烟叶图像采集技术规范与烤烟收购质量分级特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟叶的收购质量特征是评定烟叶等级的重要依据。目前,许多烟叶收购质量特征主要由人工靠经验获取,主观性强,且有许多指标呈模糊状态,往往出现评定级别不稳定的现象。在烟叶收购过程中还容易产生质量纠纷,不仅影响烟农的生产积极性,还给国家造成经济损失。鉴于目前人工分级存在的问题,用数字形式统一烟叶的收购质量特征是非常必要的。本文从烟叶数字图像采集技术规范、透射图像、颜色(形状)参照方法、烟叶光谱吸收规律等方面对烟叶收购质量的数字化特征进行了相关研究。摘要如下:
     1.首次系统研究了烟叶图像采集环境中照明电压、不同品牌数码相机、相机聚焦距离、相机分辨率和数码相机的不同拍摄模式、灯光随时间变化的稳定性等成像环境因素对图像识别结果的影响。首次在烟叶图像采集环境中引入颜色参照白板进行各种干扰因素相对扣除和物理尺寸绝对参照,比较了几种白板材料稳定性与干扰扣除效果,提出了相对颜色校正方法对因成像环境因素影响而引起的烟叶图像颜色识别误差进行校正。在此基础上规范了烟叶图像采集环境和操作步骤,对保障烟叶数字图像识别研究的质量控制和研究成果的共享具有深远的理论意义和实用价值。
     2.研究基于物质对光的吸收、反射和透射原理,在分析烟叶本身对透过不同波长光的吸收存在差异的基础上,专门设计并制作了能同时采集烤烟烟叶反射和透射图像的采集灯箱,发现并利用烟叶透射图像具有的特殊光谱吸收特征,提出了基于透射特性的烤烟图像背景分割技术。利用烟叶自身生物学特性对烟叶透射图像进行了区域统计法分割,结果表明分割精度高于传统点统计法,每片烟叶像素数平均高出0.65%,较好地保留了目标图像的原始特征信息。透射影像不仅可用于背景扣除,还有效扩充了烟叶数字图像处理的特征参数,为提升烟叶收购等级识别准确性奠定了基础。在数字图像处理中,利用生物自身特性进行背景扣除和扩充数字识别特征,具有专一性和排它性,对类似农产品数字识别研究具有广泛的指导意义。
     3.研究利用颜色参照白板的绝对参照作用实现烟叶的长度、宽度及面积等形状特征测量;用颜色参照白板标定烟叶图像的颜色色度变化,从中发现变化规律,为提取烟叶的分级特征奠定基础。通过人工方法测量烟叶长、宽度,称取烟叶单叶重;用计算机图像处理方法分别测出烟叶和颜色参照白板以像素为单位的长度和宽度,结合颜色参照白板的固定尺寸,通过变换计算得到烟叶实际的长宽度、面积,以及身份等分级指标特征;分别提取烟叶和同期采集的颜色参照白板在RGB和HSI两种颜色系统下的相关颜色特征,包括原始颜色和相对颜色。结果表明,利用参照方法测量的烟叶形状特征与人工测量结果之间有很好的相关性,11个供试级别烟叶的长度平均误差为2.59cm,相对误差平均值为5.11%;宽度平均误差为0.88cm,相对误差平均值为4.84%;身份特征测量结果也比较理想;相对色度可用来区分柠檬黄和桔黄色烟叶。因此,将图像处理技术与参照方法相结合,借助规则参照物标测不规则的烟叶形状、面积等特征参数是可行的,不仅测量方法简便,而且测量速度快;另外,用相对颜色方法区分烟叶的颜色特征也取得了一定的研究进展,为烟叶的数字化分级奠定了基础。
     4.研究烤烟烟叶在可见光区域的吸收规律,探索不同地区、不同级别烟叶在可见光区域的量化吸收特征,以及各吸收特征与烟叶地域性、级别属性之间的关系。利用改装并经过稳定性检测的GFY-160型荧光分光光度计,先使用320-810nm的波长范围,以5nm的波长间距对恩施、云南、临朐三个地区上、中、下不同部位的烟叶,以及同一地区上、中、下三个部位不同级别的烟叶进行透射,测得烟叶的透光强度,得到烟叶的透光特征曲线,根据透光强度的比值得到烟叶对光线的吸收特征。结果表明,烟叶在可见光范围内的确对蓝色光具有敏感的吸收作用;在获取的烟叶透射特征中,蓝橙比(%)(Blue/Orange,B/O)、绿橙比(%)(Green/Orange,G/O)随烟叶部位的变化规律比较明显,但蓝橙比(%)的变化规律强;红橙比(%)(Red/Orange,R/O)的变化规律不明显,不过上部叶的数值均在50%以上,表现出部分的规律性。因此,可以利用一些特殊波段下的吸收特征或者变换特征得到烟叶分级的量化特征。
Tobacco purchase quality is an important reference for its grade. Currently, tobacco purchase quality is mainly estimated by human experiences that are sometimes subjective, and many factors are rather unclear, which leads to the unstable assessments of tobacco quality, results in the dissensions in tobacco purchasing, discouragement of farmers and the loss of state property. So it's necessary to develop tobacco purchase quality regulations based on digital technology. In this dissertation, tobacco image collection regulations, transmission images, color (shape) references and the spectral absorptions of tobacco leaf were studied. The main resultes was summarized as follows:
     1. Environmental conditions such as lamp voltage, camera brand, focus distence, image resolution, shutting model and the stableness of lighting were studied to address the effects on the recognition of tobacco images. The color reference plate was introduced to eliminate the errors and calculate the absolute size of the tobacco. The stableness of the white reference plate was evaluated. The relative color was used to fast and timely correct the errors in tobacco image recognition. This study regulates the tobacco leaf collection environment. And laid foundations for the standardization of digital tobacco image collection framework.
     2. The tobacco leaves absorbance, reflection and transmission of visible light were studied. The special lamp box was designed based on the absorbance difference of transmitting light. The segmentation method of tobacco images was proposed based on the characteristics of the transmitting spectral. The results showed that the segmentation accuracy is higher than the method of point statistics. And the average pixels are 0.65% more than that of point statistics per leaf and the original information was well kept. The transmission image can not only trade off the background effects, and extend the characteristic parameters for tobacco images. The method presented maintains the objective characteristics of images, which help the increasing of segmentation accuracy and lay foundation for further studies on features of tobacco leaf. And also can serve as example for the recognition of other crop leaves.
     3. The measurements such as length, width, area and color of tobacco leaf were measured using the reference white plane. The mentioned measurements were measured by hand and by computer image processing method, respectively for the 11 tobacco leaf samples. The results showed there is a good relationship between the results obtained by different ways, and the average error for length is 2.59 cm, the corresponding relative average error is 5.11%, and the average error for width is 0.88 cm, the corresponding relative average error is 4.84%. The color characteristics of the tobacco leaf were also studied under RGB and HIS systems. It was concluded that the lemon and orange tobacco leaf can be distinguished by using the relative saturation. Based on the research mentioned above, it was found that in conjunction with the reference method, the image processing method could be used to extract the feature parameters of tobacco leaf such as shape and area, and relative color can be used to discriminate the color of tobacco leaf. The findings of the paper are very helpful for the digital rating for tobacco quality.
     4. The absorption characteristics of tobacco leaf in visible light were investigated to address the relationship between the tobacco origination, quality and classes. In this dissertation, the GFY-160 fluorescence spectrometer was employed to measure the intensity of the transmitted light at 5 nm intervals from 320 to 810 nm. The upper, middle and lower part of the tobacco leaf from Enshi, Yunnan, Linqu and from same area were conducted transmission experiment and the transmitted light were measured accordingly. The results revealed the tobacco leaf absorb blue light greatly, and in the transmission features, the ratio of blue and orange (B/O) and green and orange (G/O) change regularly with the different parts of the leaf while the ratio of red and orange (R/O) didn't show the similar rule. And the R/O in the upper part of the leaf are all over 50%. The absorption features can be used to develop the quantitative rating systems for the tobacco leaf.
引文
1.蔡健荣,方如明,张世庆等.利用计算机视觉技术的烟叶质量分选系统研究.农业工程学报,2000,16(3):118-122
    2.曹建国,窦峰.近红外漫反射光谱法测试醋酸纤维滤棒中的三醋酸甘油酯.烟草科技,2005,(3):6-9
    3.曹茂永,徐小平,郁道银.具有光照强度不变性的显微细胞图像处理算法.光学技术,2003,29(5):575-577,580
    4.曹其新,刘成良,殷跃红等.基于彩色图像处理的西红柿品质特征的提取研究.机器人,2001,23(7):652-656
    5.陈佳娟,纪寿文,李娟,赵学笃.采用计算机视觉进行棉花虫害程度的自动测定.农业工程学报,2001,17(2):157-160
    6.陈建能,张国凤.计算机视觉技术在农业中的应用及展望.甘肃农业大学学报,2003,38(2):248-253
    7.陈杰,李志敏,钟先信,陈文涛,刘军.烟草在线检测与异物剔除系统.光电工程,2003,30(5):51-54,72
    8.陈廉清,袁红彬,王龙山.计算机视觉技术在微小尺寸测量中的应用.农业机械学报,2006,37(9):174-176
    9.陈雪峰,张乐年.基于双CCD的烟叶杂物剔除技术.工业控制计算机,2004,17(10):10,23
    10.陈在新,雷泽湘,刘会宁,吴广宇,王襄宾.板栗营养成分分析及其品质的模糊综合评判.果树科学,2000,17(4):286-289
    11.成芳,应义斌.机器视觉技术在农作物种子质量检验中的应用研究进展.农业工程学报,2001,17(6):175-180
    12.程占省,屈剑波,李明,甄涣菊,符云鹏.烟叶分级与收购[M].北京:中国华侨出版社,2003
    13.段焰青,周红,李青青,杨涛,杨艳萍,王庆华,李玲.烟样水分质量分数对其常规化学成分近红外测定的影响.云南大学学报(自然科学版),2005,27(5):424-428
    14.范重庆.利用BP神经网络识别数字图像.高等函授学报(自然科学版),2004, 17(6):46-48,58
    15.冯益明,李增元,武红敢等.基于灰度与纹理信息融合的影像分割方法.遥感技术与应用,2006,21(6):536-540
    16.符文华.碧城镇:首家“聚约式”收购烟叶.楚雄日报(汉),2005年8月15日第001版
    17.付秋娟,王树声,窦玉青,刘光亮.烟草根中N、K、Ca、Mg的近红外光谱分析.烟草科技,2006,10:35-37
    18.高华,王雅琴.基于计算机视觉的农产品形状分级研究.计算机工程与应用,2004,14:227-229
    19.郭永刚,葛庆平,郭楠.利用白平衡进行偏色图像的颜色校正.计算机工程与应用,2005,20:56-59
    20.韩力群,何为,段振刚等.烤烟烟叶自动分级的智能技术.农业工程学报,2002,18(6):173-175
    21.何胜美,李仲来,何中虎.基于图像识别的小麦品种分类研究.中国农业科学,2005,38(9):1869-1875
    22.胡秀娟.数字图像处理技术在植物根系研究中的应用.林业机械与牧工设备,2003,3:29-30
    23.胡渝,荣健.CCD的发展现状及展望.仪器仪表学报,2005,26(8)(增刊):718-720
    24.黄峰茜,陈春晓,姚均营.图像分割方法的研究进展.中国医疗器械信息,2006,12(12):23-27
    25.黄文清,汪亚明,周志宇.计算机视觉技术在工业领域中的应用.浙江工程学院学报,2002,19(2):92-96
    26.贾爱莲,张淑娟.基于MATLAB的植物叶面积数字摄影图像处理.山西农业大学学报,2006,26(1):80-82
    27.蒋锦锋,李莉,赵明月.应用近红外检测技术快速测定烟叶主要化学成分.中国烟草学报,2006,12(2):8-12
    28.蒋樟法.入世后我国烟叶出口面临的问题及对策探讨.中国烟草科学,2001,4:36-37
    29.雷宏涛.数字图像处理.北京:机械工业出版社,2003
    30.李宝光,黄芳.植物叶片面积的测定方法.山东理工大学学报(自然科学版), 2004,18(4):94-96
    31.李长缨,滕光辉,赵春江,乔晓军,武聪玲.利用计算机视觉技术实现对温室植物生长的无损监测.农业工程学报,2003,19(3):140-143
    32.李锦卫,廖桂平.基于数字图像处理的油菜种子形状特征参数提取及模糊聚类分析.计算机辅助工程,2006,15(3):75-78
    33.李强,杨晓琼,魏岚,汤江龙.基于计算机视觉的烟叶分离系统.现代制造工程,2006,5:101-103
    34.李章晶,郑国勤.针对无线通信领域的图像压缩的研究.计算机工程与设计,2006,27(23):4471-4474
    35.梁晓辉,游志胜.自适应的彩色图像光照补偿新方法.光电工程,2006,33(2):94-97
    36.刘木华,赵杰文,张海东.基于模糊C均值聚类的牛肉图像中脂肪和肌肉区域分割技术.农业工程学报,2004,20(2):161-163
    37.陆新泉,李宁,陈世福.形态学和色度学在肺癌早期诊断系统中的研究与实现.模式识别与人工智能,2000,13(1):116-120
    38.陆洋,陈离.CCD图像采集过程中的实时误差校正.上海理工大学学报,2003,5(2):181-184
    39.吕朝辉,陈晓光,吴文福,赵红霞.用BP神经网络进行秧苗图像分割.农业工 程学报,2001,17(3):146-148
    40.吕朝辉,陈晓光,郑元杰,吴文福,赵红霞.立体视觉技术在秧苗直立度测定中的应用.农业工程学报,2001,17(4):127-130
    41.吕一波,路迈西.玉米图像几何特征的提取.鸡西大学学报,2006,6(4):68-70
    42.马成林.论人工神经网络在农业工程中的应用.农业工程学报,1997,(增刊):1-3
    43.马文杰,贺立源,徐胜祥,陈杰,吴照辉.基于烤烟透射特征的烟叶图像分割研究.农业工程学报,2006,22(7):134-137
    44.毛文华,王一鸣,张小超等.基于机器视觉的苗期杂草实时分割算法.农业机械学报,2005,36(1):83-86
    45.潘晨.阈值分割与颜色聚类相结合的色度学图象分割方法.计算机应用研究,2001,12:53-55
    46.邱军,王允白,付秋娟,张怀宝,王晓玲.近红外光谱法快速测定烟草中的钙.烟草科技,2000,2:31-33
    47.阮秋奇.数字图像处理学.北京:电子工业出版社,2003
    48.桑素平,杨锦忠,张晓艳.种植密度对芸豆叶形态特征影响的图像处理研究.山西农业大学学报,2006,26(3):230-233
    49.束茹欣,王国东,张建平,倪力军.国产烤烟烟叶的NIRS模式识别.烟草科技,2006,8:12-16
    50.司清林,田瑞昌,成东梅,高燕,彭涛,赵伟锋.模糊评分法在小麦品种评价中的应用.现代农业科技,2006,4:63-64
    51.司秀丽,吴巍,赵新子,彭占武,袁洪印.玉米种子纯度的计算机图像识别.吉林农业大学学报,2005,27(6):694-697
    52.宋学芬,姚自鸣,杜法礼.砀山酥梨质量的模糊综合评判.安徽农业科学,2000,28(4):528-529
    53.苏光大.微机图像处理系统.北京:清华大学出版社,2000
    54.汤卫东,刘杰明,陈吉洪.苹果品质的模糊综合评价.食品与药品,2005,7(9A):60-63
    55.唐向阳,张勇,李江有,黄岗,杨松,关宏.机器视觉关键技术的现状及应用展望.昆明理工大学学报(理工版),2004,29(2):36-39
    56.陶晓秋,杜顺莲,李维娜.近红外光谱法预测烟草中硫含量的研究.烟草科技,2004,8:33-35
    57.滕秀金,曾晓栋,高凌翔,王养民,王文英.陶瓷标准色板的研制.计量学报,1995,16(2):93-97
    58.王峰,詹小四,陈蕴.图像处理中光学因素的影响.洁净煤技术,2005,11(1):75-77
    59.王国庆,王芳,陈达,苏庆德,邵学广.近红外光谱技术用于复杂植物样品中无机离子测定的新方法.光谱学与光谱分析,2004,24(12):1540-1542
    60.王家俊,梁逸曾,汪帆.偏最小二乘法结合傅里叶变换近红外光谱同时测定卷烟焦油、烟碱和一氧化碳的释放量.分析化学研究报告,2005,33(6):793-797
    61.王家俊,罗丽萍,李辉,杨勇.FT-NIR光谱法同时测定烟草根、茎、叶中的氮、磷、氯和钾.烟草科技,2004,12:24-27
    62.王小伟,侯彩云.小麦粉中三价铁检测方法的研究.中国粮油学报,2006,21(5):144-147
    63.王勇,姬长英,饶洪辉.基于RGB颜色特征的棉花识别研究.中国农业工程学会2005年学术年会论文集,317-319
    64.王宇,龙兴武.基于小波的不均匀光照的校正.光学技术,2005,31(5):726-728
    65.王宇,龙兴武.基于小波的不均匀光照的校正.光学技术,2005,31(5):726-728
    66.吴国雄,陈武凡.图像的模糊增强与聚类分割.小型微型计算机系统,1994,15(11):21-26
    67.吴建峰,林业贵.土壤微生物在促进植物生长方面的作用.土壤,2001,(1):18-21
    68.肖协忠,李德臣,郭承芳等.烟草化学.北京:中国农业科技出版社,1997
    69.谢程刚,刘泓滨.烟叶收购数据库管理软件的开发与优化.昆明理工大学学报(理工版),2004,29(1):68-72
    70.谢月华.重视“三农”问题,做好出口农产品检验检疫工作.2003,3:4-6
    71.徐贵力,毛罕平,胡永光.基于计算机视觉技术参考物法测量叶片面积.农业工程学报,2002,18(1):154-158
    72.徐歆恺,郭楠,葛庆平,郭新宇.计算机视觉技术在作物形态测量中的应用.计算机工程与设计,2006,27(7):1134-1137
    73.薛河儒,麻硕士,裴喜春.一种基于数学形态学及融合技术的彩色图像分割方法.中国图象图形学报,2006,11(12):1764-1767
    74.阎瑞琼,韩力群,陈晋东.计算机技术在烟叶检测与分级领域的应用.烟草科技,2001,3:13-15
    75.杨劲峰,陈清,韩晓日,李晓林,Liebig H P.数字图像处理技术在蔬菜叶面积测量中的应用.农业工程学报,2002,18(4):155-158
    76.杨小冬,宁新宝,谭台哲.自动指纹识别系统图像分割算法的研究.南京大学学报(自然科学),2004,40(4):424-431
    77.杨治明,王晓蓉,陈应祖.基于BP人工神经网络图像分割技术.计算机应用,2006,26(12):145-146
    78.殷明,张义.会理烤烟收购实现“四满意”.凉山日报(汉),2005年8月27日第001版
    79.殷勇, 吴守一.遗传RBF神经网络在卷烟香气质量评定中的应用.农业工程学报,2001,17(6):147-149
    80.曾祥忠.机器视觉及其应用(第二讲,图像采集技术)—机器视觉基础.应用光学,2006,6:5-9
    81.曾志明.用计算机快速检测山羊绒与羊毛混纺比.毛纺科技,2005,10:44-46
    82.张德国,胡海虹,梁继民.基于模糊积分的图像分割算法融合.系统工程与电子技术,2006,28(10):1480-1483
    83.张帆,方如明,蔡健荣.标准烟叶数据库的图像检索.农业机械学报,2001,32(1):66-68,71
    84.张帆,方如明,蔡健荣.基于人工神经网络技术提取烟叶质量特征值.农业机械学报,2000,31(6):61-64
    85.张帆,张新红,张彤.模糊数学在烟叶分级中的应用.中国烟草学报,2002,8(3),44-48
    86.张峰,张晓东,赵冬玲,严泰来.利用图像处理技术进行苹果外观检测.中国农业大学学报,2006,11(6):96-99
    87.张桂林,陈益新,李强,曹伟烜.基于灰度与边缘的图像分割方法.华中理工大学学报,1994,22(5):7-10
    88.张恒敢,杨四军,顾克军,李德民.应用数字图像处理测定作物叶面积的简便方法.江苏农业科学,2002,3:20-22
    89.张洪霞,任宪忠.农产品检测分级方法探讨.农业机械化与电气化,2003,1:16
    90.张惠民,韩力群,段正刚.基于图像特征的烟叶分级.武汉大学学报·信息科学版,2003,28(3):359-362
    91.张建林.严肃收购纪律维护烟农利益.商洛日报,2005年7月20日第001版
    92.张建平,吴守一,方如明,蔡健荣.农产品质量的计算机辅助检验与分级(第Ⅱ报)烟叶自动分级模型的建立与训练.农业工程学报,1997,13(6):180-183
    93.张建平,吴守一,方如明.农产品质量的计算机辅助检验与分级(第Ⅰ报)烟叶外观品质特征的定量检验.农业工程学报,1996,12(3):159-162
    94.张建平,谢雯燕,束茹欣等.烟草化学成分的进红外快速定量分析研究.烟草科技,1999,3:37-38
    95.张建平.计算机视觉在烟草行业中的研究及应用展望.烟草科技,1998,2:22-23
    96.张磊,朱斌,南立军.基于模糊均值聚类算法的图像分割.装甲兵工程学院学报,2006,20(4):68-70;
    97.张书慧,张晓梅.苹果、桃等农副产品品质检测与分级图像处理系统的研究.农业工程学报.1999,15(1):201-204
    98.张弦,严衍录.用图形图像技术处理作物图像提取作物形态信息.中国农业科学,1994,29(5):89-94
    99.张晓宇,杨锦忠.数字图像处理在玉米发芽试验中的应用研究.玉米科学,2005,13(2):109-111
    100.章程辉,刘纯青,刘木华,王群.应用X射线图像技术检测红毛丹内部品质的试验研究.江西农业大学学报,2005,27(6):939-943
    101.章程辉,徐志,韩东海.红毛丹组织X射线衰减系数与其密度的相关性.热带作物学报,2006,27(3):94-96
    102.章家恩,刘文高.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,2002,11(2):140-143
    103.赵杰文,刘木华,杨国彬.基于HIS颜色特征的田间成熟番茄识别技术.农业机械学报,2004,35(5):122-125
    104.赵晓霞.计算机视觉技术在农业中的应用.科技情报开发与经济,2004,14(4):124-126
    105.赵学增,杨延竹,王伟杰,吴羡.基于模糊神经网络的苗木地径定位方法研究.中国图象图形学报,2003,8(A)(6):670-673
    106.赵忠旭,沈兰荪,卫保国,王爱民,王永刚.基于人工神经网络的彩色校正方法研究.中国图象图形学报,2000,5(A版)(9):785-789
    107.中华人民共和国国家标准,GB2635-92,烤烟;《烤烟》第2号修改单(质技监标函[2000]51号)
    108.周国清,唐晓芳.计算机视觉及其应用.中国计算机用户,1996,8:5-6,10
    109.周汉平,王信民,宋纪真,蔡宪杰,奚家勤,尹启生.烟叶结构和油分的近红外光谱预测.烟草科技,2000,1:10-14,29
    110.周红,刘光蓉,管庶安.数字图像处理技术在玉米种子轮廓检测中的应用.种子,2004,23(9):90-92
    111.周红,刘光蓉.计算机视觉及其在谷物籽粒检测分级中的应用.种子,2004, 23(7):56-58
    112.周平,汪亚明,赵匀.基于颜色分量运算与色域压缩的杂草实时检测方法.农业机械学报,2007,38(1):116-119
    113.周淑平,李卫红,程贵敏,田晓霞.运用近红外光谱法测定烤烟中蛋白质含量的数学模型.贵州农业科学,2004,32(6):25-26
    114.周文,韩力群,李锐.计算机图像处理技术在烤烟烟叶形状特征提取中的应用.烟草科技,2000,1:12-14
    115.朱尊权.烟叶的可用性与卷烟的安全性.烟草科技,2000,8:3-6
    116.卓宁,孙华燕,张海江.一种新的提高CCD成像分辨率的方法.光学学报,2005,25(6):777-780
    117. Adams J A, Jewell D, Jorgensen K, Mickley M, Newman J M. Image Capture and Analysis for Micromolecular Crystal Growth Using RoboMicroscopeMII. JALA (Automation Review), 2002, 7(6): 36-40
    118. Adamsen F J, Coffelt T A, Nelson J M, Barnes E M, Rice R C. Method for using images from a color digital camera to estimate flower number. Crop Science, 2000, 40:704-709
    119. Ahmad I S, Reid J F, Paulsen M R, Sinclair J B. Color classifier for symptomatic soybean seeds using image processing. Plant Disease, 1999, 83(4): 320-327
    120. Aitkenhead M J, Dalgetty I A, Mullins C E, McDonald A J S, Strachan N J C. Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture, 2003, 39: 157-171
    121. Aleixos N, Blasco J, Navarron F, et al. Multi-spectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 2002, 33 (2): 121-37
    122. Barcelon E G, Tojo S, Watanabe K. X-ray Computed tomography for Internal Quality Evaluation of Peaches Journal of Agricultural Engineering Research,1999, 73: 323-330
    123. Campadelli P, Medici D, Schettini R. Color image segmentation using Hopfield networks. Image Vision Computer,1997, 15:161-166
    124. Celenk M. A color clustering technique for image segmentation. Graphical Models Image Process, 1990, 52 (3): 145-170
    125. Cheng H D, Jiang X H. Color image segmentation: Advances and prospects. Pattern Recognition, 2001, 34(9): 2259-2281
    126.Cho H K, Paek K H. Feasibility of grading dried burley tobacco leaves using machine vision. Journal of the Korean Society for Agricultural Machinery, 1997, 22(1): 30-40
    127.Clevers J G P W. The use of imaging spectrometry for agricultural applications. ISPRS Journal of Photogrammetry & Remote Sensing, 1999, (54): 299-304
    128.Ding K. Shape feature extraction and classification of food material using computer vision. Trans ASAE, 1994, 37 (5): 1537-1545
    129.Du C J, Sun D W. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology, 2004, 15:230-249
    130.Ducournau S, Feutry A, Plainchault P, Revollon P, Vigouroux B, Wagner M H. An image acquisition system for automated monitoring of the germination rate of sunflower seeds. Computers and Electronics in Agriculture, 2004,44: 89-202
    131.Fernandez L, Castillero C, Aguilera J M. An application of image analysis to dehydration of apple discs. Journal of Food Engineering, 2005, 67(1): 185-193
    132.Flickner M, Sawhney H, Niblack W. Query by image and video content: The QBIC system. IEEE Computer, 1995, 28(9): 23-32
    133.Franz E, Gebhardt M, Unkcesbay K, et al. The use of local spectral properties of leaves as an aid for identifying weed seedings in digital images. Transactions of the ASAE, 1991,34(2):682-687
    134.Granitto P M, Navone H D, Verdes P F, Ceccatto H A. Weed seeds identification by machine vision. Computers and Electronics in Agriculture, 2002,33(2): 91-103
    135.Gunasekaran S. Computer vision technology for food quality assurance. Trends in Food Science & Technology, 1996, 7(8): 245-256
    136.Guo G D, Yu S, Ma S D, Unsupervised segmentation of color images. IEEE International Conference on Image Processing, 1998, pp. 299-302
    137.Guyer D, Yang X. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Computers and Electronics in Agriculture, 2000, 29(3): 179-194.
    138.Han Y J, Bowers S V, Dodd R B. Non-destructive detection of split-pit peaches. Transactions of the American Society of Agricultural Engineers, 1992, 35(6): 2063-2067
    139.Hemming J, Rath T. Computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agriculture Engineering Research, 2001, 78 (3): 233-243
    140.Huang C L. Parallel image segmentation using modified Hopfield model, Pattern Recognition Letter, 1992,13(5): 345-353
    141.Iwata H, Nagahashi H. Active region segmentation of color images using neural networks, Systems Computer, 1998, 29 (4): 1-10
    142Jain A K, Vailaya A. Image retrieval using color and shape. Pattern Recognition, 1996, 29(8): 1233-1244
    143 Jedra M, Khattabi N E, Limouri M, Essaid A. Recognition of seed varieties using a time-delay neural network: analysis of electrophoretic images. Computers and Electronics in Agriculture, 1999, 22(1): 1-10
    144.Kavdir I, Discrimination of sunflower, weed and soil by artificial neural networks. Computers and Electronics in Agriculture, 2004,44(2): 153-160
    145.Kim M S, Lefcourt A M, Chao K, et al. Multi-spectral detection of fecal contamination on apples based on hyper-spectral imagery: Part I. application of visible and near-infrared reflectance imaging. Transactions of the ASAE, 2002, 45(6): 2027- 2037
    146.Kim S, Schatzki T F. Apple water core sorting system using x-ray imagery: I. Algorithm development. Transactions of the American Society of Agricultural Engineers, 2000, 43(6): 1695-1702
    147.Kominakis A P, Abas Z, Maltaris I, Rogdakis E. A preliminary study of the application of artificial neural networks to prediction of milk yield in dairy sheep. Computers and Electronics in Agriculture, 2002, 35(1): 35-48
    148.Lim Y W, Lee S U. On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognition, 1990, 23 (9): 935-952.
    149.Liu Y L, Windham W R, Lawrence K C, et al. Simple algorithms for the classification of visible/near-infrared and hyperspectral imaging spectra of chicken skins, feces, and fecal contaminated skins. Applied Spectroscopy, 2003, 57 (12): 1609-1612
    150.Lo S C. Rapid classification and blend analysis of tobacco mixtures using NIR and artificial neural networks. Tobacco Chemical Research, 1995, 49: 41
    151.MacCormac J K M. On-line image processing for tobacco grading in Zimbabwe. IEEE, 1993: 327-331
    152.Meg M T. Fourier transfonn infrared micro-spectrometric solutions to quality control problems in the tobacco industry. Vibrational Spectroscopy, 1991,2:15-19
    153.Mehl P M, Chen Y R, Kim M S, et al. Development of hyper-spectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 2004, 61 (1): 67- 81
    154.Mery D, Pedreschi F. Segmentation of color food images using a robust algorithm. Journal of Food Engineering, 2005,66 (3): 353-360
    155.Morimoto T, Takeuchi T, Miyata H, Hashimoto Y. Pattern recognition of fruit shape based on the concept of chaos and neural networks. Computers and Electronics in Agriculture, 2000, 26(2): 171-186
    156.Moshou D, Vrindts E, Ketelaere D B, Baerdemaeker J D, Ramon H. A neural network based plant classifier. Computers and Electronics in Agriculture, 2001, 31(1): 5-16
    157.Novini A. Fundamentals of machine vision component selection[C]. In Food Processing Automation II -Proceedings of the1990 Conference (pp.60). Hyatt Regency, Lexington, Kentucky: ASAE, 1990
    158.Perez F, Koch C. Toward color image segmentation in analog VLSI: algorithm and hardware, Int. J. Comput.Vision ,1994,12 (1): 17-42
    159.Philipp I, Rath T. Improving plant discrimination in image processing by use of different color space transformations. Computers and Electronics in Agriculture, 2002, 35(1): 1-15
    160.Purcell L C. Soybean canopy coverage and light interception measurements using digital imagery. Crop Science, 2000,40: 834-837
    161.Sanzogni L, Kerr D. Milk production estimates using feed forward artificial neural networks. Computers and Electronics in Agriculture, 2001, 32(1): 21-30
    162.Sbeh Z B, Cohen L D. Mimoun G, Coscas G. A new approach of geodesic reconstruction for drusen segmentation in eye fundus image. IEEE Transaction on Medical Image, 2001,20(12): 1321-1333
    163.Sergeant D, Boyle R, Forbes M. Computer visual tracking of poultry. Computers and Electronics in Agriculture, 1998, 21(1): 1-18
    164.Shahin M A, Tollner E W, McClendon R W, et al. Apple classification based on surface bruises using image processing and neural networks. Transactions of the American Society of Agricultural Engineers, 2002, 45(5): 1619-1627
    165.Shimize H, Heins R D. Computer-vision-based system for plant growth analysis. Trans of the ASAE, 1995, 38(3): 959- 964
    166.Stajnko D, Lakota M, Hocevar M. Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Computers and Electronics in Agriculture, 2004, 42: 31-42
    167.Tao C W, Thompson W E, A fuzzy if- then approach to edge detection. FUZZY-IEEE 93, San-Francisco, USA, 1993, pp. 1356-1360
    168.Tollner E W, Hung Y C, Upchurch B L, et al. Relating X-ray absorption to density and water content in apples. Transactions of the American Society of Agricultural Engineers, 1992, 35(6): 1921-1929
    169.Trahanias P E, Venetsanopoulos A N. Color edge detection using vector order statistics, IEEE Trans Image Process,1993, 2 (2): 259-265
    170.Tremeau A, Borel N. A region growing and merging algorithm to color segmentation, Pattern Recognition, 1997, 30 (7):1191-1203
    171.Uchiyama T, Arbib M A, Color image segmentation using competitive learning, IEEE Trans. Pattern Anal. Mach. Intell, 1994,16 (12) :1197-1206
    172.Urena R, Rodriguez F, Berenguel M. A machine vision system for seeds germination quality evaluation using fuzzy logic. Computers and Electronics in Agriculture, 2001, 32(1): 1-20
    173.Vanhenten E J, Bontsema J. Non-destructive crop measurements by image processing for crop growth control. Journal of Agricultural Engineering Research, 1995, 61: 97- 105
    
    174.Vesanto J, Alhoniemi E. Clustering of the self-organizing map, IEEE Trans. Neural Networks, 2000,11 (3) :586-600
    175.Wen Z, Tao Y. Dual-camera NIR/MIR imaging for stem-end/calyx identification in apple defect sorting. Transactions of the ASAE, 2000, 43(2): 449- 452
    176.Woebbecke D M, Meyer G E, Von Bargen K, et al. Color indices for weed identification under various soil, residual, and lighting conditions.Transactions of the ASAE, 1995, 38(1): 259-269
    177.Xing J. Bruise detection on Jonagold apples by visible and near-infrared spectroscopy. Food Control, 2005,16 (4): 357- 361
    178.Zhang J P, Sokhansanj S, Wu S Y, et al. A transformation technique from RGB singals to the munsell system for color analysis of tobacco leaves. Computers and Electronics in Agriculture, 1998,19(2): 155-166
    179.Zhang J, Sokhansanj S, Wu S, et al. A trainable grading system for tobacco leaves. Computers and Electronics in agriculture, 1997,16(3): 231-244
    180.Zheng C, Sun D W, Zheng L. Recent developments and applications of image features for food quality evaluation and inspection-a review. Trends in Food Science & Technology, 2006,17(12): 642-655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700