稀有鮈鲫雄激素受体基因全长cDNA的克隆和内分泌干扰物对其表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄激素(Androgen)在脊椎动物的性分化,性腺成熟和繁殖行为中扮演重要的角色。雄激素的作用通过与特定的核雄激素受体结合使其发生构象改变从而诱导相应基因的应答来发挥作用。雄激素受体是一种配体依赖型的转录因子,属于核受体超家族成员。它含有4个主要的结构域:N端高变异的转录激活域(TAD)、高度保守的DNA结合域(DBD)、铰链域、C端的高保守的配体结合域(LBD)。在本研究中,我们以稀有鮈鲫为研究对象,通过以RT-PCR和RACE法分离和克隆了稀有鮈鲫AR基因的cDNA全长并对其AR的mRNA组织差异表达进行研究,为进一步研究稀有鮈鲫由雄激素受体参与的重要的生理功能奠定基础。
     随着人类的活动日益频繁,内分泌干扰物对动物和人类健康的影响日益受到关注,其类雌激素效应已成为研究热点。在本研究中通过类雌激素乙炔雌醇(EE2)、壬基酚(NP)和双酚A(BPA)作为类雌激素暴露的模型化合物,暴露稀有鮈鲫的幼鱼,使用实时定量(Real-time)PCR研究了稀有鮈鲫在内分泌干扰物暴露环境下幼鱼AR的mRNA的表达情况,所得结果和结论如下:
     1.从精巢总RNA中克隆稀有鮈鲫AR基因的cDNA全长是根据分段克隆和RACE技术获得的。分别克隆了600bp、570bp、731bp、979bp四个片段和3’末端及5’末端两个片段146bp和492bp,将六个片段进行序列拼接首次完成了稀有鮈鲫AR基因共3130bp的cDNA序列全长(Genbank Accession No:GU226857)。ORF从104bp至2638bp,总长2535bp,共编码844个氨基酸残基。该cDNA序列5’末端非编码区有103bp,在3’末端的非编码区有492bp。
     2.稀有鮈鲫推测的氨基酸与已知的硬骨鱼类的全长AR氨基酸序列进行BLASTP分析,稀有鮈鲫AR与黑头软口鲦和金鱼的相似性为86%。稀有鮈鲫的氨基酸序列分析表明它具有核激素受体所共有的三个主要功能域,它们分别TAD、DBD和LBD。其DBD和LBD在鲤科鱼类中表现出了很高的同源性,DBD同源性高达98%~99%,LBD同源性也达到了97%~98%,TAD同源性为75%~82%。
     3.稀有鮈鲫雌雄成体AR基因在性腺、肝脏、肌肉、脑和肠组织中均有表达,雌性成体的AR基因在卵巢、肝、脑及肠组织中都有中等水平的表达,而在肌肉组织中的表达很弱,而在雄性成体中,AR基因在精巢和肝脏组织的表达量很高,而肌肉、脑和肠组织中AR基因表达较弱。
     4. 0.01和0.1nmol/L的乙炔基雌二醇暴露3天后,能够分别不显著和显著地提高稀有鮈鲫幼鱼AR的mRNA表达,而1nmol/L的乙炔基雌二醇则对其表达有下调的趋势;0.01μmol/L壬基酚对其表达有显著下调,而0.1和1μmol/L壬基酚对其表达均有下调的趋势;0.1-10nmol/L的双酚A对其表达均有显著下调,因此不同种类内分泌干扰物及其不同暴露浓度对稀有鮈鲫AR的mRNA表达有不同影响。
Androgens play key roles in sex differentiation, gonad maturation and reproductive behaviors and their actions are generally mediated through androgen receptor (AR). Upon hormone binding, the AR dissociates from accessory proteins, translocates into the nucleus and dimerizes, thus stimulating transcription of androgen responsive genes. Androgen receptor is a ligand-activated transcription factor that belongs to a large family of nuclear receptors. This family of receptors share a molecular structure that consists four main functional domains.In the present study, RT-PCR and RACE (Rapid Amplification cDNA Ends) methods were used for the isolation of the cDNA of AR gene from testis of Gobiocypris rarus. We show for the first time in fish, different mRNA AR expression levels between males and females in five different tissues, suggesting that AR is involved in many physiological functions in fish.
     With the frequency of human production and life, much attention has been focused on the potential health threats of endocrine disrupting chemicals capable of disrupting the endocrine systems of animal and human population. Research mostly focused on estrogenic compounds. In this report, we use EE2, NP and BPA as estrogenic model compounds ,after 3 days exposure of rare minnow juveniles using real-time PCR. We discuss whether AR gene can be sensitive as a molecular biomarker in assessing the potential impact of estrogenic compounds using this specie as a model system. The main results and conclusions are as follows:
     1. RT-PCR and RACE methods were used for the isolation of the whole cDNA of AR gene from the testis of Gobiocypris rarus. We cloned cDNA fragments of 600bp, 570bp, 731bp, 979bp and 146bp in 3′end and 492 bp in 5′end. The full-length cDNA sequences of AR gene have been formed by joint for the first time, consisting of a 103bp 5’untranslated region (UTR), a 2535bp open reading frame (ORF) encoding 844 amino acid residues and a 492bp 3’UTR. The Genbank accession number is GU226857.
     2. The deduced amino acid sequence of rare minnow AR was aligned with known full-length AR amino acid sequences from teleost fish fathead minnow and goldfish using Blastp. The identity of rare minnow AR was with fathead minnow and goldfish with 86%. Multiple amino acids sequence alignment indicated AR has three main functional domain, TAD, DBD and LBD. DBD and LBD are highly conserved among the cyprinid fish species, whose identity ranged from 98% to 99%. The identity of LBD is about 97% to 98%. TAD is the most variable domain, whose identity fluctuated from 75% to 82%.
     3. AR mRNA expression was detected using semiquantitative RT-PCR in gonad, liver, brain, intestine, and muscle. AR mRNA was expressed at high levels in the testis and liver, low levels in the brain, intestine, muscle of male. However it was expressed at moderate levels in all the tissues except the muscle of female.
     4. Exposure to 0.01 and 0.1 nmol/L ethynylestradiol (EE2) for 3 days caused nonsignificant and significant increase of AR mRNA expression in rare minnow juveniles, respectively. On the contrary, 1nmol/L EE2 caused nonsignificant decrease in its expression. 0.01μmol/L nonylphenol (NP) caused significant decrease of AR gene expression. While AR mRNA expression had downregulation tendency in both 0.1 and 1μmol/L NP exposed groups. Bisphenol (BPA) 0.1,1 and 10 nmol/L caused significant decrease of AR gene expression.Therefore AR gene expression was differentially modulated by various classes of EDCs and their different exposure concentrations.
引文
邴欣,汝少国,姜明,王蔚,王诗红. 2004.17β-雌二醇对雄性金鱼卵黄原蛋白的诱导作用.水产学报, 28(3): 236-240
    李莉,马陶武,吴振斌. 2004.生活污水对稀有鮈鲫的毒性效应研究.水生生物学报, 28 (1): 40-44
    李洁斐,李卫华,杨健,徐绘,金泰廙,丁训诚. 2006. 17-α炔雌醇对斑马鱼的卵黄蛋白原及性腺发育的影响.毒理学杂志, 20(1): 9-12
    刘阿朋,查金苗,王子健,王卫民. 2006. 17α-甲基睾酮对稀有鲫幼鱼性腺发育与血清卵黄蛋白原水平的影响.生态毒理学报,1(3): 255-257
    贾方钧,王剑伟,吴清江. 2002.稀有鮈鲫的人工雌核发育.水生生物学报,26(3): 246-256
    马陶武,王子健,陈剑锋,王春霞,刘建康. 2004.乙炔基雌二醇对稀有鲫肾脏的毒性效应.环境科学学报, 24(3): 487-491
    廖涛,徐盈,钟雪萍,王剑伟. 2005. EE2对稀有觞鲫和斑马鱼幼鱼体内卵黄蛋白原诱导的比较.水生生物学报, 29(5):513-517
    沈万赟,周忠良,李祥军. 2007.双酚A和壬基酚长期暴露对斑马鱼繁殖的影响.水产学报, 31(B09): 59-64.
    童金苟,俞小牧,张菁,游翠红. 2003.稀有鮈鲫与其他模式实验鱼类基因组大小的比较.水生生物学报, 27(2): 208-210
    王铁辉,刘沛霖,陈宏溪,刘汉勤,易咏兰,郭文. 1994.稀有鮈鲫对草鱼出血病病毒敏感性的初步研究.水生生物学报, 18(2): 144-148
    王剑伟. 1992.稀有鮈鲫繁殖生物学.水生生物学报,16:165-174
    袁秀平,吴文忠,徐盈,黎雯. 1999. 2,3,7,8-TCDD对稀有鮈鲫幼体超微结构影响的观察.水生生物学报, 23(2):185-186
    赵亚力,韩为东. 2008.雄激素受体共调节因子与雄激素非依赖性前列腺癌.生物技术通讯, 6 (19): 922
    钟家玉,茅卫锋,朱作言. 2002.电脉冲作用将外源基因导入稀有鮈鲫精子的研究.遗传学报,29(2) :128-132
    周群芳,江桂斌,刘稷燕. 2003.三丁基锡化合物对稀有鮈鲫的急慢性毒理研究.中国科学, 33(2): 150-156
    钟雪萍,徐盈,粱勇,廖涛,王剑伟. 2005.稀有鲫生命早期的己烯雌酚暴露对生长发育与繁殖的影响.水生生物学报, 29(6): 667-671
    周群芳. 2002.有机锡化合物形态分析及其生态毒理学研究.北京:中科院研究生院,106.
    Ackermann GE, Schwaiger J, Negele RD. 2002.Effects of long term nonylphenol exposure of gonadal development and biomarkers of estrogenicity in iuvenile rainbow flout (Oncorhynchus mykiss). Aquatic Toxicology, 60 (3-4): 203-221
    Alison M B. 2004.An endocrine disrupter increases growth and risky behavior in threespined stickleback (Gasterosteus aculeatus). Hormones and Behavior, 45(2): 108-114
    Andersen L, Goto-Kazeto R, Trant J M, Nash J P, Korsgaard B, Bjerregaard P. 2006. Short -term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroidlevels in adult male zebrafish (Danio rerio). Aquatic Toxicology, 76(3-4): 343-352
    Ann Rempel M, Reyes J, Steinert S, Hwang W, Armstrong J, Sakamoto K, Kelley K, Schlenk D. 2006. Evaluation of relationships between reproductive metrics, gender and vitellogenin expression in demersal flatfish collected near the municipal wastewater outfall of Orange County, California, USA. Aquatic Toxicology, 77(3): 247-249
    Arukwe A, Kullman SW, Berg K, Goks?yr A., Hinton DE. 2002. Molecular cloning of rainbow trout (Oncorhynchus mykiss) eggshell zona radiata protein complementary DNA: mRNA expression in 17β-estradiol-and nonylphenol-treated fish.Comparative Biochemistry& Physiology Part B , 132 (2) :315-326
    Augustine A, Rune M, Anders G. 1998. Zona radiata protein: a sensitive biomarker for environmental estrogens. Marine environmental research, 46(1-5):175-176
    Blazquez M, Piferrer F. 2005. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue specific expression, and mRNA levels during early development and sex differentiation. Mol Cell Endocrinol, 237: 37-48
    Black BE, Pascha BM. 2004. Intranuclear organization and function of the androgen receptor. Trends Endocrinol Met, 15: 411–417
    Bocquel MT, Kumar V, Stricker C, Chambon P, Gronemeyer H. 1989. The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acid Res, 17: 2581-2595
    Brion F, Tyler C R, Palazzi X, Laillet B, Porcher.J M,Garric J, Flammarion P. 2004.Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo - , larval - , juvenile -and adult -life stages in zebrafish (Danio rerio). Aquatic Toxicology, 68(3): 193-217
    Edwards DP. 2000.The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. Mammary Gland Biol.Neoplasia, 5:307-324.
    Escriv′a H, Delaunay F, Laudet V. 2000. Ligand binding and nuclear receptor evolution. Bioessays, 22: 717–727
    Evans CJ, Karpel S. 1985.Organotin compounds in morden technology. Amsterdam: Elsevier,1~279 Fischer LM, Catz D, Kelley DB. 1995. Androgen-directed development of the Xenopus laevis larynx: control of androgen receptor expression and tissue differentiation. Dev. Biol, 170:115–126
    Gerd M, Helmut S. 2004. Life-stage-dependent sensitivity of zebrafish (Danio rerio) to estrogen exposure. Comparative Biochemistry and Physiology (Part C), 139(1-3): 47-55
    
    Goto Kazeto R, Kight KE, Zohar Y, Place AR, Trant JM. 2004. Localization and expression of aromatase mRNA in adult zebrafish. General& Comparative Endocrinology, 139(1): 72-84
    Hahlbeck E, Katsiadaki I, Mayer I, Adolfsson-Erici M, James J, Bengtsson BE. 2004. The juvenile three-spined stickleback (Gasterosteus aculeatus L.) as a model organism for endocrine disruption II一kidney hypertrophy, vitellogenin and spiggin induction. Aquatic Toxicology, 70(4):311-326
    Hirai N, Nanba A, Koshio M, Kondo T, Morita M, Tatarazako N. 2006. Feminization of Japanese medaka(Oryzias latipes)exposed to 17β-estradiol: Effect of exposure period on spawning performance in sex -transformed females. Aquatic Toxicology,79(3): 288-295
    Ikeuchi T, Todo T, Kobayashi T, Nagahama Y. 1999. cDNA cloning of a novel androgen receptor subtype. JBiol Chem, 274:25205–25209
    J?gensen A, Andersen O, Bjerregaard P, Rasmussen LJ. 2007. Identification and characterization of an androgen receptor from zebrafish (Danio rerio). CompBiochem Physiol, 146: 561–568
    Kazeto Y, P1ace AR, Trant JM. 2004. Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquatic Toxicology, 69(11): 25-34
    Katsiadaki I, Scott AP, Mayer I. 2002.The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. Marine Environmental Research, 54(3-5): 725-728
    Kitano T, Takamune K, Nagahama Y, Abe SI. 2000. Aromatase inhibitor and 17α-methyltestosterone cause sex -reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Molecular Reproduction Development, 56: 1-5
    Larsson DGJ, Sperry, TS, Thomas P. 2002. Regulation of androgen receptors in Atlantic croaker brains by testosterone and estradiol. Gen Comp Endocrinol, 128:224–230
    Larsen MG, Hansen KB, Henriksen PG, Baatrup E. 2008. Male zebrafish (Danio rerio) courtship behaviour resists the feminizing effects of 17α-ethinyloestradiol-morphological sexual characteristics do not. Aquatic Toxicology, 87(4): 234-244
    Lewis N, Williams TD, Chipman K. 2004. Functional analysis of xenobiotic response elements (XREs) in CYP 1A of the European Flounder(Platichthys flesus). Marine Environmental Research, 58(2-5): 101-105.
    Liu XC, Su Hl, Zhu P, Zhang Y, Huang JH, Lin HR. 2009. Molecular cloning, characterization and expression pattern of androgen receptor in Spinibarbus denticulatus. Gen Comp Endocrinol, 160: 93-101.
    Li J, Azzawi FA. 2009. Mechanism of androgen receptor action. Maturita, 63:142-148
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schiitq G, Umesono K, Blumberg B,Kastner P Mark M. 1995. The nuclear receptor superfamily: the second decade. Cell, 83(6):835-839.
    McAllister BG, Kime, DE. 2003. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish Danio rerio. Aquatic Toxicology, 65: 309~316.
    Moore J, Rolland R, Scott G, Daniel MS, Sinks T Hugh A. Tilsonl Kavlock RJ, Zou JJ, Trudeau V L, CUI Z, 1997. Estradiol stimulates growth hormone production in female goldfish. General and Comparative Endocrinology, 106(1): 102-112.
    Ogino Y, Katoh H, Yamada G. 2004. Androgen dependent development of a modified anal fin, gonopodium, as a model to understand the mechanism of secondary sexual character expression in vertebrates . FEBS Lett, 575: 119–126.
    Peter T, Christopher T, Hakan B, Gwen D. 2006. Sex steroid hormone receptors in fish ovaries. Port Aransas, University of Texas Marine Science Institute: 204-205
    Pasmani M, Callard GV. 1988. A high abundance androgen receptor in goldfish brain: characteristics and seasonal changes. Endocrinology, 123: 1162–1171.
    Pfahl M. 1993. Nuclear receptor/AP-1 interaction. Endocrinol Rev, 14: 651–658.
    Pickford KA, Thomas-jones RE, wheals B, Tyler CR, Sumpter JP. 2003. Route of exposure affects theoestrogenic response of fish to 4-tert-nonylphenol. Aquatic Toxicology, 65(3):267-279
    Quigley CA, DeBellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. 1995.Androgen reeptor defeets: historical, clinical and molecular perspetives. Endocr Rev, 16(3):271一321.
    Santos MM, Micael J, Carvalho AP, Morabito R, Booy P, Massanisso P, Lamoree M, Reis-Henriques MA. 2006. Estrogens counteract the masculinizing effect of tributyltin in zebrafish. Comparative Biochemistry and Physiology (Part C), 142(1-2): 151-155
    Sarter K, Papadaki M, Zanuy S, Mylonas CC. 2006. Permanent sex inversion in 1 -year -old juveniles of the protogynous dusky grouper (Epinephelus marginatus) using controlled -release 17α-methyltestosterone implants. Aquaculture, 256(1-4): 443-456
    Sperry, TS, Thomas, P 1999. Characterization of two nuclear androgen receptors in Atlantic croaker: comparison of their biochemical properties and binding specificities. Endocrinology, 140:1602–1611.
    Segner H. 2006. Comment on“Lessons from Endocrine Disruption and Their Application to Other Issues Concerning Trace Organics in the Aquatic Environment”. Environ Sci Technol, 40: 1084–1085.
    Seo JS, Lee YM, Jung OS, Kim IC, Yoon YD , Lee JS. 2006. Nonylphenol modulates expression of androgen receptor and estrogen receptor genes differently in gender types of the hermaphroditic fish Rivulus marmoratus [J]. Biochem Biophys Res Commun, 346: 213–223.
    Sumpter JP. 2005. Endocrine disrupters in the aquatic environment: An overview. Acta Hydrochimica Et Hydrobiologica, 33: 9–16.
    Sonnenschein C. Soto AM. 1998. An updated review of environmental estrogen and androgen mimics and antagonists. Steroid Biochem Mol Biol, 65:143-150.
    Takeo J, Yamashita S. 1999. Two distinct isoforms of cDNA encoding rainbow trout androgen receptors. J Biol Chem, 274:5674–5680.
    Tilley WD, Marcelli M, Wilson JD, Mcphaul MJ. 1989. Proc.Natl. Acad. Sci. U.S.A., 86 :327-331.
    VandenBelt K, Verheyen R, Witters H. 2003.Effects of 17α-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio):Effects on growth, gonads and female reproductive success. Science of the Total Environment, 309(1-3): 127-137.
    Watanabe H, Suzuki A, Goto M, Lubahn DB, Handa H, Iguchi T. 2004. Tissue specific estrogenic and non estrogenic effects of a xenoestrogen, nonylphenol. Journal of Molecular Endocrinology, 33(1): 243-252.
    Weber PL, Hill LR, Janz MD. 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity. Aquatic Toxicology, 63(4): 431-446.
    Yang F X, Xu Y, Yang H. Reprodutive effects of prenatal exposure tononyphenol on zebrafish (Danio rerio). Comparative Biochemistry and Physiology, Part C, 2006, 142(1-2): 77-84.
    Yukinori K, Allen R P, John M T. Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquatic Toxicology, 2004, 69(1): 25-34.
    Zhang XW, Hecker M, Park JW, Tompsett AR, NewstedJ , Nakayamaf K, Jones PD, Au D, Kong R, Wu RSS, Gies JP. 2008. Real-time PCR array to study effects of chemicals on the Hypothalamic–Pituitary– Gonadal axis of the Japanese medaka. Aquatic Toxicology, 88: 173–182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700