大容量光纤光栅传感解调系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着嵌入式技术、计算机技术和网络技术的不断发展,构建大型分布式光纤传感网络,使其具有更稳定的性能和更强大的功能,更适用于大型和复杂的结构监测,是未来的研究和发展方向。设计开发一种实时大容量光纤传感解调系统成为当前的迫切需要。在此背景之下,论文深入研究了光纤光栅传感原理与技术,设计并实现了新型大容量实时光纤光栅传感解调系统,并将其在大型装备健康监测的工业现场进行了应用测试。论文主要完成了以下工作:
     (1)在分析现有典型光纤传感解调方案的基础上,结合光纤光栅传感复用技术提出了一种新型的大容量光纤光栅传感解调方案。实验表明,采用可调谐窄带光源的新型大容量光纤传感解调方案与传统解调方案相比,具有较高的系统容量和信噪比。
     (2)分析比较了传感常用光源性能,详细研究了掺铒光纤放大器和半导体光放大器的基本理论,分别构建了采用掺铒光纤放大器的可调谐环形腔掺铒光纤激光器和基于半导体光放大器的可调谐环形腔频域锁膜激光器,并将激光器作为光纤传感解调系统中的光源。实验结果表明,将所构建的可调谐窄带光源用于所设计的大容量光纤传感解调系统作为光源,输出光功率相对于传统使用宽带光源的方法相比有显著增强,可提高系统信噪比(SNR),增大系统容量,有效改善系统性能。
     (3)研究了光纤F-P滤波器的工作原理、特性与技术指标,并采用实验方法对可调谐F-P滤波器进行研制。利用V型槽结构对准方法实现F-P滤波器,其所得光谱输出自由谱区可达近90nm,3dB带宽约0.32nm,插入损耗小于5dB。在压电陶瓷的驱动电压作用之下,法布里腔的腔长将随之相应变化,在变化的腔长作用下,透射波长也会发生相应变化,技术指标基本满足光纤传感系统要求。
     (4)对实时大容量光纤传感解调系统进行了研究与设计。采用了FPGA配合高速DSP芯片来代替传统的微控制器进行光栅信号的检测与计算。利用FPGA实现高速实时并行光纤光栅的信号检测,采用高速DSP芯片进行系统波长的运算。该系统具有高速的实时处理能力,并可提供丰富的接口类型,满足实时以太网通信的应用需要。由于采用可调谐窄带激光光源及高精度检测电路,该系统具有较高的运算速度和精度,将信号的高速运算和数据传输有机结合在一起,使得整个系统性能得到较大提高与完善。
     (5)将大容量光纤光栅传感解调系统在港口的煤炭装卸现场对煤炭装卸设备的健康监测中进行了应用测试。测试结果表明,大容量光纤光栅传感解调系统可在实际工程中的工业现场中安全可靠稳定地工作,可以很好地实时监测工业现场关键测试点的信号动态响应,且可以达到实验室所测得的系统各项性能指标。
With the developments of the embedded technology and internet technology, we focus more attention on the building large-scale distributed fiber sensor network with more stable performance and powerful function because of the requirements of more extensive and complicated configuration monitor system. As the key technology of the network, the research of large scale real-time fiber sensor system is necessary. The principle and technology of fiber grating sensor are illustrated deeply in this article. And base on the study, a demodulation solution for large-scale, real-time fiber grating sensor with tunable narrow source, which has been tested in the healthy monitor system for some large scale equipment, has been designed. The contents below are discussed in this article:
     (1) After analyzing the typical fiber sensor demodulation solution, a new large scale fiber grating demodulation solution based on the fiber grating sensor multiplexing technology is designed. Higher system capacity and better SNR have been realized in the experiments compared with the traditional demodulation solution.
     (2) The performances of traditional sensor source are analyzed and compared. Based on the deep study of EDFA and SOA working theory, the tunable ring cavity laser with EDFA and the tunable ring cavity frequency domain mode locked laser with SOA are designed respectively and used as source for fiber sensor demodulation system. The experiment result showed greater output optical power compared with the traditional source. Besides, the SNR and the capacity of system are enhanced greatly. The total system performance is improved obviously.
     (3) Based on the principle, characteristic and specification of fiber F-P filter, the tunable FP filter is developed in the experiment. The output spectrum of F-P filter based on V-groove collimation has 90nm free bandwidth,0.32nm 3dB bandwidth and less than 5dB insertion loss. The F-P cavity length can be adjusted with piezoceramics drive voltage. And the passband wavelength is variable with variable cavity length corresponding. The all specification can meet the requirements of fiber sensor system.
     (4) The real-time large scale FBG sensor demodulation system is studied and designed. Novel FPGA and high speed DSP chip, instead of traditional MCU, are applied in detecting grating signal. FPGA is used to realize the real-time signal detection of parallel fiber grating in high speed, and the high speed DSP can complete the system wavelength computing. The system has the capacity of high speed and real time process and could provide enough interface types to meet the requirements of Ethernet application. Because the application of tunable narrow band laser source and high resolution detection technology, the system has higher compute speed and resolution. And the high speed process and data conservation are combined, which improve the system performance greatly.
     (5) The application test of fiber sensor demodulation system in healthy monitoring of coal handling equipment was carried out. The system can work safely and stably, and the test result show well real-time monitor performance on dynamic response of the key test point, which achieve the performance testing in laboratory.
引文
[1]C. K. Kao, and G.A. Hockham. Dielectric-fiber surface waveguides for optical frequency. Proc. IEE, vol.133, Jul.1966, pp.1151-1158.
    [2]RP Kapron, D.B. Keck and R.D. Maurer. Radiation Losses in Glass Optical Waveguides. Applied Physics Lett., vol.17, no.10,1970, pp.423-425.
    [3]J.S. Cook and O.I. Szentesi. North American Field Trials and Early Applications in Telephony. IEEE. J. Sel. Areas on Commun., vol.1,1983, pp.393-397.
    [4]A.Moncalvo and F. Tosco. European Field Trials and Early Applications in Telephony. IEEE. J. Sel. Areas on Commun., vol.1,1983, pp.398-403.
    [5]H. Taga, et al.Recent progress in amplified undersea systems. Journal of Lightwave Technology, vol.13, no.5, May 1995, pp.829-840.
    [6]J.P Elbers. High-capacity DWDM/ETDM transmission. OFC2002, paper ThD3, Mar.2002.
    [7]C. Giles and M. Spector. The wavelength Add/Drop Multiplexer for lightwave communication networks. Bell Labs Tech. J., vol.4, no.1,1999, pp.207-229.
    [8]R. Davey, D. Payne and A. Lord. Optical Networks:A European View. OFC2002,2002, paper Tuhl.
    [9]Velanas, P, Bogris, A., Syvridis, D.. Impact of dispersion fluctuations on the noise properties of fiber optic parametric amplifiers. Journal of Lightwave Technology, Vol.24, Issue 5, May 2006, Page(s):2171-2178.
    [10]Galtarossa, A., Palmieri, L., Pizzinat, A.,et al. Polarization Optical Time Domain Reflectrometry Measurements. Lasers and Electro-Optics,2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on 30-02 Aug.2005, Page(s):1490-1491.
    [11]Bing Yu, Anbo Wang, Pickrell, C.R.. Analysis of fiber fabry-Pe/spl acute/rot interferometric sensors using low-coherence light sources. Journal of Lightwave Technology, Vol.24, Issue 4, April 2006, PP.1758-1767
    [12]Velanas, P, Bogris, A., Syvridis, D.. Impact of dispersion fluctuations on the noise properties of fiber optic parametric amplifiers. Journal of Lightwave Technology, Vol.24, Issue 5, May 2006, Page(s):2171-2178
    [13]Menyuk,C.R., Marks,B.S..Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems. Journal of Lightwave Technology, Volμme 24, Issue 7, July 2006, Page(s):2806-2826.
    [14]Akbulut, M., Weiner, A.M., Miller, P J.. Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays. Journal of Lightwave Technology, Volume 24, Issue 1, Jan.2006, Page(s):251-261.
    [15]张治国.光纤传感应用中若干关键技术及系统方案的研究:[博士学位论文].北京:北京邮电大学,2007.
    [16]贾宏志.光纤光栅传感器的理论和技术研究:[博士学位论文].北京中科院,2000
    [17]刘波.光纤光栅传感网络技术研究与应用:[博士后研究工作报告].天津:南开大学,2006.
    [18]廖延彪.光纤光学.北京:清华大学出版社,2000.
    [19]巩宪锋.光纤光栅传感器及其应用的关键技术研究:[博十学位论文].北京:北京科技大学,2004.
    [20]孙丽.光纤光栅传感技术与工程应用研究:[博士学位论文].大连:大连理工大学,2006.
    [21]刘波.光纤光栅传感系统的研究与实现:[博士学位论文].天津:南开大学,2004
    [22]Knudsen, S.; Havsgard, G.B.; Berg, A.; Nakstad, H.; Bostick, T. Permanently Installed High Resolution Fiber-Optic 3C/4D Seismic Sensor Systems for In-Well Imaging and Monitoring Applications, Proceedings of SPIE-The International Society for Optical Engineering, Troutdale, OR, United states, May 14,2003-May 15,2003:51-55.
    [23]Bowker, Thomas; McKay, Colin; Vaisman, Fima; Brown, Heidi, Optical fiber sensors for oil and gas applications, Proceedings of SPIE-The International Society for Optical Engineering, Philadelphia, PA, United states, October 26,2004-October 28,2004:188-196.
    [24]D.J. Hill, B. Hodder, J.D. Freitas, et al.. DFB fiber-laser sensor developments [C], Proc. SPIE,2005,5855:904-907.
    [25]S. Foster, A. Tikhomirov, M. Englund, et al.. A 16 Channel Fibre Laser Sensor Array [C], OFS-18,2006.
    [26]Parker T R, FarhadiroushanM, Handerek V A, et al. A Fully Distributed Simultaneous St rain and Temperature Sensor using Spontaneous Brillouin Backscatter. IEEE Photonics Technology Letters,1997,9 (7):979-981
    [27]何玉钧,尹成群,一个新型的基于全光纤Mach-Zehnder干涉仪BOTDR系统.光子学报,2004,33(6):721-724.
    [28]K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, "Coherent seif-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers," J. Lightwave Technol.,1994,12:730-736
    [29]S. M. Maughan, H. H. Kee, and T. P. Newson, Novel distributed fiber sensor using microwave heterodyne detection of spontaneous brilliouin backscatter, Proceeding of SPIE-The international society for optical engineering,2000,4185:780-783
    [30]H. Ohno, H. Naruse, N. Yasue, Y. Miyajima, H. Uchiyama, Y. Sakairi and Z.X. Li, "Development of highly stable BOTDR strain sensor employing microwave heterodyne detection and tunable electric oscillator," Proc. SPIE,4596,pp.74-85, (2001).
    [31]P. J. Nash. Review of interferometric optical fibre hydrophone technology[J]. IEE Proceedings-Rador, Sonar-Navigation,1996,143(3):204~209
    [32]G. A. Cranch, P. J. Nash, et al.. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal,2003, 3(1):19~30
    [33]J. A. Bucaro, H. D. Dardy, E. Carome. Fiber-optic Hydrophone [J]. The Journal of the Acoustical Society of America,1977,62(5):1302~1304
    [34]φ ystein Farsund, Catherine Erbeia, et al.. Design and field test of a 32-element fiber optic hydrophone system[J].15th Optical Fiber Sensors Conference Technical Digest(ofs2002), Portland, USA,2002,329~332
    [35]G. A. Cranch, P. J. Nash. Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM [J]. Journal of Lightwave Technology,2001,19(5):687~699
    [36]Jean-Pierre Cariou, Beatrice Augere, Matthieu Valla, Laser source requirements for coherent lidars based on fiber technology, C. R. Physique 7 (2006) 213-223
    [37]Spiegelberg C, Geng J, Hu Y, Kaneda Y, Jiang SB and Peyghambarian N. Low-noise narrow-Linewidth fiber laser at 1550 nm. J. Lightwave. Technol,2004,22-57.
    [38]Leigh M, Shi W, Zong J, Yao Z, Jiang SB, Peyghambarian N. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with large core. Appl. Phys. Lett.,2008,92:181108
    [39]Gabzdyl J. Fiber lasers make their mark. Nature Photonics,2008,2:21.
    [40]乔学光,王瑜,傅海威,赵大壮,王炜,张晶,可调谐法布里一珀罗滤波器得高精度大范围实时定标,光学光报,2008,28(5),pp:852—855;
    [41]姜德生,R.O.Claus教授(美国).智能材料器件结构与应用.武汉工业大学出版社,2000
    [42]Desheng Jiang, LiYun Ding. Synthesis and characterization of a novel poly(N-vinyl)-3-[p-nitrophenylazo] carbazolyl-CdS nanocomposites through chemical hybridization. Materials Letters,60 (29-30):3457-3462,2006.
    [43]Desheng Jiang, Sheng-Ya Long. Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal,25:15-23,2005.
    [44]姜德生,陈兴.用热聚法固定指示剂的光纤氧气传感器研究.化学学报,61(8):1281—1286,2003
    [45]Desheng Jiang, Liu Er. Study of the complex enzyme membrane for a fiber optic glucose sensor. Key Eng. Mater.,249:425-428,2003.
    [46]刘德明.光纤传感系统中的信号处理研究.华中理工大学博士论文,1999.
    [47]任海兰,刘德明.光通信信号处理.电子工业出版社,2006
    [48]Deming Liu. Novel Hybrid WDM/TDM Sensor Passive Optical Network and its Applications. APOC'2009 (invited talk),2009
    [49]Liu DM, Hong NJ, Chao L. Wavelength conversion based on cross-gain modulation of ASE spectrμm of SOA. IEEE PHOTONICS TECHNOLOGY LETTERS 2000, Vol 12, Iss 9, pp 1222-1224.
    [50]Deming Liu, Shuang Liu, Hairong Liu. Temperature performance of Raman scattering in a data fiber and its application in a distributed temperature fiber-optic sensor. Frontiers of Optoelectronic in China,2009.
    [51]乔学光,贾振安,傅海威,李明.光纤光栅温度传感理论与实验.物理学报,2004,53(2):pp:494-497。
    [52]郭小东,乔学光,贾振安,傅海威,王小凤.一种C+L波段高功率掺铒超荧光光源.中国激光,2005,32(5),pp:609-612。
    [53]
    [54]张利勋,廖云,代志勇,欧中华,刘永智,彭增寿,王大文.分布式光纤喇曼温度传感器的区域标定法.光电子·激光,2006,17(6):772-774
    [55]周晓军,龚俊杰,周建华,刘永智.白光干涉偏振模耦合分布式光纤传感器分析.光学学报,2004,24(5):605-608
    [56]岳慧敏,代志勇,刘永智,欧中华.BOTDR分布式光纤传感系统研究进展.激光杂志2007,28(4)
    [57]余丽萍,刘永智,代志勇.布里渊散射分布式光纤传感器.激光与光电子学进展,2006,33(4): 24-28
    [58]Zhonghua Ou, Lixun Zhang, Zhiyong Dai, and Yongzhi Liu. Measurement of spontaneous Brillouin scattering in optical fiber with a fiber Bragg grating Sagnac loop. Proc. SPIE 7004, 70043Z (2008)
    [59]杨亦飞.工程化光纤光栅传感系统的设计与应用研究[博士学位论文].天津:南开大学,2005
    [60]童峥嵘.光纤光栅传感网络及解调技术的研究[博士学位论文].天津:南开大学,2003
    [61]饶云江等.光纤光栅原理及应用.科学出版社,2006.
    [62]林志航.分布式FBG传感系统及频谱相关解调技术研究.[博士学位论文].湖北:华中科技大学,2007.
    [63]黎敏,廖延彪.光纤传感器及其应用技术.武汉大学出版社,2008
    [64]高雪清.光纤光栅感温火灾探测方法的研究.[博士学位论文].湖北:武汉理工大学, 2006
    [65]甘维兵,张翠.基于波分复用和全同光栅技术的隧道火灾监测系统.传感器世界,2008,10:26-29
    [66]范典.编码式光纤布喇格光栅传感网络的研究与应用[硕士学位论文].湖北:武汉理工大学,2005
    [67]关柏鸥,余有龙,葛春风等.一种高分辨率的光纤光栅传感解调技术.光学学报.2000,20(11):1509-1513.
    [68]周伟林.传感光纤光栅波长移位检测研究:[硕士学位论文].国防科技大学研究生院,2003.
    [69]吴薇,戴亚文.光纤布喇格光栅传感器的波长移位检测方法.半导体光电,2006,27(4):489-492.
    [70]王惠文,江先进,赵长明等.光纤传感技术与应用.北京:国防工业大学出版社,2001.70-78.
    [71]谢芳,王慧琴.用光纤F-P滤波器解调的光纤光栅传感器的研究.光电子.激光,2003,14(4):359-362.
    [72]李营,张书练.基于可调谐F-P滤波器的光纤光栅解调系统.激光技术,2005,9(3):237—240.
    [73]Ning Y N,Meldrμm A,Shi W,etal. Bragg Grating Sensing Instrument Using a tunable Fabry-perot Filter to Detect Wave length Variations [J]. Meas.Sci.&Technol.1998,9(6) 599-606.
    [74]L A Ferreira. Pseudo heterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings [J]. IEEE Photon technol Lett,1997,9 (4):487-489.
    [75]余有龙,谭华耀等.基于干涉解调技术的光纤光栅传感系统[J].光学学报,2001,21(8):987—989.
    [76]罗映祥,余重秀.基于干涉法的光纤光栅波长移位解调方案[J].激光与光电子学进展,2005,42(10):47—50.
    [77]李丽,林玉池等.干涉解调技术在光纤光栅传感系统中的应用[J].传感技术学报,2005,18(3):657—659
    [78]Julian Chi Chiu Chan.Interrogation of fiber Bragg grating sensors with a tunable laser source:[Thesis for Doctor Degree].The Hong Kong Ploytechnic University,2000.
    [79]刘云启.布喇格与长周期光纤光栅及其传感特性研究[博士学位论文].天津:南开大学,2000.
    [80]董新永.光纤光栅调谐技术、应用及宽带可调谐掺铒光纤激光器研究[博士学位论文].天津:南开大学,2002.
    [81]Melo M, FraZao O, Teixeira A.L.J et al. Tunable L-band erbium-doped fiber ring laser by means of induced cavity loss using a fiber taper[J]. Appl. Phys. B,2003,77:139-142.
    [82]董新永,赵春柳,关柏鸥等.可调谐光纤环形腔激光输出特性的理论与实验研究[J].物理学报,2002,51(12):2750-2755.
    [83]Zhang, X, Zhu, N. H., Xie, L., Feng, B. X. A Stabilized and Tunable Single-Frequency Erbium-Doped Fiber Ring Laser Employing External Injection Locking. Lightwave Technology,2007,25(4):1027-1033.
    [84]Chien-Hung Yeh, Chien-Chung Lee, Chih-Yang Chen, Sien Chi. A stabilized and tunable erbium-doped fiber ring laser with double optical filter. Photonics Technology Letters, 2004,16(3):765-767.
    [85]黄德修.半导体激光器及其应用.国防工业出版社,2001.
    [86]张颍,张新亮,孙军强,刘德明.基于高稳定度DWDM多波长光源.华中科技大学学报,2001,29(8):7-9.
    [87]杨文艳.基于SOA的主动锁模环形光纤激光器的研究:[硕士学位论文].西南师范大学,2005.
    [88]王桐.基于 SOA的注入锁模光纤环激光器特性及应用研究:[博士学位论文].北京:清华大学,2004.
    [89]王肇颖,胡智勇,包焕民,姜晓骏,贾东方,李世忱.基于半导体光放大器的可调谐多波长光纤激光器.光子学报,2006,35(3):321-324.
    [90]王飞,刘木林,胡南,李铁,李锐锋.有理数谐波锁模SOA光纤环形激光器数值研究.光电工程,2007,34(2):65-68.
    [91]R. Huber, M. Wojtkowski, and J. G Fujimoto. Fourier Domain Mode Locking (FDML):A new laser operating regime and applications for optical coherence tomography. Optics Express, Vol.14, No.8, PP.3225-3237
    [92]R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles.Opt. Express 2005(3):3513-3528.
    [93]吴国锋.几种新型可调谐窄带光滤波器.光子技术,2006,6(2):64-68.
    [94]宋明,谢芳,冯其波.可调谐光滤波器的研究进展.光学仪器,2006,28(5):81-85.
    [95]汪宏章.可调谐法布里-珀罗腔滤波器的制作与应用研究.[硕士学位论文].湖北:武汉理工大学,2005.
    [96]王军.光纤 F-P及FBG传感器通用解调系统研究与设计.[硕士学位论文].重庆:重庆大学,2006.
    [97]王德兵.基于法布里-珀罗腔结构的光学可调谐滤波器研究[硕士学位论文].浙江:浙江大学,2006.
    [98]童杏林,吕大娟,刘恋,吴薇,胡文彬.新型全光纤型可调法-珀滤波器的制备与实验.武汉理工大学学报,2009,31(1):132-134
    [99]WU C, DU TTA N K. High repetition rate optical pulse generation using a rational harmonic mode2locked fiber laser. IEEE J Quantμm Electron,2000,36 (2):145-150
    [100]PENG C, YAO M Y, ZHANGJ F, et al.Theoretical analysis of actively mode locked fiber ring laser with semiconductor optical amplifier. Opt Commun,2002,209:181-192.
    [101]Julian, Chan C C. Interrogation of fiber Bragg grating sensors with a tunable laser source. Ph.D, Thesis, The Hong Kong Polytechnic university,2000
    [102]施纯峥.基于宽谱光源的光纤布喇格光栅传感器解调技术的研究:[博士学位论文].北京:清华大学,2004.
    [103]宋志臣,卢艳,尚波.港口装卸设备运行参数在线采集与记录系统设计.大连海事大学学报,2007,33(6):197-199
    [104]张维健.煤炭装卸设备钢结构安全监测方法.港口装卸,2006,3:12-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700