聚合物等温结晶时间尺度的流变学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结晶性聚合物的结晶行为是影响其微观结构并决定制品最终性能的关键因素。聚合物在成型加工过程中受到剪切、拉伸等作用时其结晶行为将发生变化。研究聚合物的静态及在剪切场中的结晶行为,对深入了解聚合物的结晶动力学和指导生产工艺过程均具有重要的意义。
     本文选择等规聚丙烯(iPP)、高密度聚乙烯(HDPE)为主要研究对象,以流变学方法为主要研究手段,通过对其在静态和剪切流场作用下的结晶行为的研究,探讨其结晶行为与粘弹特性之间的关联,并试图对现有剪切诱导结晶的理论模型进行修正。
     利用小应变、低频率(ω)条件下动态流变学方法对材料结构变化的敏感响应,研究了iPP静态等温结晶过程中的液-固转变行为。发现在等温结晶过程中,结晶引起的试样体积收缩会引起沿厚度和半径方向尺寸的减小;如果保持试样的厚度不变,在位于试样上、下方的平行板上将产生一个法向拉应力。在结晶初期,该拉应力快速松弛,当超过一定的时间后,会出现聚集并迅速增大的现象。基于该现象提出了一种表征体系物理凝胶点的新方法,并对这种效应与结晶行为的关联性进行了初步探索。通过动态和静态两种测试方法的对比发现,动态法适用于结晶速率较慢的体系,而静态方法则适用于结晶速率较快的体系;且相对于动态方法而言,静态方法具有不干扰被测试样的优点。
     利用流变学的方法研究了HDPE等温结晶行为。结果表明,采用流变学方法测定物理凝胶点具有准确、灵敏的特点。在等温结晶过程中,体系的动态流变行为会发生由类液体行为向类固体行为的转变。我们提出的表征iPP等温结晶过程中物理凝胶点的静态测试方法及表征拉应力变化的数学模型同样适用于HDPE体系。
     研究了剪切对iPP体系结晶行为的影响。发现剪切对结晶的影响极为显著。即使剪切速率小幅增大,结晶诱导时间也将成倍减小。在稳态剪切流场作用下,结晶初期的法向应力和粘度基本为一定值;一定时间后,会呈现增大并迅速上升的现象。在高剪切速率下,法向应力突变的时间要早于粘度;剪切速率减小,二
The structure, morphology and ultimate properties of semicrystalline polymers are strongly dependent on the crystallization behavior of them. When a semicrystalline polymer is subjected to flow, as invariably happens during processing, the crystallization behavior change to some extent. In order to understand the crystallization kinetics thoroughly and obtain the better properties, it is important for us to explore the crystallization behavior under both the quiescent and flow conditions of polymers. In this thesis, the relationship of Theological behavior and crystallization behavior for isotactic polypropylene (iPP) and high-density polyethylene (HDPE) were studied. Especially, modeling of shear-induced crystallization was emphasized.Studies on the liquid-solid transition during the isothermal crystallization of three kinds of commercial iPP were carried out. It is found that during isothermal crystallization of the iPPs, volume contraction result in tensile force on the motionless parallel plates. At the early stage, the tensile force quickly relaxes due to shrinkage of the sample's free surface, resulting in that the measured values are noise-like around zero. After a critical time, the tensile force starts to accumulate and grows quickly. Under each crystallization temperature, a threshold can be detected, and beyond which the tensile force grows first exponentially and then linearly. The higher the crystallization temperature, the less steep the linear growth. Accordingly, a new method to determine the liquid-solid transition depending on the static tensile force was proposed. A comparison between it and the classic dynamic methods for detecting liquid-solid transition evidences that the later are preferred to slow crystallization, and former is more appropriate for the crystallization at moderate rates. Moreover, the former has the advantage of almost not disturbing the crystallizing material before the transition.The rheological properties of liquid-solid transition during crystallization for HDPE were investigated through static and dynamic rheological measurements. The results show that with the crystallization proceeding, the dynamic visoelastic
    properties of HDPE imply the transit from liquid-like behavior to solid-like behavior. The static method and the mathematical equation for detecting the physical gelation of /PP are also applicable to HDPE.Shear-induced crystallization of /PP was investigated using a rotational rheometer with cone-plate configuration. It is found that shearing has a great impact on the crystallization rate of /PP. The time scale of the crystallization decreases by one hundred times as the shear rate increases from 0.00012s'1 to 1.0s"1. As the specimen is sheared at a constant rate and a constant crystallization temperature, the shear stress and normal force are constant at first, and then start to increase sharply after a certain time. At higher shear rates the transition of the normal force occurred considerably earlier than that of the viscosity, and at medium shear rates the two transition times were coincident. However at extremely low shear rates the data of normal force became noisy and only the data of viscosity was reliable. It is suggested that the earlier time in transitions for the normal force and viscosity is used to define the onset time (/on) which characterized the crystallization process. It is assumed that the onset time with the smallest shear rate, 0.00012s"1, represents the time scale, denoted by ton>q, of the crystallization in a quiescent state. Plotting normalized onset time (tm ltmA)against the onset strain, yt^, a common critical value for all the undercoolingtemperatures tested, below which the shear has no significant effect on the crystallization rate, can be identified. Furthermore we proposed the dimensionless onset work, scaling with the free energy difference of quiescent undercooling melt. This parameter can make the normalized onset time approximately temperature-invariant within experiments. The results show that there is a critical specific onset work below which the shearing has no significant effect on the rate of crystallization. For the /PP specimen investigated the critical specific onset work is about 0.005.The predictability of the theory of isothermal nucleation and growth rates proposed by Ziabicki were examined. The modeling of quiescent crystallization indicates that crystallization mechanism of the /PP specimen is nucleation-controlled
    crystal growth on preexist nuclei. Shear-enhanced crystallization rate is modeled by estimating the excess free energy induced by the flow, using the Theological model of Marrucci. Prediction of the modeling strongly depends on the characteristic relaxation time, which is determined by measuring the relaxation time of the specimen above its melting temperature and shifting to the crystallization temperature. Though the modeling of the shear-enhanced crystallization rate has been only partial successful, it can improves the shortcoming of Coppola's microrheological model to a certainextent. In Coppola's model the raptation relaxation time kd should be determined bynon-linear fitting to the crystallization rates observed. Our modeling suggests that the mechanism of crystallization under small shearing is still two-dimensional, nucleation-controlled crystal growth on preexist nuclei.
引文
1. Galli P., Vecellio G., Polyolefins: The most promising large-volume materials for the 21st century, J. Polym. Sci. Part A, Polym. Chem., 2002, 42: 396-415
    2.精细石油化工进展,4(7),58
    3.张凯、张晓红、陈伟,聚烯烃功能化进展,合成树脂及塑料,2005,22:66-69
    4.高春雨,聚烯烃市场分析预测,石化市场论坛,2004,6:17-20
    5.孙可华,国内外石油化工快报,2004,34:29-31
    6.何云,国内外聚丙烯供需状况及发展方向,化工技术经济,2005,23:17-20
    7.戈锋彗星,国外聚烯烃生产技术进展,上海科学技术文献出版社,上海,1982
    8.袁晴棠,聚烯烃技术发展趋势,当代石油石化,2004,12:3-7,12
    9.孔继兰,世界聚烯烃工业的发展趋势,当代石油石化,2003,11:20-31
    10.宋玉春,世界聚丙烯工业的发展趋势,国外塑料,2003,21:9-13
    11.饶兴鹤,聚丙烯工业的发展现状及新技术进展,中国石油和化工经济分析,2005,6:45-49
    12.赵燕、胡清、李得旭,国内外聚丙烯催化剂开发进展,合成树脂及塑料,2003,20:67-71
    13.童建颖,王伟倩,茂技术聚烯烃的进展,化工生产与技术,2004,11:29-31
    14.于文秀,聚丙烯技术新进展,石油化工,2003,32:913-917
    15. Chambon E, Winter H. H., Stopping of crosslingking reaction in a PDMS polymer at the gel point, Polym. Bull., 1985, 13: 499-503
    16. Winter H. H., Chambon F., Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, J. Rheol., 1986, 30: 367-382
    17. Chambon F., Winter H. H., Linear viscoelasticity at gel point of a crosslinking PDMS with imbalance stoichimetry, J. Rheol., 1987, 31: 683-697
    18. Cates M. E., Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions, Macromolecules, 1987, 20: 2289
    19. te Nijenhuis K., Viscoelastic properties of thermoreversible gels, Adv. Polym. Sci., 1997, 130: 1-252
    20. Keller A., Introductory lecture. Aspects of polymer gels, Faraday Disc., 1995, 101: 1-49
    21. Lin Y. G., Mallin D. T., Chien J. C. W., Winter H. H., Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene), Maeromolecules, 1991, 24: 850-854
    22. Riehtering H. W., Gagnon K. D., Lenz R. W., Fuller R. C., Winter H. H., Physical gelation of a bacterial thermoplastic elastomer, Macromolecules, 1992, 25: 2429-2433
    23. Pogodina N. V., Winter H. H., Polypropylene crystallization as a physical gelation process, Macromolecules, 1998,31: 8164-8172
    24. Ross-Murphy S.B., Incipient behaviour of gelatin gels, Rheol. Acta, 1991,30: 401-411
    25. Michon C, Cuvelier G, Launay B., Concentration dependence of the critical viscoelastic properties of gelatin at the gel point, Rheol. Acta, 1993,32:94-103
    26. Winter H.H., Scott D.B., Gronski W., Okamoto S., Hashimoto T., Ordering by flow near the disorder-order transition of a triblock copolymer styrene-isoprene-styrene, Macromolecules, 1993,26: 7236-7244
    27. Larson R.G, Winey K.I., Patel S.S., Watanabe H., Bruinsma R., The rheology of layered liquids: lamellar block copolymers and smectic liquid crystals, Rheol. Acta, 1993, 32: 245-253
    28. Zosel A., Viscoelastic behaviour of ABS polymer melts, Rheol. Acta, 1972,11: 229-237
    29. White J.L, A plastic-viscoelastic constitutive equation to represent the rheological behavior of concentrated suspensions of small particles in polymer melts, J. Non-Newt. Fluid Mech., 1979,5:177-190
    30. Buscall R., Goodwin J.W., Hawkins M.W., Ottewill R.H., Viscoelastic properties of concentrated lattices. II. Theoretical analysis, J. Chem. Soc. Faraday Trans. 1, 1982, 78: 2889-2899
    31. Munstedt H., Rheology of rubber-modified polymer melts, Polym. Eng. Sci., 1981, 21: 259-270
    32. Castellani L, Lomellini P., Plastics, Dynamic viscoelastic properties of molten acrylonitrile-EPDM-styrene(AES) at different rubber contents, Rubber Composites Processing Appl., 1991,16: 25-29
    33. Buscall R., Goodwin J.W., Hawkins M.W., Ottewill R.H., Viscoelastic properties of concentrated lattices. I. Methods of examination, J. Chem. Soc. Faraday Trans. 1,1982, 78: 2873-2887
    34. Minagawa N., White J.L., Co-extrusion of unfilled and TiO_2-filled polyethylene: Influence of viscosity and die cross-section on interface shape, Polym. Eng. Sci., 1975,15: 825-830
    35. Krieger I.M., Rheology of monodisperse lattices, Adv. Colloid Interface Sci., 1972, 3:111-136
    36. Hoffman R.L., Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability, Trans. Soc. Rheol., 1972,16:155-173
    37. Hoffman R.L., Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests, J. Colloid Interface Sci., 1974,46:491-506
    38. Jeffrey D.J., Acrivos A., The rheological properties of suspensions of rigid particles, AICHE J., 1976,22: 417-432
    39. Russel W.B., Saville D.A., Schowalter W.R., Colloidal Dispersions, Cambridge University press, Cambridge, 1989
    40. Laun H.M., Orientation effects and rheology of short glass fiber-reforced thermoplastics, Colloid Polym. Sci., 1984,262:257-269
    41. Masuda T., Nakajima A., Kitamura M., Aoki Y., Yamauchi N., Yoshioka A., Viscoelastic properties of rubber-modified polymeric materials at elevated temperatures, Pure Appl.
     Chem., 1984, 56: 1457-1475
    42. Metzner A. B., Rheology of suspensions in polymeric liquids, J. Rheol., 1985, 29: 739-775
    43. Castellani L., Lomellini P., Phase volume and size effects on the terminal relaxation of ABS melts, Rheol. Acta, 1994, 33: 446-453
    44. Flory P. J., Introsuctory lecture, Faraday Discuss. Chem. Soc., 1974, 57: 7-18
    45. Schmidt M., Burchard W., Critical exponents in polymers: a sol-gel study of anionically prepared styrene-divinylbenzene eopolymers, Macromolecules, 1981, 14: 370-376
    46. Martin J. E., Wilcoxon J. P., Adolf D., Critical exponents for the sol-gel transition, Phys. Rev. A., 1987, 36: 1803-1810
    47. Martin J. E., Wilcoxon J. P., Critical dynamics of the sol-gel transition, Phy. Rev., Lett., 1988, 61: 373-376
    48. Martin J. E., Keefer K. D., Scattering below the sol-gel transition, Phys. Rev. A., 1986, 34: 4988-4992
    49. Kajiwara K., Burchard W., Kowalsi M., Nerger D., Dusek K., Mateijka L., Tuzar Z., Macromol. Chem., 1984, 185: 2543
    50. Nystrom B., Walderhaug H., Hansen F. K., Dynamic light scattering and rheological studies of thermoreversible gelation of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution, Faraday Disc., 1995, 101: 335-344
    51. Valles E. M., Macosko C. W., Properties of networks formed by end linking of poly(dimethylsiloxane), Macromolecules, 1979, 12: 673-679
    52. Allain C., Amiel C., Permeability measurements during the sol-gel transition: direct determination of the exponent nu, Phy. Rev. Lett., 1986, 56: 1501-1504
    53. Barton J.M., Buist G. J., Hamerton I., Howlin B. J., Jones R. J., Lin S., High temperature ~1HNMR studies of epoxy cure: A neglected technique, Polym. Bull., 1994, 33: 215-219
    54. Mijovic J., Kim J., Slaby J., Cure kinetics of epoxy formulations of the type used in advanced composites, J. Appl. Polym Sci., 1984, 29: 1449-1462
    55. Muzumdar S. V., Lee L. J., r Predication of gel-time in the cure of unstaturated polyester resins: Pheomenological modeling vs statistical analysis, Polym. Eng. Sci., 1991, 31: 1647-1656
    56. Valles E. M., Macosko C. W., Structure and Viscosity of Poly(dimethylsiloxanes) with Random Branches, Macromolecules, 1979, 12: 521-526
    57. Utracki L. A., Polymer alloys and blends, Carl Hanser, New York, 1989
    58. Philips P. J., Polymer crystals, Rep. Prog. Phys., 1990, 53: 549-603
    59. Alig I., Tadjbakhsch S., Floudas G., Floudas G.., Tsitsilianis C., Viscoelastic contrast and kinetic frustration during poly(ethylene oxide) crystallization in a homopolymer and a triblock copolymer. Comparison of ultrasonic and low-frequency rheology, Macromolecules, 1998, 31: 6917-6925
    60. Yoon W. J., Myung H. S., Kim B. C., Im S. S., Effect of shearing on crystallization behavior of poly(ethylene naphthalate), Polymer, 2000, 41: 4933-4942
    61. Kelarakis A., Mai S. M., Booth C., Ryan A. J., Can rheometry measure crystallization kinetics? A comparative study using block copolymers, Polymer, 2005, 46: 2739-2747
    62. Veenstra H., Hoogvliet R. M., Norder B., et al., Microphase separation and rheology of a semicrystalline poly(ether-ester) multiblock copolymer J. Plym. Sci. Part B, Polym. Phys., 1998, 36: 1795-1804
    63.于同隐,何曼君,卜海山,高聚物的粘弹性,上海科学技术出版社,上海,1986
    64. Ferry J. D., Viscoelastic Properties of Polymers, Wiley, New York, 1980
    65. Doi M., Edwards S. E, The theory of polymer dynamic, Clarendon Oxford, 1996
    66. Takahashi M., Li L., Masuda T., Nonlinear viscoelasticity of ABS polymers in molted state, J. Rhol., 1989, 33: 709
    67. Zheng Q., Zuo M., Investigation of structure and properties for polymer systems based on dynamic rheological approaches, Chinese J. Polym. Sci., 2005, 23: 341-354
    68. Chen Q., Fan Y. R., Zheng Q., A novel approach to rheological characterization for the gelation in polymer crystallization Chinese J. Polym. Sci., 2005, 23: 423-434
    69. Cao Y. X., Zheng Q., Du M., Relationships between thermo-oxidation and dynamic rheological behavior of EPDM, Acta Polym. Sini., 2005, 3: 408-412。
    70.胡洪国,郑强,陶小乐,超细SiO_2填充聚甲基乙烯基硅氧烷的动态流变特性,高等学校化学学报,2004,25:985-987
    71.郑强,胡洪国,SiO_2增强聚硅氧烷体系:键和橡胶与流变特性,功能材料,2004,35:1-3
    72.吴刚,郑强,江磊,宋义虎,HDPE氧化交联与动态流变行为,高等学校化学学报,2004,25:357-360
    73. Macosko C. W., Rheological changes during crosslinking, Brit. Polym. J., 1985, 17: 239-245
    74. Danking J. K., In development in polymer characterization, Applied science, London, 1982
    75. Lipshitz S., Macosko C. W., Rheological changes during a urethane network polymerization, Polym. Eng. Sci., 1976, 16: 803-810
    76. Valles E. M., Macosko C. W., The effect of network structure in the equation of rubber elasticity, Rubber Chem. Tech., 1976, 49: 1232-1237
    77. Castro J. M., Macosko C. W., Perry S. J., Viscosity changes during urethane polymerization with phase separation, Polym. Commun., 1984, 25: 82-87
    78. Apicella A., Masi P., Nicolais L., Rheological behaviour of a commercial TGDDM-DDS based epoxy matrix during the isothermal cure, Rheol. Acta, 1984, 23: 291-296
    79. Adam M., Delsanti M., Durand D., Mechanical measurements in the reaction bath during the polycondensation reaction, near the gelation threshold, Macromolecules, 1985, 18: 2285-2290
    80. Malkin A. Y., Rheologie in polymersyntheseprozessen und bei der rerntzung yon oligomeren, Plaste und Kautschuk, 1985, 32: 281-289
    81. Allain C., Salome L, Hydrolysed polyaerylamide/Cr~(3+) gelation: critical behavior of the rheologi cal properties at the sol-gel transition, Polym. Commun., 1987, 28: 109-112
    82. Axelos M. A. V., Kolb M., Crosslinking biopolymers: experimental evidence for scalar percolation theory, Phys. Rev. Lett., 1990, 64: 1457-1460
    83. Winter H.H., Can the gel point of a cross-linking polymer be detected by the G'-G" crossover? Polym. Eng. Sci., 1987,27: 1698 -1702
    84. Tung C.Y.M., Dynes P.J., Relationship between viscoelastic properties and gelation in thermosetting systems, J. Appl. Polym. Sci., 1982,27: 569-574
    85. Chambon R, Petrovic Z.S., MacKnight W.J., Winter H.H., Rheology of model polyurethanes at the gel point, Macromolecules, 1986,19: 2146-2149
    86. Boutahar K., Carrot C. and Guillet J., Crystallization of polyolefins from rheological measurements-relation between the transformed fraction and the dynamic moduli , Macromolecules, 1998,31: 1921-1929
    87. Boutahar, K., Carrot, C. and Guillet J., Polypropylene during crystallization from the melt as a model for the rheology of molten-filled polymers, J. Appl. Polym. Sci. 1996, 60: 103-114
    88. Chin B.D., Winter H.H., Field-induced gelation, yield stress, and fragility of an electro-rheological suspension, Rheol. Acta, 2002,41: 265 - 275
    89. Li L, Mallin D.T.,Aoki Y.J., Rheological images of poly(vinyl chloride) gels, 1. Dependence of sol-gel transition on concentration, Macromolecules, 1997,30: 7835-7841
    90. Gelfer M.Y., Winter H.H., Effect of branch distribution on rheology of LLDPE during early stages of crystallization, Macromolecules, 1999,32:8974-8981
    91. Mours M., Winter H.H., Time-resolved rheometry, Rheol. Acta, 1994,33: 385-397
    92. Winter H.H., Morganelli P., Chambon E, Stoichiometry effects on rheology of model polyurethanes at the gel point, Macromolecules, 1988, 21: 532-535
    93. Schwittay C, Mours M., Winter H.H., Rheological expression of physical gelation in polymers, Faraday Disc, 1995,101: 93-104
    94. Gelfer M., Horst R.H., Winter H.H., Physical gelation of crystallizing metallocene and Ziegler-Natta ethylene-hexene copolymers, Polymer, 2003,44:2363-2371
    95. Acierno S., Grizzuti N., Winter H.H., Effects of molecular weight on the isothermal crystallization of poly(l-butene), Macromolecules, 2002,35:5043-5048
    96. Pogodina N.V., Lavrenko V.P., Srinivas S., Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization, Polymer, 2001,42: 9031-9043
    97. Horst R.H., Winter H.H., Stable critical gels of a copolymer of ethene and 1-butene achieved by partial melting and recrystallization, Macromolecules, 2000, 33: 7538-7543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700