碳基复合纳米纤维的制备、表征及电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器与电池相比具有更高的功率密度、更长的循环寿命以及更快的充放电性能,其电容大小主要取决于可以被电解质离子浸润的电极比表面积的大小、孔径的大小和孔隙率的高低。静电纺丝法可以制备具有多孔结构的碳纳米纤维或碳复合纳米纤维电极材料,这种材料具有高的比表面积和孔隙率、能耐高温、导电性好和较好的循环稳定性,可以直接用做超级电容器的电极材料,不需要添加任何导电剂和粘合剂。本文主要制备超级电容器的电极材料。
     本论文通过静电纺丝法制备了聚丙烯腈基前驱体复合纳米纤维,并经高温锻烧后得到碳基复合纳米纤维。采用X射线衍射仪、扫描电镜、热重分析仪和N2吸附脱附等方法对材料样品晶体结构、表面形貌、热稳定性和孔结构等进行了分析研究。利用循环伏安法和恒电流充放电法对电极材料的电化学性能进行了测试分析。具体研究内容如下:
     1、利用静电纺丝法制备了PAN/PVP/Cu(OAc)2前驱体复合纳米纤维,经高温锻烧后得到C/Cu复合纳米纤维。采用Box-Benhken试验设计对PAN、PVP和Cu(OAc)2三者间的配比与电容的关系进行响应面分析,结果发现最优比例为76:14:10。利用CO2对上述样品进行活化处理,结果发现当样品在碳化温度为800oC,碳化时间6h,活化时间30min时,所得C/Cu复合纳米纤维的比表面积和孔体积均最大,分别为926m2/g和0.318cm3/g。电化学性能研究表明,C/Cu复合纳米纤维的比容量在KOH中可达182F/g (电流密度5A/g)。当电解质为BMIMBF4/AC时,C/Cu复合纳米纤维的能量密度和功率密度可达12.5Wh/Kg和2530W/Kg。
     2、通过静电纺丝法制备了PAN/Cu(OAc)2/CNTs前驱体复合纳米纤维,经高温锻烧后得到C/Cu/CNTs复合纳米纤维。当碳纳米管含量为0.5%时,C/Cu/CNTs复合纳米纤维的比表面积和孔体积最大,分别为943m2/g和0.439cm3/g。电化学结果表明:复合纳米纤维中CNTs含量为0.5%,电解质为KOH时,比容量可达207F/g(电流密度为5A/g),能量密度可达2.6Wh/Kg。电解质为BmimBF4/AC时,比容量为160F/g,能量密度可达16.6Wh/Kg。
     3、通过静电纺丝法制备了C/Co和C/Co/CNTs复合纳米纤维。实验结果表明:C/Co/CNTs复合纳米纤维比表面积和孔体积分别为771m2/g和0.347m3/g,与C/Co复合纳米纤维相比,分别提高了53%和35%。电化学测试表明:C/Co/CNTs复合纳米纤维在电解质为KOH,电流密度为5A/g时时测得的比电容为173F/g,在BMIMBF4/AC中的能量密度为8.9Wh/Kg,与C/Co复合纳米纤维相比分别提高了14%和324%。
     4、通过静电纺丝法制备了C/Ni和C/Ni/CNTs复合纳米纤维。实验结果表明:C/Ni/CNTs复合纳米纤维的比表面积和孔体积分别为705m2/g和0.332m3/g,与C/Ni复合纳米纤维相比,分别提高了61%和56%。电化学测试表明: C/Ni/CNTs复合纳米纤维在电解质为KOH中表现出法拉第准电容效应,比电容为186F/g,在BMIMBF4/AC中的能量密度为18.2Wh/Kg,与C/Ni复合纳米纤维相比容量提高了37%,能量密度提高了约16倍。
Supercapacitor has high power density, long cyclelife and rapid charging/discharging capacity. Thecapacitance mainly depends on pore size, porosity and surface area which can be accessed by electrolyte.Electrospinning can be used to prepare porous carbon nanofiber or carbon composite nanofiberselectrode material, which has high surface area, good conductivity properties, cycle stability and hightemperature resistance and can be used directly as electrode material without adding any binders.
     PAN-based composite nanofiber was prepared by electrospinng, and then carbon based compositednanofiber was obtained after calcination at high temperature. XRD, SEM, TGA and N2adsorption anddesorption were used to characterize crystal structure, surface morphology, thermal stability and porestructure, respectively. The performance of an electrochemical capacitor can be characterized bygalvanostatic and cyclic voltammetry methods. The detailed contents are as follows:
     1. C/Cu was obtained from PAN/PVP/Cu(OAc)2nanofibers prepared by electrospinning aftercarbonization process. Box-Benhken design method and Response Surface Analysis were empolyed tooptimize the ratio of the components, which was76:14:10. The highest surface area and pore volume of926m2/g and0.318cm3/g were obtained when C/Cu composite nanofibers were further activated withCO2at800oC for30min. The electrochemical test showed that the capacitance of182F/g (5A/g inKOH,) was obtained which was increased by102%compared with carbon nanofibers.Power density(2530W/Kg) and energy density (12.5Wh/Kg) were about2300%and28%higher than that of carbonnanofibers in BMIMBF4/AC.
     2. C/Cu/CNTs was obtained from PAN/PVP/Cu(OAc)2nanofibers prepared by electrospinning aftercarbonization process. With the addition of0.5%CNTs, the specific surface area and pore volumereached the maximum of943m2/g and.439cm3/g, respectively. The specific capacitance and energydensity were207F/g and2.6Wh/Kg in KOH, respectively. While the specific capacitance and energydensity were160F/g and16.6Wh/Kg, respectively.
     3. C/Co and C/Co/CNTs composite nanofibers were prepared by electrospinning and subsequentcarbonization and activation process. The specific surface area and pore volume of771m2/g and0.347m3/g of C/Co/CNTs nanofiber increased by53%and35%, respectively, compared to C/Co nanofiber.The electrochemical test showed that the principle of the C/Co and C/Co/CNTs composite nanofiberelectrode material was electrochemical double-layer capacitor. The specific capacitance and energydensity of C/Co/CNTs electrode material could reach173F/g in KOH at5A/g and8.9Wh/Kg inBMIMBF4/AC, which increased by14%and324%, respectively, compared to C/Co composite electrode.
     4. C/Ni and C/Ni/CNTs composite nanofibers were prepared by electrospinning and subsequentcarbonization and activation process. The specific surface area and pore volume of705m2/g and0.332m3/g of C/Ni/CNTs nanofibers increased by61%and56%, respectively, compared to C/Ni carbonnanofibers. The electrochemical test showed that C/Ni/CNTs composite nanofiber electrode material showed faradaic effect in KOH. The specific capacitance and energy density of C/Ni/CNTs electrodematerial could reach186F/g in KOH at5A/g and18.2Wh/Kg in BMIMBF4/AC, which increased by37%and16times, respectively, compared to C/Ni composite electrode.
引文
1. Qiu Y, Yu J, Zhou X, et al. Synthesis of Porous NiO and ZnO Submicro-and Nanofibers from ElectrospunPolymer Fiber Templates, Nanoscale Res Lett,2009,4(2):173-177.
    2. Watanabe S, Yamazaki M, Kaihara S, et al. Production of nanofibers by atto-incubator-assisted assembly ofurea using the particle array,"Colloids Surf, A ",2012,399:83-91.
    3. Mao J, Duan S, Song A, et al. Macroporous and Nanofribrous Poly (Lactide-co-Glycolide)(50/50) ScaffoldsVia Phase Separation Combined with Particle-Leaching, Materials Science and Engineering: C,2012,32(6):1407-1414.
    4. Tomaszewski W, Swieszkowski W, Szadkowski M, et al. Simple methods influencing on properties ofelectrospun fibrous mats, J Appl Polym Sci,125(6):4261-4266.
    5. Von Hagen R, Lorrmann H, M ller KC, et al. Electrospun LiFe1yMnyPO4/C Nanofiber Composites asSelf-Supporting Cathodes in Li-Ion Batteries, Advanced Energy Materials,2(5):539-559.
    6. Mohammadian M, Haghi AK. Fabrication of Nontoxic Filters from Regenerated Silk Fibroin andPolyacrylonitril Fibers, Materiale Plastice,2012,49(2):90-94.
    7. Ongun MZ, Ertekin K, Gocmenturk M, et al. Copper ion sensing with fluorescent electrospun nanofibers,"Spectrochim Acta, Part A ",2012,90:177-185.
    8. Mickova A, Buzgo M, Benada O, et al. Core/Shell Nanofibers with Embedded Liposomes as a DrugDelivery System, Biomacromolecules,2012,13(4):952.
    9. Kim BH, Yang KS, Kim YA, et al. Solvent-induced porosity control of carbon nanofiber webs forsupercapacitor, J Power Sources,2011,196(23):10496-10501.
    10. Cavaliere S, Subianto S, Savych I, et al. Electrospinning: Designed architectures for energy conversionand storage devices, Energy and Environmental Science,2011,4(12):4761-4785.
    11. Naoi K.'Nanohybrid Capacitor': The Next Generation Electrochemical Capacitors, Fuel Cells,2010,10(5):825-833.
    12. Subbiah T, Bhat GS, Tock RW, et al. Electrospinning of nanofibers, J Appl Polym Sci,2005,96(2):557-569.
    13. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning, Polymer,1999,40(16):4585-4592.
    14. Miao J, Miyauchi M, Simmons TJ, et al. Electrospinning of nanomaterials and applications in electroniccomponents and devices, J Nanosci Nanotechnol,2010,10(9):5507-5519.
    15. Barth S, Hernandez-Ramirez F, Holmes JD, et al. Synthesis and applications of one-dimensionalsemiconductors, Prog Mater Sci,2010,55(6):563-627.
    16. Lu XF, Wang C, Wei Y. One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning andTheir Applications, Small,2009,5(21):2349-2370.
    17. Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications,Energy Environ Sci,2008,1(2):205-221.
    18. Schiffman JD, Schauer CL. A review: Electrospinning of biopolymer nanofibers and their applications,Polym Rev,2008,48(Compendex):317-352.
    19. Sawicka KM, Gouma P. Electrospun composite nanofibers for functional applications, J Nanopart Res,2006,8(6):769-781.
    20. Huang Z-M, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and theirapplications in nanocomposites, Compos Sci Technol,2003,63(15):2223-2253.
    21. Lee K, Lee S. Multifunctionality of poly(vinyl alcohol) nanofiber webs containing titanium dioxide, JAppl Polym Sci,2012,124(5):4038-4046.
    22. Kim Y-J, Ahn CH, Lee MB, et al. Characteristics of electrospun PVDF/SiO2composite nanofibermembranes as polymer electrolyte, Mater Chem Phys,2011,127(1-2):137-142.
    23. Feng C, Tang J, Zhang C, et al. Synthesis and Electrochemical Properties of TiO2/C Nano-FiberComposite, Nanoscience and Nanotechnology Letters,2012,4(4):430-434.
    24. Huang JS, Wang DW, Hou HQ, et al. Electrospun palladium nanoparticle-loaded carbon nanofibers andtheir electrocatalytic activities towards hydrogen peroxide and NADH, Adv Funct Mater,2008,18(3):441-448.
    25. Shaikh JS, Pawar RC, Tarwal NL, et al. Supercapacitor behavior of CuO-PAA hybrid films: Effect of PAAconcentration, J Alloys Compd,2011,509(25):7168-7174.
    26. Kim C, Kim YA, Kim JH, et al. Self-assembled palladium nanoparticles on carbon nanofibers,Nanotechnology,2008,19(Compendex).
    27. Dror Y, Salalha W, Avrahami R, et al. One-Step Production of Polymeric Microtubes byCo-electrospinning, Small,2007,3(6):1064-1073.
    28. Kim C, Jeong YI, Ngoc BTN, et al. Synthesis and Characterization of Porous Carbon Nanofibers withHollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs, Small,2007,3(1):91-95.
    29. Peng M, Li DS, Shen L, et al. Nanoporous structured submicrometer carbon fibers prepared via solutionelectrospinning of polymer blends, Langmuir,2006,22(22):9368-9374.
    30. McCann JT, Lim BK, Ostermann R, et al. Carbon nanotubes by electrospinning with a polyelectrolyte andvapor deposition polymerization, Nano Lett,2007,7(8):2470-2474.
    31. Chan K, Kap-Seung Y, Wan-Jin L. The use of carbon nanofiber electrodes prepared by electrospinning forelectrochemical supercapacitors, Electrochem Solid-State Lett,2004,7(11):397-399.
    32. Wei L, Adanur S. Properties of electrospun polyacrylonitrile membranes and chemically-activated carbonnanofibers, Text Res J,2010,80(2):124-134.
    33. Ju Y-W, Park S-H, Jung H-R, et al. Electrospun activated carbon nanofibers electrodes based on polymerblends, J Electrochem Soc,2009,156(PaperChem): A489-A494.
    34. Simon P, Gogotsi Y. Materials for electrochemical capacitors, Nat Mater,2008,7(11):845-854.
    35. Li J, Liu E-h, Li W, et al. Nickel/carbon nanofibers composite electrodes as supercapacitors prepared byelectrospinning, J Alloys Compd,2009,478(1-2):371-374.
    36. Gamby J, Taberna PL, Simon P, et al. Studies and characterisations of various activated carbons used forcarbon/carbon supercapacitors, J Power Sources,2001,101(1):109-116.
    37. Kim C, Yang KS. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitorprepared by electrospinning, Appl Phys Lett,2003,83(Copyright2003, IEE):1216-1218.
    38. Kim B-H, Bui N-N, Yang K-S, et al. Electrochemical properties of activated polyacrylonitrile/pitch carbonfibers produced using electrospinning, Bull Korean Chem Soc,2009,30(9):1967-1972.
    39. Kim C, Park S-H, Lee W-J, et al. Characteristics of supercapaitor electrodes of PBI-based carbonnanofiber web prepared by electrospinning,2004,50:877-881.
    40. Kim C, Choi Y-O, Lee W-J, et al. Elsevier Ltd,2004,50:883-887.
    41. Janes A, Tonurist K, Thomberg T, et al., in Separators and Membranes for Batteries, Capacitors, Fuel Cells,and Other Electrochemical Systems-215th ECS Meeting, May24,2009-May29,2009.(Electrochemical Society Inc., San Francisco, CA, United states,2009),19:3-32.
    42. Park SJ, Im SH. Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning,BULLETIN-KOREAN CHEMICAL SOCIETY,2008,29(4):777.
    43. Im JS, Woo SW, Jung MJ, et al. Improved capacitance characteristics of electrospun ACFs by pore sizecontrol and vanadium catalyst, J Colloid Interface Sci,2008,327(1):115-119.
    44. Kim C, Ngoc BTN, Yang KS, et al. Self-sustained thin webs consisting of porous carbon nanofibers forsupercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv Mater,2007,19(17):2341-2349.
    45. Guo Q, Zhou X, Li X, et al. Supercapacitors based on hybrid carbon nanofibers containing multiwalledcarbon nanotubes, J Mater Chem,2009,19(18):2810-2816.
    46. Kiju I, Hyungsang H, Won-ju C, et al. Formation of a shallow junction by using the spin-coatingsolid-phase diffusion method for sub-micron SOI MOSFETs, Journal of the Korean Physical Society,2003,42(2):229-232.
    47. Nguyen HD, Ko JM, Kim HJ, et al.(American Scientific Publishers,25650North Lewis Way, StevensonRanch, CA9138-1439, United States,2008),8:4718-4721.
    48. Yang KS, Joo YW, KIM T, et al.(World Scientific and Engineering Academy and Society (WSEAS),2006), pp.888-892.
    49. Chang D-R, Heo G-S. Fabrication and electrochemical characterization of carbon nanofibers byelectrospinning with various MnO2contents, E-Polymers,2011, Compendex).
    50. Zhou X, Shang C, Gu L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shellstructures for high-performance supercapacitors, ACS Applied Materials and Interfaces,2011,3(8):3058-3063.
    51. Aqel A, El-Nour KMM, Ammar RAA, et al. Carbon nanotubes, science and technology part (I) structure,synthesis and characterisation, Arabian J Chem,2010.
    52. Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications, Science,2002,297(5582):787.
    53. Liu J, Dai H, Hafner JH, et al. Fullerene'crop circles', Nature,1997,385:780-781.
    54. Reilly RM. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine, Journalof Nuclear Medicine,2007,48(7):1039-1042.
    55.朱宏伟,吴德海,徐才录,碳纳米管(M).北京:机械工业出版社,2003,1:60-87.
    56. Ebbesen TW, Carbon nanotubes: preparation and properties.(CRC,1997).
    57. Jorio A, Dresselhaus G, Dresselhaus MS, Carbon nanotubes: advanced topics in the synthesis, structure,properties and applications.(Springer Verlag,2008), vol.111.
    58. O'connell MJ, Carbon nanotubes: properties and applications.(CRC press,2006).
    59. Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalled carbonnanotubes, Appl Phys Lett,2000,77(15):2421-2421.
    60. Chen J, Li W, Wang D, et al. Electrochemical characterization of carbon nanotubes as electrode inelectrochemical double-layer capacitors, Carbon,2002,40(8):1193-1197.
    61. Niu C, Sichel EK, Hoch R, et al. High power electrochemical capacitors based on carbon nanotubeelectrodes, Appl Phys Lett,1997,70(11):1480-1480.
    62. Ma R, Liang J, Wei B, et al. Study of electrochemical capacitors utilizing carbon nanotube electrodes, JPower Sources,1999,84(1):126-129.
    63. Kim JH, Nam KW, Ma SB, et al. Fabrication and electrochemical properties of carbon nanotube filmelectrodes, Carbon,2006,44(10):1963-1968.
    64. An KH, Kim WS, Park YS, et al. Supercapacitors using single-walled carbon nanotube electrodes, AdvMater,2001,13(7):497-500.
    65. Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbonmaterials, Carbon,2005,43(6):1293-1302.
    66. Liu CG, Fang HT, Li F, et al. Single-walled carbon nanotubes modified by electrochemical treatment forapplication in electrochemical capacitors, J Power Sources,2006,160(1):758-761.
    67. Fuertes AB, Pico F, Rojo JM. Influence of pore structure on electric double-layer capacitance of templatemesoporous carbons, J Power Sources,2004,133(2):329-336.
    68. Yoon BJ, Jeong SH, Lee KH, et al. Electrical properties of electrical double layer capacitors withintegrated carbon nanotube electrodes, Chem Phys Lett,2004,388(1):170-174.
    69. Huang Z, Xu J, Ren Z, et al. Growth of highly oriented carbon nanotubes by plasma-enhanced hotfilament chemical vapor deposition, Appl Phys Lett,1998,73(26):3845-3847.
    70. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors, Carbon,2001,39(6):937-950.
    71. Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors, J Power Sources,2006,157(1):11-27.
    72. Aza s P, Duclaux L, Florian P, et al. Causes of supercapacitors ageing in organic electrolyte, J PowerSources,2007,171(2):1046-1053.
    73. Zilli D, Bonelli P, Cukierman A. Effect of alignment on adsorption characteristics of self-orientedmulti-walled carbon nanotube arrays, Nanotechnology,2006,17:5136-5141.
    74. Du C, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes,Nanotechnology,2005,16(4):350-353.
    75. Gao L, Peng A, Wang ZY, et al. Growth of aligned carbon nanotube arrays on metallic substrate and itsapplication to supercapacitors, Solid State Commun,2008,146(9):380-383.
    76. Emmenegger C, Bonard JM, Mauron P, et al. Synthesis of carbon nanotubes over Fe catalyst onaluminium and suggested growth mechanism, Carbon,2003,41(3):539-547.
    77. Kaempgen M, Ma J, Gruner G, et al. Bifunctional carbon nanotube networks for supercapacitors, ApplPhys Lett,2007,90,264104.
    78. Qin X, Durbach S, Wu GT. Electrochemical characterization on RuO2xH2O/carbon nanotubes compositeelectrodes for high energy density supercapacitors, Carbon,2004,42(2):451-453.
    79. Lee JY, Liang K, An KH, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemicalcapacitance, Synth Met,2005,150(2):153-157.
    80. Chen PC, Shen G, Sukcharoenchoke S, et al. Flexible and transparent supercapacitor based on InOnanowire/carbon nanotube heterogeneous films, Appl Phys Lett,2009,94:043113.
    81. An KH, Jeon KK, Heo JK, et al. High-capacitance supercapacitor using a nanocomposite electrode ofsingle-walled carbon nanotube and polypyrrole, J Electrochem Soc,2002,149:A1058.
    82. Gupta V, Miura N. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for highperformance supercapacitors, Electrochim Acta,2006,52(4):1721-1726.
    83. Zhang J, Kong LB, Wang B, et al. In-situ electrochemical polymerization of multi-walled carbonnanotube/polyaniline composite films for electrochemical supercapacitors, Synth Met,2009,159(3-4):260-266.
    84. Liu H, He P, Li Z, et al. A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor usingroom temperature ionic liquid electrolyte, Electrochim Acta,2006,51(10):1925-1931.
    85. Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesizednanostructured polyaniline, Mater Lett,2006,60(12):1466-1469.
    86. Fan LZ, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors,Electrochem Commun,2006,8(6):937-940.
    87. Huang X, Pan C, in China International Conference on Nanoscience and Technology, China NANO2005,June9,2005-June11,2005.(Trans Tech Publications Ltd, Beijing, China,2007),121-123:85-88.
    88.徐斌,张浩,曹高萍等.超级电容器炭电极材料的研究.化学进展[J].2011,23(2/3):605-611.
    89.张治安,邓梅根,胡永达等.电化学电容器的特点及应用.电子元件与材料[J].2003,22(11):1-5.
    90.钟海云,李荐,戴艳阳等.新型能源器件—-超级电容器研究发展最新动态.电源技术[J].2001,25(5):367-370.
    91.黄小文.电化学电容器及锂离子电池正极材料的研究[D]:博士学位论文.沈阳:东北师范大学,2002.
    92. Mayer S, Pekala R, Kaschmitter J. The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device, J Electrochem Soc,1993,140:446.
    93. Wang H, Yoshio M, Thapa AK, et al. From symmetric AC/AC to asymmetric AC/graphite, a progress inelectrochemical capacitors, J Power Sources,2007,169(2):375-380.
    94. Fang B, Binder L. Enhanced surface hydrophobisation for improved performance of carbon aerogelelectrochemical capacitor, Electrochim Acta,2007,52(24):6916-6921.
    95. Liu XM, Zhang R, Zhan L, et al. Impedance of carbon aerogel/activated carbon composites as electrodesof electrochemical capacitors in aprotic electrolyte, New Carbon Mater,2007,22(2):153-158.
    96. Wang H, Yoshio M. Graphite, a suitable positive electrode material for high-energy electrochemicalcapacitors, Electrochem Commun,2006,8(9):1481-1486.
    97. Gomibuchi E, Ichikawa T, Kimura K, et al. Electrode properties of a double layer capacitor ofnano-structured graphite produced by ball milling under a hydrogen atmosphere, Carbon,2006,44(5):983-988.
    98. Ravandi SAH, Sadrjahani M. Mechanical and structural characterizations of simultaneously aligned andheat treated PAN nanofibers, J Appl Polym Sci,2012,124(5):3529-3537.
    99. Su C-I, Jiang Z-Y, Lu C-H. Optimum heat treatment conditions for PAN-based oxidized electrospunnonwovens, Fibers Polym,2012,13(1):38-43.
    100. Sivakkumar S, Ko JM, Kim DY, et al. Performance evaluation of CNT/polypyrrole/MnO2compositeelectrodes for electrochemical capacitors, Electrochim Acta,2007,52(25):7377-7385.
    101. Honda K, Yoshimura M, Kawakita K, et al. Electrochemical characterization of carbonnanotube/nanohoneycomb diamond composite electrodes for a hybrid anode of Li-ion battery and supercapacitor, J Electrochem Soc,2004,151:A532.
    102. Eikerling M, Kornyshev A, Lust E. Optimized structure of nanoporous carbon-based double-layercapacitors, J Electrochem Soc,2005,152(1): E24-E33.
    103. Endo M, Maeda T, Takeda T, et al. Capacitance and pore-size distribution in aqueous and nonaqueouselectrolytes using various activated carbon electrodes, J Electrochem Soc,2001,148:A910.
    104. Lorenc-Grabowska E, Gryglewicz G. Adsorption characteristics of Congo Red on coal-based mesoporousactivated carbon, Dyes Pigm,2007,74(1):34-40.
    105. Salitra G, Soffer A, Eliad L, et al. Carbon electrodes for double-layer capacitors I. Relations between ionand pore dimensions, J Electrochem Soc,2000,147:2486.
    106. Kiyohara K, Shioyama H, Sugino T, et al. Phase transition in porous electrodes. II. Effect of asymmetryin the ion size, J Chem Phys,2012,136(9):094701.
    107. Shen W, Zheng J, Qin Z, et al. Preparation of mesoporous carbon from commercial activated carbon withsteam activation in the presence of cerium oxide, J Colloid Interface Sci,2003,264(2):467-473.
    108. Manocha SM. Porous carbons, Sadhana,2003,28(1):335-348.
    109. Bose S, Kuila T, Mishra AK, et al. Carbon-based nanostructured materials and their composites assupercapacitor electrodes, J Mater Chem,2012,22(3):767-784.
    110. Kim IH, Kim KB. Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes forelectrochemical capacitor applications, J Electrochem Soc,2006,153:A383.
    111. Yang X, Wang Y, Xiong H, et al. Interfacial synthesis of porous MnO2and its application inelectrochemical capacitor, Electrochim Acta,2007,53(2):752-757.
    112. Fischer AE, Pettigrew KA, Rolison DR, et al. Incorporation of homogeneous, nanoscale MnO2withinultraporous carbon structures via self-limiting electroless deposition: implications for electrochemicalcapacitors, Nano Lett,2007,7(2):281-286.
    113. Wu MS, Huang YA, Yang CH, et al. Electrodeposition of nanoporous nickel oxide film forelectrochemical capacitors, Int J Hydrogen Energy,2007,32(17):4153-4159.
    114. Wu MS, Huang YA, Jow JJ, et al. Anodically potentiostatic deposition of flaky nickel oxidenanostructures and their electrochemical performances, Int J Hydrogen Energy,2008,33(12):2921-2926.
    115. Zhao DD, Bao SJ, Zhou WJ, et al. Preparation of hexagonal nanoporous nickel hydroxide film and itsapplication for electrochemical capacitor, Electrochem Commun,2007,9(5):869-874.
    116. Zhang ZJ, Chen XY, Wang BN, et al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4)nanoparticles with the magnetic and electrochemical properties, J Cryst Growth,2008,310(24):5453-5457.
    117. Wang SY, Ho KC, Kuo SL, et al. Investigation on capacitance mechanisms of Fe3O4electrochemicalcapacitors, J Electrochem Soc,2006,153(1): A75-A80.
    118. Kuo SL, Wu NL. Electrochemical capacitor of MnFe2O4with organic Li-ion electrolyte, Electrochemicaland Solid State Letters,2007,10(7): A171-A175.
    119. Morishita T, Soneda Y, Hatori H, et al. Carbon-coated tungsten and molybdenum carbides for electrodeof electrochemical capacitor, Electrochim Acta,2007,52(7):2478-2484.
    120. Lao Z, Konstantinov K, Tournaire Y, et al. Synthesis of vanadium pentoxide powders with enhancedsurface-area for electrochemical capacitors, J Power Sources,2006,162(2):1451-1454.
    121. Hu J, Wang H, Huang X. Improved electrochemical performance of hierarchical porouscarbon/polyaniline composites, Electrochim Acta,2012,74:98-104.
    122. Nystrom G, Strmme M, Sjodin M, et al. Rapid potential step charging of paper-based polypyrrole energystorage devices, Electrochim Acta,2012,70:91-97.
    123. Gao F, Tian Y. The electrochemical performances of polythionphene/activated carbon composites aselectrode materials in supercapacitors, Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric MaterialsScience and Engineering,2011,27(2):152-155.
    124. Woo SW, Dokko K, Kanamura K. Composite electrode composed of bimodal porous carbon andpolypyrrole for electrochemical capacitors, J Power Sources,2008,185(2):1589-1593.
    125. Ryu KS, Wu X, Lee YG, et al. Electrochemical capacitor composed of doped polyaniline and polymerelectrolyte membrane, J Appl Polym Sci,2003,89(5):1300-1304.
    126. Liu T, Sreekumar TV, Kumar S, et al. SWNT/PAN composite film-based supercapacitors, Carbon,2003,41(12):2440-2442.
    127. Frackowiak E. Carbon materials for supercapacitor application, PCCP,2007,9(15):1774-1785.
    128. Bard AJ, Faulkner LR, Electrochemical methods: fundamentals and applications.(Wiley New York,1980), vol.2.
    129. Pico F, Morales E, Fernandez J, et al. Ruthenium oxide/carbon composites with microporous ormesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitorelectrodes, Electrochim Acta,2009,54(8):2239-2245.
    130. Matzui LY, Vovchenko LL, Kapitanchuk LM, et al. C–Co Nanocomposite Materials, Inorg Mater,2003,39(11):1147-1153.
    131. Feng C, Khulbe KC, Matsuura T. Recent progress in the preparation, characterization, and applications ofnanofibers and nanofiber membranes via electrospinning/interfacial polymerization, J Appl Polym Sci,2010,115(Compendex):756-776.
    132. Gu S, Ren J, Vancso G. Process optimization and empirical modeling for electrospun polyacrylonitrile(PAN) nanofiber precursor of carbon nanofibers, Eur Polym J,2005,41(11):2559-2568.
    133. Meyabadi TF, Dadashian F. Optimization of enzymatic hydrolysis of waste cotton fibers for nanoparticlesproduction using response surface methodology, Fibers Polym,2012,13(3):313-321.
    134. Jin L, Guan X, Liu W, et al. Characterization and antioxidant activity of a polysaccharide extracted fromSarcandra glabra, Carbohydr Polym,2012,90(1):524-532.
    135. Hagerty P, Lee A, Calve S, et al. The effect of growth factors on both collagen synthesis and tensilestrength of engineered human ligaments, Biomaterials,2012,33(27):6355-6361.
    136. Sing KSW, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with specialreference to the determination of surface-area and porosity Pure Appl Chem,1985,57(4):603-619.
    137. Cao L, Xu F, Liang YY, et al. Preparation of the Novel Nanocomposite Co (OH)2/Ultra‐Stable Y Zeoliteand Its Application as a Supercapacitor with High Energy Density, Adv Mater,2004,16(20):1853-1857.
    138. Zhou H, Tang X, Dong Y, et al. Multiwalled carbon nanotube/polyacrylonitrile composite fibers preparedby in situ polymerization, J Appl Polym Sci,2011,120(Compendex):1385-1389.
    139. Kiamahalleh MV, Zein SHS, Najafpour G, et al. Multiwalled carbon nanotubes based nanocomposites forsupercapacitors: A review of electrode materials, Nano,2012,7(2).
    140. Izadi-Najafabadi A, Yamada T, Futaba DN, et al. High-power supercapacitor electrodes fromsingle-walled carbon nanohorn/nanotube composite, ACS Nano,2011,5(2):811-819.
    141. Chmiola J, Largeot C, Taberna P-L, et al. Desolvation of ions in subnanometer pores and its effect oncapacitance and double-layer theory, Angewandte Chemie-International Edition,2008,47(18):3392-3395.
    142. Huang J, Sumpter BG, Meunier V. A universal model for nanoporous carbon supercapacitors applicableto diverse pore regimes, carbon materials, and electrolytes, Chemistry-A European Journal,2008,14(22):6614-6626.
    143. Moon S, Farris RJ. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns, Carbon,2009,47(12):2829-2839.
    144. Tao Y, Endo M, Inagaki M, et al. Recent progress in the synthesis and applications of nanoporous carbonfilms, J Mater Chem,2011,21(Compendex):313-323.
    145. Dong Z, Kennedy SJ, Wu Y. Electrospinning materials for energy-related applications and devices, JPower Sources,2011,196(11):4886-4904.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700