粘土—等离子体复合材料的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化具有分解水制氢、还原CO2和光降解有机污染物等作用,在解决能源问题、温室效应和环境问题方面有重要的应用前景。Ti02因为具有催化活性高、化学和光稳定性好、安全无毒等优点而被作为一种常用的光催化剂。但是其较宽的禁带宽度使其只能被太阳光中少部分的紫外光所激发,另外,由于催化剂的比表面积相对较小,对低浓度污染物的富集作用比较弱,且催化剂处于悬浮体系中,不利于回收利用,限制了光催化技术在实际中的应用。因此,开发具有可见光响应的新型半导体光催化剂和解决催化剂的固载问题是环境污染和可再生能源开发利用的重要内容之一。
     贵金属-半导体光催化剂结合了贵金属的表面等离子体共振效应和半导体光催化活性的优点,能够提高对可见光的利用率和光催化活性。粘土矿物因其具有大的表面积,使得它们对有机污染物具有吸附性,且其来源广泛,价格低廉。因此,粘土可作为光催化剂的载体。本论文将等离子体光催化剂与粘土载体相复合,通过利用Ag-AgX表面等离子体的可见光响应以提高太阳光利用率,以及粘土的结构特性增大催化剂的比表面积和固液分离性能,防止光生活性颗粒的宏观聚集和催化剂在降解过程中被侵蚀或被洗去。从而达到提高催化剂可见光利用率和固定光催化剂的目的。本论文通过大量实验制备了一系列不同结构的光催化剂,通过各种表征手段探究晶相和物理化学性质及对其光催化活性的影响。在理论和实际应用上做了一些有益的探索。具体研究内容和研究成果如下:
     通过溶胶-凝胶法在低温下制备了具有吸附性能的Ti02/累托石复合催化剂,通过Ag-AgCl修饰TiO2/累托石复合物制备了具有可见光响应的Ag-AgCl-TiO2/累托石复合光催化材料。利用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线光电子能谱分析(XPS)、激光拉曼光谱(Raman)、紫外可见漫反射光谱(UV-vis DRS)等测试手段对所制备的催化剂进行了表征。分别以酸性红G和4-硝基苯酚为目标降解物,研究了光催化剂在可见光下对有机污染物的光催化降解性能,探讨了复合光催化材料的结构与光催化性能之间的关系。通过紫外_可见光光谱分析和活性自由基的分析,探讨了制备的光催化剂对有机污染物的降解机理。研究表明,通过光致还原将AgCl表面部分的Ag+还原成Ag,利用贵金属Ag的等离子体共振效应可以增强对可见光的吸收,同时以粘土为载体增大了光催化剂的比表面积,从而得到了具有可见光响应的高吸附性催化剂。
     针对Ti02光催化剂在实际利用中所面临的可见光利用率低及纳米粉体在悬浮体系中易失活、难回收等问题,通过溶胶凝胶的方法将TiO2光催化剂负载在凹凸棒粘土上,然后通过沉淀和光还原的方法将Ag-AgCl沉积于表面,得到Ag-AgCl-TiO2/凹凸棒石复合光催化材料。采用多种表征手段对其结构和表面特性等进行了分析。这种等离子体-半导体复合光催化剂在降解罗丹明B溶液时显示出高的光催化活性,相同实验条件下,较Ag-AgCl光催化剂和Ti02/凹凸棒复合光催化材料对罗丹明B溶液有较高的吸附性能和光催化性能。该复合光催化材料综合利用表面等离子体对可见光的吸收性能和凹凸棒的吸附固载性能,在一定程度上解决了Ti02可见光利用率低的问题,以及实际应用中难于回收的问题。
     制备了新型的Ag-AgBr/粘土复合光催化材料,利用XRD、SEM、HRTEM、 XPS、UV-vis DRS等测试手段对所制备的催化剂进行了表征。探讨了复合光催化材料的形成过程。研究了复合光催化材料在可见光下对有机染料的光催化活性,并对其降解机理进行了分析。结果表明,纳米贵金属的等离子效应增强了复合光催化材料对可见光的吸收。相同条件下,Ag-AgBr/粘土复合光催化材料的性能要优于Ag-AgBr催化材料。这说明,粘土矿物作为载体的引入一方面起到了固定光催化剂、防止催化剂流失和提高光催化剂利用率的作用,另一方面又能增加光催化剂的有效表面积和活性点,有利于电子-空穴对的分离并增强对反应物的吸附能力。等离子体材料的可见光吸收和载体的大的比表面的协同作用提高了复合光催化材料对污染物的降解性能。
Photocatalyst can be use to split water into hydrogen, photoreduced CO2and photodegrade organic pollution and so on. Therefore, the photocatalytic technology has prospect of application in solving the problem of energy shortage, global warming and environment pollution. TiO2is the most widely used photocatalyst due to its high catalytic activity, good chemical stability and non-toxicity, etc. unfortunately, it is activated only under UV light irradiation because of its large band gap. Moreover, the TiO2powder has small surface area leading to a low adsorption capacity for much diluted solutions, which take a low photocatalytic effect for low concentration wastewater treatment. And the photocatalyst in suspended system was difficult to separate from aqueous solution. These questions hindered its practical applications. Therefore, the development of new visible light-driven photocatalyst and immobilized the catalyst are essential to the control of environment pollution and the use of sustainable energies.
     The plasmonic photocatalyst combining the surface plasmonic resonance (SPR) properties of noble metal nanoparticles and the photocatalytic properties of semiconductors, which is expect to improve the photocatalytic activity and increase the utilization ration of visible light. Clays can serve as the host materials for catalysts because of their large surface area for adsorption of organic pollutants as well as their abundance and low cost. In this paper, Ag/AgX plasmonic photocatalyst supported on clays were studied, the photocatalyst can take full advantage of the visible light response of the plasmonic photocatalst to improve the utilization of sunlight, and can use the particular structure properties of clays to increase the surface area of the photocatalyst and the solid-liquid separation efficiency as well as avoid the formation of macroscopic aggregates of photoactive particles and protects the photocatalyst particles from erosion or washing in the photodegradation process. The present work fabricated series of visible light driven photocatalysts with various structures. The microstructure properties and the photocatalytic activities of the prepared photocataltst were measured by means of characterization methods. This work has valuable exploration in theory and practical application. The main points of the present work could be summarized as follows:
     In this paper, the TiO2/rectorite composites were successfully prepared by a facile and low-cost sol-gel technique at low temperature, Ag-AgCl particles were then loaded on the TiO2/rectorite to obtain the Ag-AgCl-TiO2/rectorite composite. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (HRTEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (Raman) and UV-vis diffuse reflectance spectrum (UV-vis DRS). The photocatalytic activities of the as-prepared photocatalysts were evaluated by the degradation of acid red G (ARG) and4-nitrophemol (4-NP) in aqueous solution under visible light irradiation. The relationship between the photocatalytic activity and the structural features of the prepared catalysts was investigated through a systematic characterization analysis. A possible photocatalytic mechanism was discussed through UV-vis spectrum analysis and active species analysis in the photocatalytic reaction. The results indicated that the photoreduction method can reduce partial ions to Ag0species, which can effectively improve the absorption of visible light. And the clay as the supports of the composites can improve the adsorption capacity of organic pollutants. Therefore, this paper explores a new way to prepare a visible light responsive photocatalyst with high adsorption.
     Conventional TiO2photocatalyst requires near-ultraviolet irradiation for effective photocatalysis and difficult to separate from aqueous solutions thereby severely limiting its practical application. At first, TiO2immobilized on attapulgite was prepared by sol-gel method, and then deposited Ag-AgCl on the surface of TiO2/attapulgite by a precipitation and photoreduction method to obtain the Ag-AgCl-TiO2/attapulgite photocatalyst. The composite were characterized by some characterization methods. The prepared photocatalyst exhibits an efficient visible light photocatalytic activity for degradation of Rhodamine B and has a higher adsorption and photocatalytic activity than the Ag-AgCl and TiO2/attapulgite powders under the same condition. The experiments confirmed the composite was beneficial to enhancing the adsorption activity and the utilization of sunlight, which has a beneficial effect on the practical application of photocatalytic technology.
     Ag-AgBr/clay composite was synthesized and characterized by XRD, SEM, TEM, XPS and UV-vis DRS methods. And the strategy for the fabrication of Ag-AgBr/clay composite was proposed. The visible light driven photocatalytic activity of this composite material was investigated by the photocatalytic decomposition of azo dyes and the photocatalytic mechanism of the reaction was also discussed. It was obvious that the photocatalytic activity of Ag-AgBr/clay was higher than that of Ag-AgBr under the same conditions. The results indicate that the surface plasmon resonance of Ag can enhance the visible light adsorption of photocatalyst. The clay function as a substrate for Ag-AgBr particles can stabilized photocatalyst to avoid catalyst loss and thus improve the utilization of the catalyst. Moreover, the specific surface area, the active sites, the separation of electron-holes and the adsorption properties are improved by the carrier. The performance photocatalytic activity of the composite can be attributed to the synergetic effect of the visible light adsorption of the plasmon materials and the large specific surface area of the clay.
引文
[1]Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode [J]. Nature,1972,238 (5789):37-38.
    [2]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J]. Bull. Environ. Contam. Toxicol.,1976,16 (6): 697-701.
    [3]高濂,郑珊,张青红.纳米氧化钛光催化材料应用[M].北京:化学工业出版社,2002.
    [4]胡春,王怡中,汤鸿宵.多相光催化氧化的理论与实践进展[J].环境科学进展,1995,3(1):55-64.
    [5]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. C,2000,1 (1):1-21.
    [6]Vorontsov A V, Stoyanova I V, Kozlov D V. Kinetica of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide [J]. J. Catal,2000,189 (2):360-369.
    [7]Li F B, Li, X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-Ti02 suspension for odor control [J]. Appl. Catal. B,2004,48 (3):185-194.
    [8]Nagaveni K, Sivalingam G, Hegde M S, et al. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2 [J]. Environ. Sci. Technol.,2004,38 (5):1600-1604.
    [9]Einaga H, Ibusuki T, Futamura. S. Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds [J]. Environ. Sci. Technol.,2004,38 (1): 285-289.
    [10]李园园.铋系光催化剂纳米-微米结构的制备、修饰及可见光催化性能的研究[D].武汉:华中师范大学,2009.
    [11]Goslich R, Dillert R, Bahnemann D. Solar water treatment:principles and reactors [J].Water Sci. Technol.,1997,35 (4):137-148.
    [12]Marta I L. Heterogeneous photocatalysis:Transition metal ions in photocatalytic systems [J]. Appl. Catal. B:Environ,1999,23 (2-3):89-114.
    [13]Minero C, Pelizzetti E, Malato S, et al. Large solar plant photocatalytic water decontamination:Effect of operational parameters [J]. Sol. Energ.,1996,56 (5):421-428.
    [14]Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414 (6864):625-627.
    [15]Kudo A, Kato H, Nakagawa S. Water splitting into H2 and O2 on new Sr2M2O7 (M=Nb and Ta) photocatalysts with layered perovskite structures:factors affecting the photocatalytic activity [J]. J. Phys. Chem. B.,2000,104 (3):571-575.
    [16]Kato H, Kudo A. Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts [J]. Catal. Today.,2003,78 (1-4):561-569.
    [17]Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2 [J]. J. Chem. Phys. Lett.,1998,295 (5-6):487-492.
    [18]Kato H, Kudo A. Efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts [J]. Catal. Lett.,1999,58 (2-3):153-155.
    [19]Kato H, Kudo A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A=Li, Na, and K) [J]. J. Phys. Chem. B.,2001,105 (19):4285-4292.
    [20]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95 (1):69-96.
    [21]黄汉生.日本抗菌、防霉剂的开发与应用近况[J].现代化工,1997,17(11):40-42.
    [22]Kikuchi Y, Sunada K, Iyoda T. Photocatalytic bactericidal effect of TiO2 thin films:dynamic view of the active oxygen species responsible for the effect [J]. J. Photochem. Photobiol., A:Chem.,1997,106 (1-3):51-56.
    [23]Cheng S F, Tsai S J, Lee Y F. Photocatalytic decomposition of phenol over titanium oxide of various structures [J]. Catal. Today.,1995,26 (1):87-96.
    [24]Zhang X, Ai Z H, Jia F L, et al. Selective synthesis and visible light photocatalytic activities of BiVO4 with different crystalline phases [J]. Mater. Chem. Phy.,2007,103 (1):162-167.
    [25]李长青.Bi2O3和Bi2Sn2O7粉体的微乳液法制备、表征及其性质的研究[D].福建:福州大学物理化学系,2004.
    [26]Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterization of quantum-size titanium dioxide [J]. J. Phys. Chem.,1988,92 (18):5196-5201.
    [27]伍彦.新型光催化剂粉体和薄膜的制备及表征[D].北京:清华大学化学系,2007.
    [28]五岳.催化化学[M].北京:科学出版社,1998:1340-1341.
    [29]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chem. Soc. Rev.,2009,38 (1):253-278.
    [30]范小江,唐建军,邹原,等.TiO2可见光催化的研究进展[J].应用化工,2008,37(10):1221-1225.
    [31]顾德恩,杨邦朝,胡永达.非金属元素掺杂TiO2的可见光催化活性研究进展[J].功能材料,2008,39(1):1-5.
    [32]张雪峰,李会容,闰眠.TiO2可见光光催化的研究进展[J].电子元件与材料,2008,27(9):40-44.
    [33]俞娇仙,刘素文,修志亮,等.非金属离子掺杂TiO2的可见光光催化性能研究[J].材料导报,2007,21(F11):74-76.
    [34]Anandim S, Vinu A, Mori T, et al. Photcatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension [J]. Catal. Commun.,2007,8 (9):1377-1382.
    [35]Choi W, Termin A, Hoffinan M R. The role of metal ion dopants in quantum-sized TiO2 correction between photoreactivity and charge C [J]. J. Phys. Chem.,1994,98 (51): 13669-13679.
    [36]Li X Z, Li F B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for wastewater treatment [J]. Environ. Sci. Technol.,2001,35 (11):2381-2387.
    [37]Hirakawa T, Kamat P V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation [J]. J. Am. Chem Soc.,2005,127 (11): 3928-3934.
    [38]Subramanian V, Wblf E E, Kamat R V. Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the Fermi level equilibration [J]. J. Am. Chem. Soc.,2004,126 (15): 4943-4950.
    [39]EgertonT A, Martinson J A. The influence of platinum on UV and visible photocatalysis by rutile and Degussa P25 [J]. J. Photochem. Photobiol. A,2008,194 (2-3):283-289.
    [40]Fu X Z, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts [J]. Appl. Catal. B:Environ,1995,6 (3): 209-224
    [41]Malagutti A R, Mourao H A J L, Garbin J R, et al. Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes [J]. Appl. Catal. B,2009,90 (1-2):205-212.
    [42]Cao Y A, Zhang X T, Yang W S, et al. A bicomponent TiO2/SnO2 particular film for photocatalysis [J]. Chem. Mater.,2000,12 (11):3445-3448.
    [43]Ho W, Yu J C, Lin J, et al. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmiur,2004,20 (14):5865-5869.
    [44]Regan B Q, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353 (6346):737-740.
    [45]黄雪梅,王苑娜,成晓玲,等.二氧化钛可见光光催化技术研究进展[J].材料导报,2008,22(Z2):47-51.
    [46]付宁,吕功煊.杂多蓝在可见光照射下对Ti02的光敏作用研究[J].化学学报,2007,65(14):1325-1332.
    [47]胡将军.光催化氧化处理有机废水[J].环境污染与防治,2000,22(1):31-32.
    [48]Cheng S F, Tsai S J, Lee Y F. Photocatalytic decomposition of phenol over titanium oxide of various structures [J]. Catal. Today,1995,26 (1):87-96.
    [49]Zhang X, Ai Z H, Jia F L, et al. Selective synthesis and visible light photocatalytic activities of BiVO4 with different crystalline phases [J]. Mater. Chem. Phy.,2007,103 (1):162-167.
    [50]叶庆国.光催化氧化法降解丁醛废水[J].青岛化工学院学报,2000,21(3):206-208.
    [51]姚琦,汪昌秀,赵连强.世界稀有矿物“累托石”介绍[J].矿产与地质,2001,15(4):264-267.
    [52]Brindley G W. Allevardite, a swelling double-layer mica mineral [J]. Am. Mineral.,1956,41 (1-2):91-103.
    [53]曾德芳.改性累托石/壳聚糖复合絮凝剂的研制与应用研究[D].武汉:武汉理工大学,2006.
    [54]张小庆.累托石的改性及在废水处理中的应用[D].西安:西北工业大学,2003.
    [55]Xiao J R, Peng T Y, Dai K, et al. Hydrothermal synthesis, characterization and its photoactivity of CdS/rectorite nano-composites [J]. J. Solid State Chem.,2007,180 (11): 3188-3195.
    [56]Hong H L, Jiang W T, Zhang X L, et al. Adsorption of Cr(Ⅵ) on STAC-modified rectorite [J]. Appl. Clay Sci.,2008,42 (1-2):292-299.
    [57]Huang Y, Ma X Y, Liang G Z, et al. Adsorption of phenol with modified rectorite from aqueous solution [J]. Chem. Eng. J.,2008,141 (1-3):1-8.
    [58]余海霞,张泽强,谢恒星.载银型抗菌累托石的制备及其性能[J].武汉化工学院学报,2003,25(1):46-48.
    [59]樊国栋,沈茂.凹凸棒黏土的研究及应用进展[J].化工进展.2009,28(1):99-104.
    [60]周杰,刘宁,李云,等.凹凸棒黏土的显微结构特征[J].硅酸盐通报,1999,18(6):50-55.
    [61]Galan E. Properties and applications of palygorskite-sepiolite clays [J]. Clay Mineral,1996, 31 (4):443-453.
    [62]陈天虎,王健,庆承松,等.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报,2006,34(11):1406-1410.
    [63]马玉恒,方卫民,马小杰.凹凸棒黏土研究与应用进展[J].材料导报,2006,20(9):43-46.
    [64]郑茂松,王爱琴,詹庚申.凹凸棒石黏土应用研究[M].北京:化学工业出版社,2007,53-60.
    [65]全球辅料网http://www.texlogo.com/News.asp?ID=11672 [EB/OL].2005-8-1.
    [66]蔡元峰.链层状矿物-坡缕石的酸溶解、吸附和解吸附的表面矿物学机理[D].南京:南京大学,2004.
    [67]赵彩荣,范文元.利用凹凸棒石粘土吸附处理含铬废水[J].化工环保,1989,9(4):248-249.
    [68]宋磊,陈天虎,李云霞,等.凹凸棒石负载的Cu-Mn-Ce催化剂上甲苯氧化反应性能[J].催化学报,2011,32(4):652-656.
    [69]胡发社,程海丽,杨飞华,等.坡缕石型载银抗菌剂的研制[J].现代化工,2001,21(6):35-37.
    [70]尚静,徐自力,杜尧国,等.TiO2纳米粒子的结构、表面特性及其光催化活性的研究[J].无机材料学报,2011,11(6):1211-1216.
    [71]沈伟韧,赵文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-359.
    [72]陈天虎,徐惠芳,彭书传,等.凹凸棒石与酸反应纳米尺度研究-反应机理和表面积变化[J].高校地质学报,2004,10(1):98-105.
    [73]王连军,黄中华,孙秀云,等.改性凹凸棒土处理染化废水研究[J].南京理工大学学报,1998,22(3):240-243.
    [74]尹琳,陆现彩,艾飞.Ti-凹凸棒石催化剂对染料废水的臭氧氧化降解的影响[J].硅酸盐学报,2003,31(1):67-69.
    [75]许坤,姜兆春,贾智萍.粉末凹凸棒石对水溶性阳离子染料废水的脱色研究[J].环境化学,1998,17(3):276-279.
    [76]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2004:17-21.
    [77]Zhang Z, Wang C C, Zakaria R. Role of particle size in nanocrystafine TiO2-based photocatalysts [J].Phys. Chem. B,1998,102 (52):10871-10878.
    [78]Uchida H, Itoh S, Yoneyama H. Photocatalytic decomposition of propyzamide using TiO2 supported on activated carbon [J]. Chem Lett,1993,4 (12):1995-1998.
    [79]Kumar K-N P. Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites [J]. Scripta Matallurgica,1995,32 (6):873-877.
    [80]尹琳,陆现彩,艾飞.Ti凹凸棒石催化剂对染料废水的臭氧氧化降解的影响[J].硅酸盐学报.2003,31(1):66-69.
    [81]Haydn H M. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview [J]. Appl. Clay Sci.,2000,17 (5-6):207-221.
    [82]Sterte J. Synthesis and properties of titanium oxide cross-linked montmorillonite [J]. Clays Clay Miner.1996,34 (6):658-664.
    [83]Schoonheydt R A, Pinnavaia T J, Lagaly G, et al. Pillared clays and pillared layered solids [J]. Pure Appl. Chem.,1999,71 (12):2367-2371.
    [84]丁红燕,周广宏,林岳宾.热处理温度对TiO2/凹凸棒石粘土复合催化剂性能的影响[J].材料热处理学报,2008,29(2):18-21.
    [85]徐惠,徐增辉,景文甲,等.凹凸棒/TiO2复合材料对苯酚的光催化性能研究[J].甘肃科学学报,2010,22(4):66-68.
    [86]温勇,徐玲玲,沈艳华,等.TiO2柱撑粘土纳米功能材料制备研究[J].材料科学与工程学报.2003,21(6):865-868.
    [87]孙家寿,陈金毅,刘宇,等.累托石/TiO2复合材料的制备及其光催化性[J].武汉工程大学学报,2010,32(9):58-62.
    [88]谢毅.TiO2/累托石复合材料的制备及光降解酸性红B染料废水研究[D].武汉:武汉理工大学环境工程,2004.
    [89]Bu X Z, Zhang G K, Gao Y Y, et al. Preparation and photocatalytic properties of visible light responsive N-doped TiO2/rectorite composite [J]. Microporous and Mesoporous Mater., 2010,136(1-3):132-137.
    [90]EI-Sayed I H, Huang X, EI-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer [J]. Nano Lett.,2005,5 (5):829-834.
    [91]Liang H P, Wan L J, Bai C L, et al. Gold hollow nanospheres:tunable surface plasmon resonance controlled by interior-cavity sizes [J]. J. Phys. Chem. B,2005,109 (16): 7795-7800.
    [92]Jian Z, Zhao J W, Wang Y C. Influence of surface charge density on the plasmon resonance modes in gold nanoellipsoid [J]. Physica B:Condens. Matter,2004,353 (3-4):331-335.
    [93]Wei G, Zhou H L, Li u Z G, et al. One-step synthesis of silver nanoparticles, nanorods and nanowires on the surface of DNA network [J]. J. Phys. Chem. B,2005,109 (18): 8738-8743.
    [94]Moskovits M. Surface enhanced spectroscopy [J]. Rev. Mod. Phys.,1985,57 (3):783-826.
    [95]Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering[J]. Phys. Rev. Lett.,1997,78 (9):1667-1670.
    [96]Tayon T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes [J]. Science,2000,289 (5485):1757-1760.
    [97]Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide [J]. J. Am. Chem. Soc,2008,130 (5): 1676-1680.
    [98]Sun S M, Wang W Z, Zhang L, et al. Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst [J]. Catal. Commun.,2009,11 (4):290-293.
    [99]Bi Y P, Ye J H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction [J]. Chem. Commun.,2010,46 (9):1532-1534.
    [100]Karunakaran C, Rajeswari V, Gomathisanker P. Combustion synthesis of ZnO and Ag-doped ZnO and their bactericidal and photocatalytic activities [J]. Superlattices Microstruct.,2011,50 (3):234-241.
    [101]曹锡章,宋天佑,王杏乔,无机化学[M].高等教育出版社,1992.
    [102]刘只欣,卤化银复合纳米二氧化钛可见光催化剂的研究[D].北京:北京化工大学,2010.
    [103]王朋,表面等离子体增强AgX(X=Cl, Br, I)及其复合光催化材料的制备、表征和光催化性能研究[D].山东:山东大学,2010.
    [104]Wang P, Huang B B, Qin X Y, et al. Ag@AgCl:A highly efficient and stable photocatalyst active under visible light [J]. Angew. Chem.2008,120,8049-8051.
    [105]Wang P, Huang B B, Zhang X Y, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr [J]. Chem. Eur. J.2009,15 (8):1821-1824.
    [106]Kuai L, Geng B Y, Chen X T, et al. Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst [J]. Langmuir,2010, 26(24):18723-18727.
    [107]Zang Y J, Farnood R. Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation [J]. Appl. Catal. B:Envir.,2008,79 (4):334-340.
    [108]Yu J G, Dai G P, Huang B B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. J. Phys. Chem. C 2009,113 (37):16394-16401.
    [109]Kakuta N, Goto N, Ohkita H, et al. Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution [J]. J. Phys. Chem. B,1999,103 (29):5917-5919.
    [110]Hu C, Peng T W, Hu X X, et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation [J]. J. Am. Chem. Soc.2010,132 (2): 857-862.
    [111]Zhang Y L, Deng L J, Zhang G K, et al. Facile synthesis and photocatalytic property of bicrystalline TiO2/rectorite composites [J]. Colloids and Surf., A.,2011,384 (1-3): 137-144.
    [112]Zhang G K, Liu Y, Xie Y, et al. Zinc adsorption on Na-rectorite and effect of static magnetic field on the adsorption [J]. Appl. Clay Sci.,2005,29 (1):15-21.
    [113]王幸宜.催化剂表征[M].广州:华东理工大学出版社,2008,23-143.
    [114]刘剑虹,刘刚,李杰森,等.砚石的X射线能谱分析[J].云南师范大学学报,2003,23(4):50-51.
    [115]Wang X Y, Guo G Q, Nie X W, et al. Cytochemical localization of cellulase activity in pollen mother cells of david lily during meiotic prophase I and its relation to secondary formation of plasmodesmata [J]. Photoplasma,1998,204 (3-4):128-138.
    [116]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社,2005:206-210.
    [117]王中林.纳米材料表征[M].北京:化学工业出版社,2005:10-156.
    [118]方惠群.仪器分析[M].北京:科学出版社,2002:1-251.
    [119]An T C, Chen J X, Li G Y, et al. Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts degradation of decabromodiphenyl ether (BDE 209) [J]. Catal. Today.,2008,139 (1-2):69-76.
    [120]Nishiyama T, Shimoda S. Ca-bearing rectorite from Tooho mine, Japan [J]. Clays Clay Miner.,1981,29 (3):236-240.
    [121]Pottier A, Chaneac C, Tronc E, et al. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media [J]. J. Mater. Chem.,2001,11 (4): 1116-1121.
    [122]Zhang G K, Ding X M, He F S, et al. Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite [J]. Langmuir,2008,24(3):1026-1030.
    [123]Xua Y G, Xu H, Li H M, et al. Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO [J]. J. Alloys Compd.2011,509 (7):3286-3296.
    [124]Wang C H, Shao C L, Liu Y C, et al. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning [J]. Scripta Mater.2008,59 (3):332-335.
    [125]Cheng B, Le Y, Yu J G. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires [J]. J. Hazard. Mater.2010,177 (1-3):971-977.
    [126]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-Ray Photoelectron spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data [M], Physical Electronics Press, Boston,1995.
    [127]Kumbhar A S, Kinnan M K, Chunmanov G. Multipole plasmon resonances of submicron silver particles [J]. J. Am. Chem. Soc.,2005,127 (36):12444-12445.
    [128]Schatz G C. Theoretical studies of surface enhanced Raman scattering [J]. Acc. Chem. Res., 1984,17 (10):370-376.
    [129]Kerker M. Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids [J]. Acc. Chem. Res.,1984,17 (8):271-277.
    [130]Ueba H. Theory of charge transfer excitation in surface enhanced Raman scattering [J]. Surf. Sci.,1983,131 (2-3):347-366.
    [131]Otto A. Surface enhanced Raman scatting of adsorbates [J]. J. Raman Spectrosc.,1991,22 (12):743-752.
    [132]Kerker M, Blatchfors C G. Elastic scatting, absorption, and surface-enhanced Raman scatting by concentric spheres comprised of a metallic and a dielectric region [J]. Phys. Rev. B.,1982,26 (8):4052-4063.
    [133]Liu Y, Liu C Y, Zhang Z Y, et al. The surface enhanced Raman scattering effects of composite nanocrystals of Ag-TiO2 [J]. Spectrochim. Acta, Part A,2001,57 (1):35-39.
    [134]Honma I, Sano T, Komoyama H. Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in silver-cadmium sulfide hybrid particles [J]. J. Phys. Chem. A,1993,97 (25):6692-6695.
    [135]金芸,游革新.印染废水处理新进展[J].武汉科技学院学报,2005,18(9):50-52.
    [136]Spain J C. Biodegradation of nitro-aromatic compounds [J]. Ann. Rev. Microbiol,1995, (49):523-555.
    [137]Karin K, Gupta S K, Effects of alternative carbon sources on biological transformation of nitrophenols [J]. Biodegradation,2002,13 (5):353-360.
    [138]Donlon B A, Razo-Flares E, Lettiga G, et al. Continuous detoxifieation, transformation and degradation of nitrophenol in upflow anaerobic sludge blanket (UASB) reactors [J]. Biotech. Bioeng.,1996,51 (4):439-449.
    [139]EPA (Environmental Proteetion Ageney),1980. Ambient water quality for nitrophenols. EPA-44015 80-063, Washington, DC, USA.
    [140]邹曦.K2Nb4011的制备、掺Cu改性及其光催化降解酸性红G的研究[D].武汉:武汉理工大学环境工程,2006.
    [141]Zhang G K, Zou X, Gong J, et al. Preparation and photocatalytic property of potassium niobate K6Nb10.8O30 [J]. J. Alloys Compd.2006,425 (1-2):76-80.
    [142]Feng J Y, Hu X J, Yue P L, et al. A novel laponite clay-based Fe nanocomposite and its photo-catalytic acitvity in photo-assisted degradation of Orange Ⅱ [J]. Chem. Eng. Sci., 2003,58 (3-6):679-685.
    [143]Feng J Y, Hu X J, Yue P L, et al. Degradation of azo-dye orange Ⅱ by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst [J]. Ind. Eng. Chem. Res.,2003,42 (10):2058-2066.
    [144]Fernandez J, Bandara J, Lopez A, et al. Photoassisted fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes [J]. Langmuir,1999,15 (1):185-192.
    [145]Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres [J]. Environ. Sci. Technol.,2008,42 (13):4902-4907.
    [146]Zumeta I, Diaz D, Santiago P. Synthesis of TiO2 nanoparticles with narrow size distribution and their evaluation in the photocatalytic oxidative degradation of bis(4-nitrophenyl) phosphate [J]. J. Phys. Chem. C,2010,114 (26):11381-11389.
    [147]黄卫红,杨丹,阮介兵,等.光催化与Fenton试剂对硝基苯酚降解的研究[J].环境科学与技术.2010,33(12):71-75.
    [148]Lee K Y, Lee Y W, Lee J H, et al. Effect of ligand structure on the catalytic activity of Au nanocrystals [J]. Colloids Sur., A,2010,372 (1-3):146-150.
    [149]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J]. Electrochem. Commun.,2000,2 (3): 207-210.
    [150]Hirakawa T, Nosaka Y. Properties of O2-and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions [J]. Langmuir,2002,18 (8):3247-3254.
    [151]Huang H J, Li D Z, Lin Q, et al. Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation [J]. Environ. Sci. Technol.,2009,43 (11):4164-4168.
    [152]He Y H, Li D Z, Xiao G C, et al. A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation [J]. J. Phys. Chem. C,2009, 113 (13):5254-5262.
    [153]Barreto J C, Smith G S, Strobel N H P, et al. Terephthalic acid:a dosimeter for the detection of hydroxyl radicals in vitro [J]. Life Sci.,1994,56 (4):PL89-PL96.
    [154]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J]. Electrochem. Commun.,2000,2 (3): 207-210.
    [155]Stylidi M, Kondarides D, Verykios X. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions [J]. Appl. Catal. B:Environ.,2004,47 (3): 189-201.
    [156]Bandara J, Kiwi J. Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dyes orange Ⅱ [J]. New J. Chem.,1999, 23 (7):717-724.
    [157]Li W, Zhao S, Qi B, et al, Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition [J]. Appl. Catal. B,2009,92 (3-4):333-340.
    [158]Li W J, Li D Z, Meng S G, et al. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites [J]. Environ. Sci. Technol.,2011,45 (7):2987-2993.
    [159]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95 (3):735-758.
    [160]Torimoto T, Ito S, Kuwabata S, et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide [J]. Environ. Sci. Technol., 1996,30(4):1275-1281.
    [161]Zhang Y L, Wang D J, Zhang G K. Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature [J]. Chem. Eng. J.,2011,173 (1): 1-10.
    [162]Wang P, Huang B B, Lou Z Z, et al. Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures [J]. Chem. Eur. J.,2010,16 (2):538-544. [163] Li Y Z, Zhang H, Guo Z M, et al. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst [J]. Langmiur,2008,24 (15):8351-8357.
    [164]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem.,1985,57 (4):603-619.
    [165]Pan J M, Zou X H, Wang X, et al. Selective recognition of 2,4-dichlorophenol from aqueous solution by uniformly sized molecularly imprinted microspheres with β-cyclodextrin/attapulgite composites as support [J]. Chem. Eng. J.,2010,162 (3): 910-918.
    [166]王建强,辛柏福,于海涛,等.二氧化钛系列光催化剂的拉曼光谱[J].高等学校化学学报,2003,24(7):1237-1240.
    [167]温艳媛,丁旵明.Ag@AgCl修饰的锐钛矿相TiO2纳米管的制备及其光催化性能[J].催化学报,2011,32(1):36-45.
    [168]Wang X F, Li S F, Ma Y Q, et al. H2WO4-H2O/Ag/AgCl composite nanoplates:a plasmonic z-scheme visible-light photocatalyst [J]. J. Phys. Chem. C,2011,115 (30):14648-14655.
    [169]仰榴青.国产凹凸棒土的研究[J].江苏理工大学学报,1995,16(1):55-60.
    [170]严继民,张启元.吸附与絮凝:固体表面与孔[M].北京:科学出版社,1979:113-117.
    [171]陈天虎.苏皖凹凸棒石粘土纳米尺度矿物学及地球化学[D].合肥:合肥工业大学,2003:103-105.
    [172]Glaus S, Calzaferri G. The band structure of the silver halides AgF, AgCl, and AgBr:a comparative study [J]. Photochem. Photobiol. Sci.,2003,2:398-401.
    [173]Legrini O, Oliveros E, Braun A M. Photochemical process for water treatment [J]. Chem. Rev.,1993,93 (2):671-698.
    [174]Chen Y X, Wang K, Lou L P. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation [J]. J. Photochem. Photobiol A.,2004,163 (1-2):281-287.
    [175]Colon G, Hidalgo M C, Navio J A. Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid [J]. J. Photochem. Photobiol. A.,2001,138 (1):79-85.
    [176]Sopyan I, Watanabe M, Murasawa S, et al. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder:photocatalytic activity and long-term stability [J]. J Electroanal Chem.,1996,415 (1-2):183-186.
    [177]汪立文,李耀中,周岳溪.负载型TiO2固定相光催化氧化剂固定化技术研究[J].工业水处理,2000,20(9):8-11.
    [178]谢晶曦.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,1987,39-57.
    [179]Buxton G V, Greenstock C L, Helman W P, et al. Rate constants of OH radical [J]. J. Phys. Chem. Ref. Data.,1988,17:513-886.
    [180]Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 [J]. J. Phys. Chem. B,2005,109 (47):22432-22439.
    [181]Maning L E, Kramer M K, Foote C S. Interception of O2·- by benzoquinone in cyanoaromatic-sensitized photooxygenations [J]. Tetrahedron Lett.,1984,25 (24): 2523-2526.
    [182]Kawahara K, Suzuki K, Ohko Y, et al. Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism [J]. Phys. Chem. Chem. Phys., 2005,7 (22):3851-3855.
    [183]张庆庆,汤斌.胶体氯化银抗菌膜的制备及其光催化抗菌特性[J].南京理工大学学报,2004,28(5):547-551.
    [184]李国平,李杰,罗运军AgBr纳米簇:PAMAM树形分子模板法制备及其光催化性能[J].无机化学学报,2007,23(2):253-257.
    [185]Wang P, Huang B B, Qin X X, et al. Ag@AgCl:a highly efficient and stable photocatalyst active under visible light [J]. Angew. Chem. Int. Ed.,2008,41:7931-7934.
    [186]RodriguesS, Uma S, Martyanov I N, et al. AgBr/Al-MCM-41 visible light photocatalyst for gas-phase decomposition of CH3CHO [J]. J. Catal.,2005,233 (2):405-410.
    [187]Lan Y Q, Hu C, Hu X X, et al. Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation [J]. Appl. Catal., B,2007,73 (3-4):354-360.
    [188]Zhou X F, Hu C, Hu X X, et al. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation [J]. J. Phys. Chem. C,2010,114 (6): 2746-2750.
    [189]彭书传,谢晶晶,庆承松,等.负载TiO2凹凸棒石光催化氧化法处理酸性品红染料废水[J].硅酸盐学报,2006,34(10):1208-1212.
    [190]周广宏,韩涛,丁红燕,等.纳米TiO2/凹凸棒土复合体的制备及其表征[J].煤炭学报,2007,32(3):314-316.
    [191]Zhao D F, Zhou J, Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts [J]. Mater. Sci. Eng., A,2006,431 (1-2):256-262.
    [192]陈菊霞.不同方法制备负载型TiO2/凹凸棒石催化剂及性能研究[D].合肥:合肥工业大学,2008
    [193]Cao E, Bryant R, Willianms D J A. Electrochemical properties of Na-palygorskite [J]. J. Colloids Interface Sci.,1996,179 (1):143-150.
    [194]Augsburger M S, Strasser E, Perino E, et al. FTIR and Mossbauer investigation of a substituted palygorskite silicate with a channel structure [J]. J. Phys. Chem. Solids.,1998, 59(2):175-180.
    [195]岳莉,赖仕全,薛晓茜,等.凹凸棒粘土负载WO3催化环戊烯环氧化[J].工业催化,2010,18(2):54-58.
    [196]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray photoelecron spectroscopy [M]. Boston:Perkin-Elmer Corporation Physical Electronics Press:1992.
    [197]袁志好,孙永昌,王玉红,等.铁酸锌掺杂对二氧化钛结构相变及光催化性能的影响[J].高等学校化学学报,2004,25(10):1875-1878.
    [198]何颖.纳米AgBr-PMMA复合材料的制备与表征[D].长春:长春光学精密机械学院,2001.
    [199]Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Synergetic effect of Bi2WO6 photocatalyst with C6o and enhanced photoactivity under visible irradiation [J]. Environ. Sci. Technol., 2007,41 (17):6234-6239.
    [200]Zhao W, Chen C, Li X, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional co-catalyst [J]. J. Phys. Chem. B,2002,106 (19):5022-5028.
    [201]Chen C C, Zhao W, Li J, et al. Formation and identification of intermediates visible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO2 dispersion [J]. Environ. Sci. Technol.,2002,36 (16):3604-3611.
    [202]Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products [J]. Environ. Sci. Technol.,2008,42 (6):2085-2091.
    [203]Sun S M, Wang W Z, Zhang L, et al. Visible light induced efficient contaminant removal by Bi5O7I [J]. Environ. Sci. Technol.,2009,43 (6):2005-2010.
    [204]He Y, Zhu Y F, Wu N Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance [J]. J. Solid State Chem.,2005,177 (1):3868-3872.
    [205]Xiao Q, Si Z C, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline [J]. J. Hazard. Mater.,2008,150 (1):62-67.
    [206]Palominos R, Freer J, Mondacab M A, et al. Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine [J]. J. Photochem. Photobiol., A,2008, 193(2-3):139-145.
    [207]Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles [J]. J. Am. Chem. Soc.,2005,127 (20): 7632-7637.
    [208]Li G T, Wong K H, Zhang X W, et al. Degradation of acid orange 7 using magnetic AgBr under visible light:the roles of oxidizing species [J]. Chemosphere,2008,76 (9): 1185-1191.
    [209]Cao J, Luo B D, Lin H L, et al. Synthesis, Characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst [J]. J. Mol. Catal. A:Chem.,2011,344 (1-2): 138-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700