83(12):1360-1363
    Ueda A, Nishida T, Otori T, Fujita H. Electron-microscopic studies on the presence of gap junctionsbetween corneal fibroblasts in rabbits[J]. Cell Tissue Res,1987,249(2):473-475
    Vesaluoma M, Teppo AM, Gronhagen-Riska C, Tervo T. Increased release of tumour necrosis factor-alphain human tear fluid after excimer laser induced corneal wound[J]. Br J Ophthalmol,1997,81(2):145-149
    Vesaluoma M, Teppo AM, Gronhagen-Riska C, Tervo T. Release of TGF-beta1and VEGF in tearsfollowing photorefractive keratectomy[J]. Curr Eye Res,1997,16(1):19-25
    Vrana NE, Builles N, Justin V, Bednarz J, Pellegrini G, Ferrari B, Damour O, Hulmes DJ, Hasirci V.Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cellcultures[J]. Invest Ophthalmol Vis Sci,2008,49(12):5325-5331
    Watsky MA. Keratocyte gap junctional communication in normal and wounded rabbit corneas and humancorneas[J]. Invest Ophthalmol Vis Sci,1995,36(13):2568-2576
    Watson SL, Marcal H, Sarris M, Di Girolamo N, Coroneo MT, Wakefield D. The effect of mesenchymalstem cell conditioned media on corneal stromal fibroblast wound healing activities[J]. Br JOphthalmol,2010,94(8):1067-1073
    Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagenfibers: comparison of ultraviolet irradiation and dehydrothermal treatment[J]. J Biomed Mater Res,1995,29(11):1373-1379
    Werner A, Braun M, Kietzmann M. Isolation and cultivation of canine corneal cells for in vitro studies onthe anti-inflammatory effects of dexamethasone[J]. Vet Ophthalmol,2008,11(2):67-74
    West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes[J]. Int JBiochem Cell Biol,2006,38(10):1625-1631
    Wilson SE, Chaurasia SS, Medeiros FW. Apoptosis in the initiation, modulation and termination of thecorneal wound healing response[J]. Exp Eye Res,2007,85(3):305-311
    Wu Z, Zhou Y, Li N, Huang M, Duan H, Ge J, Xiang P, Wang Z. The use of phospholipase A(2) toprepare acellular porcine corneal stroma as a tissue engineering scaffold[J]. Biomaterials,2009,30(21):3513-3522
    Yoshida S, Shimmura S, Shimazaki J, Shinozaki N, Tsubota K. Serum-free spheroid culture of mousecorneal keratocytes[J]. Invest Ophthalmol Vis Sci,2005,46(5):1653-1658
    Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJ, Hendriks M, Cahalan PT, Feijen J. Successiveepoxy and carbodiimide cross-linking of dermal sheep collagen[J]. Biomaterials,1999,20(10):921-931
    Zhao J, Nagasaki T, Maurice DM. Role of tears in keratocyte loss after epithelial removal in mousecornea[J]. Invest Ophthalmol Vis Sci,2001,42(8):1743-1749
    Zieske JD. Corneal development associated with eyelid opening[J]. Int J Dev Biol,2004,48(8-9):903-911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700