污泥龄对侧流除磷反硝化除磷系统影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在全面综述生物除磷脱氮理论和技术的基础上,分析课题组前期研究得出的侧流除磷反硝化除磷系统A2N-P-SBR具有优异除磷脱氮效果和低污泥产率、长污泥龄等特性,认为在侧流除磷反硝化除磷系中,由于除磷方法的改变导致污泥龄的控制将有别于传统生物除磷系统。为此,论文采用调控污泥龄的手段系统研究了污泥龄对反硝化聚磷系统的影响,进一步利用微量热仪测定了不同泥龄系统生物除磷周期的能量变化趋势。在对碳源利用情况分析的基础上,从能量和物质转变角度跟踪测量生物除磷脱氮系统碳的转化、循环过程,揭示了侧流除磷反硝化除磷系统低需氧、低污泥产率和良好脱氮除磷效率的内在原因。研究结果表明:
     ①侧流除磷反硝化除磷系统A2N-P-SBR随着污泥龄SRT增大出水COD浓度降低。出水总磷浓度无差异,去除率在93%以上,生物除磷脱氮系统污泥龄的取值可以单纯由生物脱氮系统决定。出水氨氮、总氮浓度先迅速降低后趋于平稳。随SRT越长除磷脱氮SBR中滞留的微生物越多,平均污泥浓度越高。且污泥容积指数SVI增加,沉降性能增强。污泥含磷量越大。当SRT为32d和64d时,A2N-P-SBR中除磷脱氮SBR厌氧段释磷效果和缺氧段反硝化效果最好。当SRT小于32d,反硝化除磷反应器COD吸收量随泥龄增大而增大;当SRT大于32d,COD吸收量随泥龄增大而减小。综合各污染物出水浓度、除磷脱氮SBR各个阶段脱氮除磷速率和污泥沉降性能,得出污泥龄大于32d处理效果好。污泥龄为32d时处理效果最好;污泥龄为160d时排泥量最小,污染物去除效果也较好。
     ②除磷脱氮SBR厌氧段释磷后先进行长时间的缺氧再好氧,既可以为DPB提供良好生存环境,也能大大促进好氧聚磷效果。缺氧段的吸磷和脱氮过程均能在50min内完成,说明完全可以缩短缺氧段的反应时间,但时间缩短后是否会影响DPB的活性和优势菌的地位需要进一步试验。缩短反应周期后,硝化SBR反应时间为5h时,反应器最佳溶解氧可控制在1.0mg/L~1.5mg/L,此时氨氮能被彻底氧化同时耗能少,微生物也可以避免进入内源呼吸期状态。
     ③随SRT越长除磷脱氮SBR污泥产率系数Ys越低。当污泥龄大于32d后反硝化除磷系统的Ys在0.2以下,远远低于传统生物除磷脱氮系统的0.4~0.5,说明侧流除磷反硝化除磷系统的具有低污泥产率的特点。
     ④乙酸作为碳源时反硝化除磷系统摩尔产热量是传统生物除磷方式的两倍。传统生物除磷方式中,好氧阶段放热量远远大于厌氧阶段,通过对总放热量的分析计算得到传统生物除磷系统自身衰减系数Kd为0.02。反硝化除磷系统中随污泥龄SRT越长,厌氧段达到放热峰值的时间越短。同时SRT与放热值K(ΔGR)之间存在良好的线性关系,SRT越长K(ΔGR)越高,用于细胞物质合成的能量越少微生物增殖缓慢,污泥产率系数越低。当SRT为常见的20d时,放热量为104.59kJ/mol e-。放热量和表观污泥产率系数的变化非常接近,两者有密切关系。反硝化除磷系统总放热量略大于理论放热量,说明缺氧段微生物将厌氧段贮存的能量利用完全后,继续利用其他碳源如死亡的细胞或者内碳源继续进行反硝化而放热,氧化还原反应很彻底,系统已无剩余的热量为细菌繁殖所用,这是反硝化除磷系统污泥产率低的根本原因。
     课题研究成果不仅揭示了污泥龄对侧流除磷反硝化除磷系统的影响方式,同时可以为反硝化除磷技术的应用提供生物能学及热力学参考。
     课题研究得到国家自然科学基金项目(50278101)与国家水体污染控制与治理重大科技专项(2009ZX07315)的资助。
Based on comprehensive reviewing the theoretical and technical of biological nitrogen and phosphorus removal, analyzing the characteristics such as good nitrogen and phosphorus removal effect, low sludge yields and long sludge age of the denitrifying phosphorus removal system with side-stream phosphorus removal (A2N-P-SBR) researched previously, the thesis considers that the sludge age control of the denitrifying phosphorus removal system with side-stream phosphorus removal is different from the traditional biological phosphorus removal system because of the change of phosphorus removal method. So the effect of SRT on denitrifying phosphorus removal system is studied by using method of sludge age control. The variation trend of energy of each biological phosphorus removal period of the system with different sludge age is measured by microcalorimetric. From the perspective of energy and material change, conversion and cyclic process of carbon of the biological nitrogen and phosphorus removal system is tracking measured. Based on analyzing the carbon sources utilization, inner reasons of the low oxygen demand, sludge yield and good nitrogen and phosphorus removal efficiency of the denitrifying phosphorus removal system with side-stream phosphorus removal are revealed. The experiment results show that:
     ①The longer the sludge age is, the lower the effluent COD concentration is in the denitrifying phosphorus removal system with side-stream phosphorus removal (A2N-P-SBR). There is a little changes of the effluent total phosphorus concentration of the system with different SRT. The removal rate of the TN is all above 93%, and the sludge age values of biological phosphorus and nitrogen removal system can be determined merely by biological nitrogen removal system. Effluent concentration of ammonia nitrogen and total nitrogen decrease rapidly at first and then change to be steady. With the SRT increase, microorganisms stranded in the denitrifying phosphorus removal SBR increase, the average sludge concentration is higher. And the sludge volume index (SVI) increase, settling property enhance, p content in sludge increase. When the SRT is 32d and 64d, effect of anaerobic phosphorus release and anoxic denitrification of SBR in A2N-P-SBR is best. When the SRT is less than 32d, COD uptake increases with sludge age increases of SBR. When the SRT is greater than 32d, COD absorption decreases with the sludge age increases. The effluent concentration of each pollutant, nitrogen and phosphorus removal rate at all stages of SBR and the sludge settling properties are comprehensively analyzed. They results show that there is a good treatment effects when SRT is greater than 32d. The treatment effect is best when the Sludge age is 32d; the emission amount of sludge is least and pollutant removal effect is good when the sludge age is 160d.
     ②After the phosphorus removal of anaerobic stages in nitrogen and phosphorus removal SBR, if there is a long anoxic stage before aerobic stage, the system can provide a good living environment for DPB and contribute much to the effect of aerobic phosphorus uptake. Phosphorus uptake and nitrogen release of anoxic stage can be completed in 50min. It shows that the reaction time of anoxic stage definitely can be shortened. Whether the short anoxic stage affects the activity and the dominant position of DPB still needs further experiment. When the reaction time of nitrifying SBR is 5h after the reaction cycle is Shortened, the optimum dissolved oxygen in the reactor can be controlled between 1.0mg / L ~ 1.5mg / L. Under the optimum conditions, ammonia can be completely oxidized and consume less energy, and can prevent microbes from entering into endogenous phase.
     ③The longer the SRT is, the lower the sludge yield coefficient (Ys) is in the nitrogen and phosphorus removal SBR. When the sludge age is greater than 32d, the Ys of denitrifying phosphorus removal system is under 0.2. It is far below the value (0.4 to 0.5) of traditional biological nutrient removal system. The result indicates that denitrifying phosphorus removal system with side-stream phosphorus removal has a low sludge removal yield.
     ④When the acetic acid is as a carbon source in denitrifying phosphorus removal system, the molar heat production is twice than the heat produced from traditional biological phosphorus removal system. The heat released from the aerobic phase is far greater than the anaerobic phase in traditional biological phosphorus removal system. The analysis of the total heat release shows that attenuation coefficient (Kd) of the traditional biological phosphorus removal system is 0.02. The time needed for the anaerobic exothermic peak is shortened when the SRT gets longer in denitrifying phosphorus removal system. There is a good linear relationship between SRT and the heat value (K(ΔGR)).The longer the sludge age the higher the K(ΔGR). Less energy is used for the synthesis of cellular material with sludge age. Cell proliferation is restrained, and sludge yield coefficient is low. When the SRT is a common 20d, the heat release is 104.59kJ/mol e-. The change of heat release and the apparent sludge yield coefficient is quite similar, and they are closely related. The practical heat release is greater than the theoretical heat release in denitrifying phosphorus removal system. The result indicates that when the energy stored in the anaerobic stage is utilized completely in the anoxic stage, the microorganism will continue to use other carbon sources such as dead cells or the carbon source to denitrify and release heat. As a consequence the redox reaction is finished completely, there is no more energy used for bacterial reproduction in the system. That is the basic reason of low sludge yield of the denitrifying phosphorus removal system.
     The results of the study reveal the influence mode of different sludge age on the denitrifying phosphorus removal system with side-stream phosphorus removal, and provide the reference of bioenergetics and thermodynamics for the denitrifying phosphorus removal technology.
     This research was sponsored by the National Natural Science Foundation of China (50278101) and Grand science and technology special project in National Water Pollution Control and Management of China(2009ZX07315).
引文
[1]胡正峰,张磊,邱勤等.三峡库区长江干流和支流富营养化研究[J].山东农业科学, 2009, (12): 74~80.
    [2]王海云.三峡水库“藻类水华”成因条件研究[J].人民长江, 2007, 38(2): 16~18.
    [3]万金保.反硝化除磷理论及运用现状[J].水处理技术, 2008, 34(3): 7~10.
    [4] E. G. Srinath, C. A. S. , S. C. Pilla. Rapid removal of phosphorus from sewage by activated sludge[J]. Experientia, 1959, (15): 339~340.
    [5] M. S. Finstein. Nitrogen and phosphorus removal from combined sewage components by microbial activity, Appl[J]. Microbiological, 1966, (14): 679~684.
    [6] Henze M, G. W. , Mino T, et a1. Activated sludge model No. 2D(ASM2D)[J]. Water Sci Technol, 1999, 39(1): 165~182.
    [7] Hao X. D. , V. L. M. C. M. , Meij ei S. C. F. , et a1. Mode1 Based Evaluation of Two BNR Process UCT And A2N[J]. Wat. Res, 2000, 35(12): 2851~1860.
    [8]郝晓地.对强化生物除磷机理与工艺认识误区的剖析[J].中国给排水, 2008, 24(6): 1~5.
    [9]李勇.泥龄对生物除磷效率影响的分析[J].苏州城建环保学院学报, 2001, 14(1): 16~21.
    [10] Fukase T, Shibata M, Miyaji Y. The role of an anaerobic stage on biological phosphorus removel[J]. Wat Sci Tech, 1985, (17): 68~80.
    [11] D. Brdjanovic, et al. Modeling COD, N and P removel in a full-scale WWTP HAARLEM WAARDERPOLDER[J]. Wat Res, 2000 , 34(3): 846~858.
    [12] Wentzel M C, Ekama G A, Loewenthal R E, et al. Enhanced polyphosphate organism cultures in activated sludge Part II : Experimental behaviour[J]. Wat S A, 1989, (15 ): 71~88.
    [13] Kuba T, Smolders G, Van Loosdrecht M C M, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Wat Sci Technol , 1993, 27(5/6): 241~252.
    [14]周海东.泥龄应用中有关问题的探讨[J].污染防治技术, 2003, 16(2): 13~16.
    [15]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998, 244.
    [16]张自杰,林荣忱.排水工程(下册) [M].北京:中国建筑工业出版社, 1986.
    [17]彭永臻.温度和污泥龄对活性污泥法处理系统影响的新探讨[J].中国环境科学, 1990, 10(1): 3~8.
    [18]张素荣.水温及污泥龄对生物处理系统运行的影响[J].工业安全与环保, 2002, 28(5): 22~24.
    [19]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,2006: 178~179.
    [20]彭永臻.污泥龄与污泥膨胀及沉降性能的关系[J].中国给水排水, 1996, 12(4): 24~26.
    [21]郭春艳.聚磷菌和聚糖菌的竞争影响因素研究进展[J].微生物学通报, 2009, 36(2): 267~275.
    [22]高小平.反硝化除磷系统稳定运行性能研究. [D].重庆大学. 2005.
    [23]丁彩娟.反硝化除磷系统基质转化和生物特性初探. [D].重庆大学. 2005.
    [24]高茜.复合生物菌群反硝化同时吸磷机理试验续研究. [D].重庆大学. 2006.
    [25]杨勇光.碳源种类对反硝化除磷系统的影响及反硝化聚磷菌(DPB)的分离. [D].重庆大学. 2010.
    [26]刘莲,林贵梅,邵伟等.微量热技术在微生物和细胞研究方面的应用[J].药物生物技术, 2010, 17(1): 79~82.
    [27] Critter S A M, Freitas S S, Airoldi C. Microbial biomass and microcalorimetric methods in tropical soils[J]. Thermochimica Acta, 2002, 394: 145~154.
    [28] Beezer AE, Chowdhry BZ, Newell RD, Tyrrell HJ. Bioassay of antifungal antibiotics by flow microcalorimetry. Anal Chem, 1977, 49: 1781~1784.
    [29]胡艳军,蒋风雷,欧阳宇等.微量热法在药物活性评价中的应用[J].中国科学, 2010, 40(9): 1276~1285.
    [30] Weijun Kong, JiaboWang, Xiaoyan Xing et al. Screening for novel antibacterial agents based on the activities of compounds on metabolism of Escherichia coli: A microcalorimetric study[J]. Hazardous Materials, 2011, 185: 346~35.
    [31] Yang L N, Xu F, Sun L X, et al. Microcalorimetric studies on the antimicrobial actions of different cephalospinsm[J]. Journal of Thermal Analysis and Calorimetry, 2008, 2(93): 417.
    [32] Liu GS, Liu Y, Chen XD, Liu P, Shen P, Qu SS. Studies on interaction between T4 phage and Escherichia coli B by microcalorimetry. J Virol Methods, 2003, 112: 137~143.
    [33] Zhu JC, Aazaz A, Liu Y, Shen P, Yang Y, Qu SS. Measuring the relative promoter activity in Escherichia coli by a calorimetric method. Thermochim Acta, 2005, 439: 52~57.
    [34] Xu X J, Xue Z, Qi Z D, etal. Antibacterial activities of manganese(II) ebselen—porphyrin conjugate and its free components on Staphylococcus aureus investigated by microcalorimetry[J]. Thermochimica Acta, 2008, 476: 33.
    [35] Xi L, Liu Y, Qu S S, et al. Thermochemical studies of the toxic action of heavy metal ions onEscherichia coliby microcalorimetry[J]. Journal Wuhan University Technology, 2003, 18(1): 76.
    [36] Mard PA. New applications of calorimetry in clinical bacteriology. In: Johnston HH, Newsom SWB, Eds. 2nd International Symposium on Rapid Methods and Automation in Microbiology.Oxford: Learned Information(Europe)Ltd. 1976.
    [37] Garedew A, Schmolz E, Lamprecht I. Microcalorimetric investigation on the antimicrobial activity of honey of the stingless beeTrigona spp. and comparison of some parameters with those obtained with standard methods[J]. Thermochimica Acta, 2004, 415: 99.
    [38] Krüger D, Giesbrecht P. Flow microcalorimetry as a tool for an improved analysis of antibiotic activity: The different stages of chloramphenicol action. Cell Mol Life Sci, 1989, 45: 322~325.
    [39] Beezer AE, Fox GG, Gooch CA, Hunter WH, Miles RJ, Smith BV. Microcalorimetric studies of the interaction of m-hydroxybenzoates with E. coli and with S. aureus. Demonstration of a Collander relationship for biological response. Int J Pharm, 1988, 45: 153—155
    [40] Hai-Yan Chena, Jun Yaoa, Yong Zhoua, et al. Investigation of the toxic effect of cadmium on Candida humicola and Bacillus subtilis using a microcalorimetric method [J]. Journal of Hazardous Materials, 2008, 159: 465~470.
    [41] Fei Wang , Jun Yao , Lin Tian , et al. Microcalorimetric investigation of the toxic action of ammonium ferric(III)sulfate on the metabolic activity of pure microbes [J]. Environmental Toxicology and Pharmacology, 2008, 25: 351~357.
    [42] Assegid G, Erik S, Ingolf L. Microbiological and calorimetricinves-tigations on the antimicrobial actions of different propolis extracts: aninvitroapproach[J]. ThermochimicaActa, 2004, 422: 115.
    [43] Hartung J. Estimating the biological effect of detrimental substances on E. coli with flow microcalorimetry. II. Studies using 3 antibiotics. Zentralbl Bakteriol Mikrobiol Hyg B, 1986, 183: 47~57.
    [44]余惠旻,肖小河,刘塔斯等.中药四性的生物热动力学研究—生晒参和红参药性的微量量热学比较[J].中国中药杂志, 2002, 27(5): 393.
    [45]肖小河,刘义,王永炎.从热力学角度审视和研究中医药[D].中华中医药学会中成药学术研讨会论文集, 2005: 44.
    [46]周韶华,潘五九,肖小河等.中药四性的生物热动力学研究—黄连不同炮制品药性的微量热学比较[J].中草药, 2004, 35(11): 1230.
    [47]樊冬丽,廖庆文,鄢丹等.基于生物热力学表达的麻黄汤和麻杏石甘汤的寒热药性比较[J].中国中药杂志, 2007, 32(5): 421.
    [48] Aki H, Goto M, Yamamoto M. Thermodynamic aspects of the molecular recognition of drugs by human serum albumin. Thermochim Acta, 1995, 251: 379~388.
    [49] Murphy KP, Xie D, Garcia KC, Amzel LM, Freire E. Structural energetics of peptide recognition: angiotensin II/antibody binding. Proteins: Struct Funct Genet, 1993, 15:113~120.
    [50] Banerjee T, Singh SK, Kishore N. Binding of naproxen and amitriptyline to bovine serum albumin: Biophysical aspects. J Phys Chem B, 2006, 110: 24147~24156.
    [51] Critter S A M, Freitas S S, Airoldi C. Microcalorimetric measurements of the metabolic activity by bacteria and fungi in some Brazilian soils amended with different organic matter [J]. Thermochimica Acta, 2004, 417: 275.
    [52] Prado A G S, Airoldi C. Effect of the pesticide 2, 4 D on microbial activity of the soil monitored by microcalorimetry[J]. Thermochimica Acta, 2000, 349: 17.
    [53] César Guigón-López, et al. Microcalorimetric measurement of Trichoderma spp. growth at different temperatures Thermochimica Acta 2010, 509: 40~45.
    [54] Lisardo Nu′n?ez-Regueira , et al. Microcalorimetric study of changes in the microbial activity in a humic [J]. Soil Biology&Biochemistry, 2006, 38: 115~124.
    [55] Zheng S X, Yao J, Zhao B, et al. Influence of agricultural practices on soil microbial activity measured by microcalorimetry[J]. European Journal Soil Biology, 2007, 43: 151.
    [56] X. -H. Zhao et al. Microcalorimetric studies of perchlorate on heat production by hepatocytes and mitochondria isolated from Carassius auratus [J]. Chemosphere, 2011: 1~7.
    [57] Zhu J C, Li C H, Liu Y, et al. A microalorimertic study of the action of mercuric chloride on the metabolism of mitochondriaisolated from cyprinus carpio liver tissue[J]. Journal Thermal Analysis and Calorimetry, 2006, 83(1): 181.
    [58]曹俊岭,李祖伦,付强等.人参不同提取部位对大鼠肝脏线粒体影响的微量热研究[J].中国医院药学杂志, 2007, 27(9): 1187.
    [59] Liu Y W, Zhang H, Wang C X, et al. The difference of energy metabolism between persistent and cytocidal virus infection[J]. Thermochimica Acta, 2003, 407: 113.
    [60] Tan A M, Lu J H. Microcalorimetric study of antiviral effect of drug. [J]. Biochem Biophys Methods, 1999, 38: 225.
    [61] Zhou H, Liu Y W, Zheng C Y, et al. Microcalorimetric studies of the synergistic effects of copper 1, 10 phenanthroline combined with hyperthermia on a liver hepatoma cell line Bel 7402[J]. Thermochimica Acta, 2003, 397: 87.
    [62] Li L, Tian Y C, Tade M O, et al. Apoptosis of tumour cells by temperature andanti-tumour drug: microscopic and macroscopic investigations[J]. Journal Thermal Biology, 2003, 28: 321
    [63] Yu Chai, Xinpeng Genga, Ailing Liu , et al. Microcalorimetric study on conformational change of denatured RNase A adsorbed onto a moderately hydrophobic surface [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects , 2010, 361: 1~6.
    [64] Jean Debord, Michel Harel , et al. Microcalorimetric study of the inhibition ofbutyrylcholinesterase by paraoxon[J]. Analytical Biochemistry, 2009, 389: 97~101.
    [65]刘义,谢昌礼,屈松生.细胞动力学研究-厌氧菌生长过程热化学特征[J].化学学报1997, 55, 961~966.
    [66]谢昌礼,汤厚宽,宋昭华等.细菌生长的热谱图测定[J].微生物学报, 1989, 29(2): 149~151.
    [67]胡江.活性污泥生化反应微量热法研究[D].重庆大学. 2009.
    [68]范莹. A+OSA工艺污泥减量机理与热力学特征研究[D].重庆大学. 2010.
    [69]郭劲松,范莹,高旭等.城市污水厂污水及污泥挥发分对其热值的影响[J].重庆大学学报, 2010, 33(11): 134~138.
    [70] Whang LM, Park JK. Competition between polyphosphate and glycogen-accumulating organisms in enhanced biological phosphorus removal systems: Effect of temperature and sludge age. Water Environ Res, 2006, 78 (1): 4~11.
    [71]崔欣.污水除磷脱氮工艺的比较研究[J].石油化工技术经济, 2007, 23(5): 4~7.
    [72]罗固源,罗宁,吉芳英等.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水, 2002, 9: 4~7.
    [73]杨志斌,黄勇,潘杨.采用双泥系统的废水脱氮除磷工艺的研究现状与进展[J].环境科学与管理, 2006, 06): 67~71.
    [74]罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[D].重庆:重庆大学, 2003: 21~22.
    [75]王亚宜,杜红,彭永臻等. A2N反硝化除磷脱氮工艺及其影响因素[J].中国给水排水, 2003, 09): 8~11
    [76] Jens Peter Keren-Jespersen, Mogens Henze, et al. Biological phosphorus release and uptake under alternation anaerobic and anoxic conditions in a fixed-film reactor[J]. Wat Res, 1994, 5(28): 1253~1255.
    [77] Ng W J, Ong S L, Hu J Y. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor[J]. Wat Sci Tech, 2001, 3(43): 139~146.
    [78] Kuba T, Van Loosdrecht M C M. Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrification in a two-sludge system[J]. Wat Res, 1996, 42(1~2): 1702~1710.
    [79] R. Sorm. et al. Behaviour of activated sludge form a systemwithanoxic phosphate uptake[J]. WaterScienceTechnology, 1998. 37(4~5). 563~566.
    [80] Bortone, et al. Anoxic phosphate uptake inthe Dephanox process[J]. Water Science Technology, 1999. 40(4~5). 177~185.
    [81] WangY Y, Peng Y Z, Li T W, et al. Phosphorus removal under anoxic conditions in a continuous-flow A2N two sludge process [J]. Wat Sci Technol, 2004, 50(6): 37~44.
    [82] Hu Z R, Wentzel M C, Ekama G A. External nitrification in biological nutrient removal activated sludge system [J]. Wat SA, 2000, 26(2): 225~238.
    [83]罗固源,罗宁,吉芳英.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水, 2002, 18(9): 4~7.
    [84]罗固源,吉芳英,罗宁.硝酸盐电子受体反硝化同时除磷试验分析[J].环境工程, 2004, 22(1): 32~35.
    [85]罗宁,罗固源,吉方英.新型双泥生物反硝化除磷脱氮系统中微生物的组成[J].给水排水, 2003, 29(8): 33~35.
    [86] XIAODIHAO. MARKC. M. et al. Model-based evaluation of two BNR process-UCT and A2N [J]. Water Resarch, 2000. 35(12). 2851~2860.
    [87]邹伟国等.新型双污泥脱氮除磷工艺处理生活污水[J].中国给水排水, 2004. 20(6). 16~18.
    [88] Y. Huang. Y. Li and Y. Pan. BICT biological process for nitrogen and phosphorus removal[J]. Water ScienceTechnology, 2004. 50(6). 179~188.
    [89]刘俊新.从丽.王宝贞等.生物膜与活性污泥结合工艺脱氮除磷研究[J].中国给水排水, 2000. 16(12). 1~5.
    [90]常飞.泥龄对反硝化除磷脱氮系统效率的影响分析[J].水资源保护, 2004, 5: 29~32.
    [91]鲍林林.温度和污泥质量浓度对反硝化除磷的影响[J].哈尔滨商业大学学报, 2008, 24(4): 400~403.
    [92]王亚宜.反硝化除磷理论、工艺及影响因素[J].中国给排水, 2003, 19(1): 33~36.
    [93] Tykesson, E. , Aspegren, H. , Henze, M. , Nielsen, P. H. and Janssen, J. la Cour. Use of Phosphorus Release Batch Tests for Modeling an EBPR Pilot Plant. wat. Sci . Tech. Kolleko11e. 5. Seminar on Activated Sludge Modeling. 2001.
    [94]王春丽.泥龄对反硝化除磷效能的影响[J].东北农业大学学报, 2007, 38(5): 637~639.
    [95] M. Merzouki, N. Bernet, et al. Biological denitrifying Phosphorus Removal in SBR: Effect of Added Nitrate Concentration and Sludge Retention Time Wat . Sci. Tech. 2001, 3(43): 191~194.
    [96]罗固源.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水. 2002, 18(9): 47.
    [97]刘洪波.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水, 2006, 37(6): 4~7.
    [98]吉方英.侧流除磷ERP-SBR除磷脱氮工艺研究[D].重庆大学, 2004: 80~86.
    [99] Henze M, Harrenmoes P, Jansen J L C, Arvin E. Wastewater Treatment / Biological and Chemical Processes[M]. 2nd Edition. New York. Springer, 1997.
    [100]吉芳英、杨琴、罗固源.实验室自配HACH-COD替代试剂[J].给水排水. 2003. 29(1).23~26.
    [101]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.第三版[M].北京.中国环境科学出版社. 1987年.
    [102]国家环境保护总局《水和废水监测分析方法》编委会.水和废水标准分析方法.第四版[M].北京.中国环境科学出版社. 2002年.
    [103]高小平,吉方英,丁彩娟等.好氧段对反硝化除磷系统的影响[J].重庆大学学报自然科学版, 2005, 28(3): 106~109.
    [104] Wachtmeister A, Kuba T, van M CMLoosdrech, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge [J]. Water Res, 1997, 31, (3): 471~478.
    [105]张自杰,林荣忱.排水工程(第四版)[M].北京:中国建筑工业出版社, 2000: 121.
    [106]杨文婷,沈耀良.不同填料快速排泥法好氧挂膜影响因素分析[J].苏州科技学院学报. 2008, 21(4): 25~28.
    [107]龙腾锐,方芳,郭劲松.酶促填料变速生物滤池的生产性启动研究[J].给水排水, 2000, 26(11): 12~15.
    [108]周利,彭永臻,黄志.丝状菌污泥膨胀的影响因素与控制[J].环境科学进展, 1999,7: 88~93.
    [109] R. E. Sheket et al. The Effects of Fill Strategies on SBR Performance under Nitrogen Deficiency and Rich Conditions[J]. Wat. Sci. Tech. , 1993, 28(10): 179~188.
    [110]李金叶,郑平,梅玲玲.反硝化除磷工艺及其特点[J] .科技通报, 2006, 22(6): 882~886.
    [111] Ji M, Liu M Y, Gao S L, et al. A new microcalorimeter for measuring thermal effects [J]. Instrumentation Science and Technology, 2001, 29(1): 53.
    [112]王图锦. SUFR反应器中菌群结构分析及聚磷菌的分离[D].西南大学. 2007.
    [113]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社, 2006: 178~179.
    [114]废水工程处理、处置及回用(第四版)[M].北京:化学工业出版社, 2004: 417~418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700