β-FeSi_2基热电材料电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用快速凝固、悬浮熔炼、粉末冶金等方法制备了β-FeSi_2基热电材料,通过测试电学性能、XRD、SEM等手段,研究了β-FeSi_2基热电材料的电学性能和相变情况,讨论进一步提高β-FeSi_2基合金热电性能的可能性。
     对于提高β-FeSi_2基热电材料电学性能的研究表明,Co是较好的n型掺杂剂,而Mn是较好的p型掺杂剂。在各种掺杂配比中,0.67at.%的Co掺杂和2.67at.%的Mn掺杂样品,分别达到各掺杂剂下的最大功率因子,相对于未经掺杂的β-FeSi_2有较大的提高。
     对Fe_(1-x)Sm_xSi_2的研究表明,Sm在FeSi_2基热电材料中是以SmSi_2金属相存在,随着Sm量的增加,β-FeSi_2基材料由p型向n型转化,并在含Sm量为13.3at.%时其功率因子达到最大值,为β-FeSi_2的5倍以上。对含Sm的二元金属掺杂研究可以看出,材料的电阻率是由掺入的总原子数决定的。
     轻元素(如N、C)的掺杂可以提高β-FeSi_2基热电材料的α值,而对电阻率的影响很小。Ge的掺入,在提高p型β-FeSi_2基热电材料的α值同时还降低了ρ值,是较佳的一种掺杂剂,其功率因子可达β-FeSi_2的10倍以上。
     快凝热压法通过细化晶粒使β-FeSi_2基热电材料的电学性能得以大幅度提高,并缩短退火时间。但Sm的存在会使FeSi_2基中生成β相的时间延长。
β-FeSi2 based thermoelectric materials were prepared by melt-spinning(MS), levetation-melting(LM) and mechanical alloyiny(MA). Their thermoelectric properties and the mechanism of (3 phase transition were studied by means of the measurements of transport properties, XRD analysis, SEM observations.
    On the studying of transport properties of p-FeSi2 based alloys, it was observed that cobalt is a effective n-typed dopant while mangnese benefits to the p-typed alloy. It was found that the p-FeSi2 based alloys with 0.67t.% cobalt for n type or 2.67at.% mangnese for p type have the maximum of power factor.
    The SmSi2 phase was found in Fei.xSmxSi2. With the increasing of x, Fe1-xSmxSi2 converts into n type from p type and Feo.6Smo.4Si2 alloy has the maximum power factor. As for as the alloys with two metal dopants are concerned, the transport properties are controlled by the total atom number while the element Sm plays more important roll in the decreasing of electrical resistivity.
    The β-FeSi2 based alloys doped with light elements (N, C) or germanium have high Seebeck coefficients and the power factors, for example, the power factor of alloy Feo.9iCro.o9Sii.6Geo.4 is 10 times as high as p-FeSi2
    Rapidly solidified β-FeSi2 thermoelectric materials have better transport properties and need shorter annealing time because more finer structure was produced by this way. The alloying of Sm in p-FeSi2 alloys slows down the p phase transformation.
引文
1. Vedernikov M V, Iordanishvili E K. A. F. Ioffe and origin of modern semiconductor thermoelectric energy coversion. 17th International Conference on Thermoelectrics, 1998, pp.37-42
    2. Fettig R. A view to recent developments in thermoelectric sensors. 15th International Conference on Thermoelectrics. 1996, pp.315-320
    3. Ioffe A V, Ioffee A E. Some relationship about the value of the thermal conductivity of semiconductors [J]. Doke Akad Nank, SSSR, 1954, 97:821-822
    4. Rowe D M. CRC Handbook of Thermoelectric, CRC Press, 1995
    5. Goldsmid H J. Electonic Refrigeratation, London, 1986
    6.[日]犬石嘉雄、滨川圭弘、白藤纯嗣,半导体物理,周绍康等译,科学技术出版社会,1986
    7.徐德胜 编著,半导体制冷与应用技术,上海交通技术出版社,上海,1992
    8. Sharp J W, Goldsmid H J. Boundary scattering of charge carriers and phonons. 18th International Conference on Thermoelectric, 1999, pp.709-712
    9. Rosi F D. Thermoelectricity and thermoelectric power generation[J]. Solid-State Electrics, 1968, 11:833-868
    10. Mateera N, Nicutescu H, Schlennot J. J Appl Phys, 1998, 83(6):311
    11. Ioffe A F. Semiconductor thermoelements and thermoelectric cooling. London: Infosearch, 1957
    
    
    12. Singh D J, Fornari M, Feldman J L, Mazin I I. First principle studies of novel thermoelectric materials. 18th International Conference on thermoelectrics, 1999, pp.448-450
    13. Nolas G S, Slack G A, Cohn J L, Schujman S B. The next generation of thermoelectric materials. 17th International Conference on Thermoelectrics. 1998, pp.294-297
    14. Rowe D W, Shuka U S. The effect of phonon grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy[J]. J Appl Phys, 1981, 52(12): 7421-7426
    15. Anatychuk L I. Generalizaations in physics of thermoelectric energy conversion and new trends of thermoelectricity development. 17th International Conference on Thermoelectrics, 1998, pp.9-16
    16.田莳 编著,功能材料,北京航空航天出版社,北京,1995
    17. Dresselhaus M S. Careers in thermoelectricity. 17th International Conference on Thermoelectrics, 1998, 29-32
    18. Chasmar R P, Straton R J. Thermoelectric figure of merit and its relationship to thermoelectric generator. J Electron Control,1959, 7: 52-72
    19. Mahan G D. Figure of merit for thermoelectrics. J Appl Phys, 1989, 65: 1834-1842
    20. Bhandari C M, Rowe D M. Proc. 5th International Conference on Thermoelectric Energy Conversion ,Arlington,Texas, 1984
    21. Uher C, Goldsmid H J. Seperation of the electronic and lattic thermal conductivities in bismuth crystals. Phys Stat Sol, 1974, 65: 765-772
    22. Airapetyants S V, Efimova B A, Stavitskaya T S, Stilbans L S, Syoeva L M. Zh Tech, 1957, F12(27);2169
    23. Kagan V D, Red'ko N A. Phonon thermal conductivity of the thermoelectric Bi-Sb alloys. Proceeding of the XIV International Conference on Thermoelectrics,St Petersburg, 1995, pp.78-81
    24. 高敏,Rowe D M. SiGe/GaP 合金的高温退火特性[J].半导体学报,1990,11(9):713-717
    25. Sales B C, Mandrus D, Williams R K. Filled Skutterudite antimonides: a new class of thermoelectric materials. Science, 1996, 272: 1325~132
    26. Lenoir B, Dauscher A, Devaux X, Martin-Lopez R, Ravich Yu I, Scherrer H,Scherrer S. Bi-Sb alloys: an update. 15th International Conference Thermoelectrics, 1996, pp. 1-13
    27. Yim W M, Rosi F D. Compound tellurides and their alloys for Peltier cooling-a review[J]. Solid State Electronics, 1972, 15: 1121-1140
    28. Jain A L. Temperature dependence of the electrical properities of bismuth-antimony alloys[J]. Phys Rev, 1958,114(6):1518-1528
    29. Golin S. Band model for bismuth-antimony[J]. Phys Rev, 1968, 176(3):830-832
    
    
    30. Brandt N B, Svistova E A. Electron transitions in strong magnetic fields[J]. J Low Temp Phys, 1970, 2:1-35
    31. Smith G E, Wolfe R. Thermoelectric properties of bismuth-antimony alloys[J]. J Appl Phys, 1962, 33: 841-846
    32. Yim W M, Amith A. Bi-Sb alloys for magneto-thermoelectric and thermoelectric cooling[J]. Solid State Electrics, 1972, 15: 1141-1165
    33. Guff K F, Horst R B, Weaver J L, Hawkins S R, Kooi C F, Enslow G M. The thermomagnetic figure of merit and ettingshausen cooling in Bi-Sb alloys[J]. Appl Phys Lett, 1963, 2:145-146
    34. Yazaki T. Thermal conductivity of bismuth-antimony alloy single crystals[J]. J Phys Soc Jpn, 1968, 25: 1054-1060
    35.高敏、张景韶、(英)罗(D.M.Rowe)编著,温差电转换及其应用,兵器工业出版社,北京1996
    36. Tae Sung Choi. Formation of PbTe intermetallic compound by mechanical alloying of elemental Pb and Te powders[J].Scrita Metallurgica et Materialia, 1995,V32 (4):407
    37. Masaki. Preparation and evaluation of PbTe-FGM by joining melt-grown materials[C]. IEEE, 1997. pp.379-381
    38. Trumbore F A, Tartaglia A A. Resistivities and hole mobilities in very heavily doped germanium[J]. J Appl Phys, 1958, 29:1511
    39. Glen A Slack, Moayyed A Hussain. The maximum possible conversion efficiency of silicon-germanlum thermoelectric generators[J]. J Appl Phys, 1991, 70: 2694-2718
    40. Maurice Glicksman. Mobility of electrons in germanium-silicon alloys[J]. Phys Rev, 1958, 111: 125-128
    41. Alfred Levttas. Electric properties of germanium-silicon alloys[J]. Phys Rev, 1955, 99(6): 1810-1814
    42. Dresselhaus G, Dresselhaus M S. Fourier expansion for the electric energy bands in silicon and germanium[J]. Phys Rev, 1967,160(3):649-679
    43. Pisharody R K, Gravey L P. 13th Intersoc Energy Cony Eng Conf, San Diego, 1978, pp. 1969-1983
    44. Fleurial J P, Borshchevsky A, Vandersomde J W. 10th Int Conf on Thermoelectrics, Cardiff UR, 1991, pp.156-162
    45. Vandersand J W, Wood C, Draper S L. Mat Res Soc Symp Proc, 1987, pp.97-347
    46. Vandersand J W, Borshchevsky A, Parker J, Wood C. Proc 7th Inter Conf on Thermoelectric Energy Conversion, Arlington Texas, 1989, pp.76-78
    47. Rowe D M, Min G, Williams S. Proc 12th European Conf on Thermophysical Properities, Vienna, Austria, 1990
    
    
    48.高敏,Rowe D M.SiGe:GaP合金铁微观结构和温差特性[J].材料研究进展,7(5):385-390
    49.高敏,Rowe D M.SiGe/GaP合金的高温退火特性[J].半导体学报,1990,11(9):713-717
    50. Helmers L. Graded and stacked thermoelectric generators-- numerical description and maximization of output power[J]. Mater Sci Eng B, Solid-State Mater Adv Techno. (Switzerland), 1998,V, B56(1): 60-68
    51. Koshigoe M,. Thermoelectric properties of segmented Bi_2Te_3/PbTe[C]. IEEE, 1998. pp.479-482
    52. Schilz J. Bismuth-telluride/iron-disilicide segmented thermoelectric elements: patterning, preparation and properties[C]. IEEE, 1997. pp.375-378
    53. Kang Y S. Evaluation of monolithic and segmented thermoelectric materials by using large-temperature-span[C]. IEEE, 1997. pp.390-393
    54. Jean-Pierre Fleurials. New materials and devices for thermoelectric applications[C]. IEEE, 1997, V2, pp.1080-1085
    55. Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit[J]. Phys Rev, 1993, B47: 12727-12731
    56.夏建白、朱邦芬 著,黄昆 审订,半导体超晶格物理 上海科学技术出版社,上海,1995
    57. Broido D A, Reinecke T L. Thermoelectric figure of merit of quantum wire superlattices[J]. Appl Phys Lett, 1995, 67(1):100-102
    58. Alexander Balandin, Wang K L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells[J]. J Appl Phys, 1998, 84:6149-6153
    59. Koga T, Sun X, Cronin S B, Dresselhaus M S. Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices[J]. Appl Phys Lett, 1998, 73(20): 2950-2952
    60. Hicks L D, Harman T C, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials[J]. Appl Phys Lett, 1993, 63(23): 3230-3232
    61. Sofo J O, Mahan G D. Thermoelectric figure of superlattices[J]. Appl Phys Lett, 1994, 65(21): 2690-2692
    62. Lin-Chung P J, Reinecke T L. Thermoelectric figurt of merit of composite superlattice systems[J]. Phys Rev, 1995, B51: 13244-13248
    63. Hicks L D, Harman T C, Sun X, Dresselhaus M S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit[J]. Phys Rev, 1996,B53: R10493-R10496
    
    
    64. Venkatasubramanian R, Colpitts T, Watko E, Lamvik M, El-Masry N. MOCVD of Bi_2Te_3, Sb_2Fte_3aand their superlattice structures for thin-film thermoelectric applications[J]. Journal of Crystal Growth, 1997, 170:817-821
    65. Alexander Balandin, Kang L Wang. Significant decrease of the lattic thermal conductivity due to phonon confinement in a free-standing semiconductor quntum well[J]. Phys Rev, 1998, B58:1544-1549
    66. Harman T C, Spears D L, Manfra M J. High thermoelectric figures of merit in PbTe quantum wells[J]. Journal of Electric Materials, 1996, 25: 1121-1127
    67. Gorea O S, Tatarinskaya O M, Keyanu A S. CAS'95 Proceedings Sinaia, Romania, 1995, pp. 415-418.
    68. Mahan G D, Lyon H B Jr. Thermoelectric devices using semiconductor quantum wells[J]. J Appl Phys, 1994, 76(3):1899-1901
    69. Broido D A, Reinecke T L. Thermoelectric transport in quntum cwell superlattices[J]. Appl Phys Lett, 1997, 70(21):2834-2386
    70. Broido D A, Reinecke T L. Comment on "Use of quantum well superlattices to obtain high figure of merit from nonconventional thermoelectric materials[J]. Appl Phys Lett, 1995, 67(8): 1170-1171
    71. Sharp J W, Jones E C, Williams R K. Thermoelectric properties of CoSb_3 and related alloys. J Appl Phys, 1995,78(2): 1013~1018
    72. Nolas G S, Cohn J L, Slack G A. Effect of partial void filling on the lattice thermal conductivity of Skutterudites. Phys Rev B, 1998, 58(1): 164~170
    73. Singh David J, Pickett Warren E. Skutterudite antimonides quasilinear bands and unusual transport. Phys Rev B, 1994, 50(15): 11235~11238
    74. Morelli Donald T, Meisner Gregory P. Low temperature properties of the filled Skutterudite CeFe_4Sb_(12). J Appl Phys, 1995, 77(8): 3777~3781
    75. Mandrus D, Miglior A, Darling T W, et al. Electronic transport in lightly doped CoSb_3. Phys Rew B, 1995, 52(7): 4926~4930
    76. Morelli D T, Caillat T, Fleurial J -P, et al. Low-temperature transport properties of p-type CoSb_3. Phys Rev B, 1995, 51(15): 9622~9628
    77. Caillat T, Borshchevsky A, Fleurial J -P. Properties of single cryatalline semicoducting CoSb_3. J Appl Phys, 1996, 80(8): 4442~4449
    78. Caillat T, Kullech J, Borshchevsky A, Fleurial J -P. Preparation and thermoelectric properties of the Skutterudite-related phase Ru_(0.5)Pd_(0.5) Sb_3. J Appl Phys, 1996, 79(11):8419~8426
    
    
    79. Sales B C, Mandrus D, Williams R K. Filled Skutterudite antimonides: a new class of thermoelectric materials. Science, 1996, 272: 1325~1328
    80. Kasper J S, Hagenmuller P, Pouchard M, Cros C. Clathrate structure of silicon Na_8Si_(40) (x<11). Science, 1965, 150: 1713~1714
    81. Iversen Bo B, Palmgvist Anders E C, Cox David E, et al. Why are clathrates good candidates for thermoelectric materials. J Solid State Chem, 2000, 149: 455~458
    82. Nolas G S, Slack G A, Cohn J L, Schujman S B. The next generation of thermoelectric materials. 17th International Conference on thermoelectrics, 1998,294~297
    83. Chapon L, Ravot D, Tedence J C, et al. Skutterudite based new thermoelectric compounds. 18th International Conference on Thermoelectrics, 1999, 13~15
    84. Yoshiyuki Kawaharada, Ken Kurosaki, Masayoshi Uno, et al. Thermoelectric properities of CoSb_3. J Alloys Comp, 2001, 315: 193~197
    85. Singh David J, Fornari M, Feldman J L, Mazin I I. First principles studies of novel thermoelectric materials. 18th International Conference on Thermoelectrics, 1999, 448~450
    86. Kakuei Matsubara. Perspectives of new materials research for thermoelectric applications. 17th International Conference on Thermoelectrics, 1998, 1~8
    87. Watcharapasorn A, DeMattei R C, Feigelson R S. Thermoelectric properties of some phosphorus-based Skutterudite compounds. 18th International Conference on Thermoelectrics, 1999, 462~464
    88. Nolas G C, Kaeser M, Littleton Ⅳ R T, Triff T M. High figure of merit in partially filled ytterbium Skutterudite materials. Appl Phys Lett, 2000, 77(12): 1855~1857
    89. Hirotsugu Takizawa, Keiichi Miura, Masayuki Ito, et al. Atom insertion into the CoSb_3 Skutterudite host lattice under high pressure. J Alloys Comp, 1999, 282: 79~83
    90. Ackermann J, Wold A. The preparation and characterization of the cobalt Skutterudites CoP_3, CoAs_3 and CoSb_3. J Phys Chem Solids, 1977, 38: 1013~1016
    91. Jeitschko W, Braun D. LaFe_4P_(12) with filled CoAs_3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Cryst B, 1977, 33: 3401~3406
    92. Slack G A ,Tsoukala V G. Some properties of semiconducting IrSb_3. J Appl Phys, 1994, 70(3): 1665~1671
    93. Keppens V, Mandrus D, Sales B C, et al. Localized vibrational modes in metallic solids. Nature, 1998, 395: 876~878
    94. Gao M, Rowe D M. A serious limitation to the phonon glass electron crystal (PGEC) approach to improved thermoelectric materials. J Mate Sci Lett, 1999, 18: 1305~1306
    95. Chapon L, Ravot D, Tedenac J C. Nickel-substituted skutterudites: synthesis, structural and electrical properties. J Alloys Comp, 1999, 282: 58~63
    
    
    96. Dilley N R, Bauer E D, Maple M B, et al. Thermoelectric and optical properties of the filled skutterudite YbFe_4Sb_(12). Phys Rev B, 2000, 61(7): 4608~4609
    97. Caillat T, Flourial J P, Borshchevsky A. Proceedings ICT'96, edited by Caillat T, Borshchevsky A, Flourial J P
    98. Kim Seong-Gon, Mazin I I, Singh D J. First-principles study of Zn-Sb thermoelectrics[J]. Phys Rev, 1998, B57:6199-6203
    99. Callat T, Fleurial J -P, Borshchevsky A. Preparation and thermoelectric properties of semiconducting Zn_4Te_3[J]. J Phys Chem Solids, 1997, 58: 1119-1125
    100.朱铁军,赵新兵,胡淑红,邬震泰,周邦昌.新型热电材料β-Zn_4Te_3的电学性能[J].稀有金属材料与工程,2001,30:187-189
    101. Ware R M, McNeill D J. Proc IEE, 1964, 111: 178
    102. Nishida I. Study of semiconductor-to-metal transition in Mn-doped FeSi_2[J]. Phys. Rev., 1973, B7: 2710-2713
    103. Kojima T, Shkata M, Nishida I. Formation of β-FeSi_2 from the sintered eutectic alloy FeSi-Fe_2Si_5 doped with cobalt[J]. J. Less-Common Metals, 1990, 159:299-305
    104. Isamu Yamanchi, Takashi Okamoto, Hajime Ohata and Itsuo Ohnaka. β-phase transformation and thermoelectric power in FeSi_2 and Fe_2Si_5 based alloys containing small amounts of Cu [J]. J. Alloys and Compounds, 1997, 260: 162-171
    105. Zhao X B, Zhu T J, Hu S H, Zhou B C, Wu Z T. Transport properties of rapid solidified Fe-Si-Mn-Cu thermoelectric alloys[J]. Journal of Alloys and Compounds, 2000, 306: 303-306
    106. Takeshi Negase, Isamu Yamauchi, Itsuo Ohnaka. Effect of rapid solidification on microstructure of various Fe_(29.5-x)Si_(70.5-x) alloys[J]. J. Alloys Comp., 2000, 312: 295-301
    107. Ohta Y, Miura S, Mishima Y. Thermoelectric semiconductor iron disilicides produced by sintering elemental powders[J]. Intermetallics, 1999, 7: 1203-1210
    108. Birkholz U, Schelm J. Mechanism of electrical conduction in β-FeSi_2[J]. Phys. Stat. Sol., 1968, 27: 413-425
    109. Kakuei Matsubara. Perspectives of new materials research for thermoelectric applications. 17th International Conference on Thermoelectrics, 1998, p. 1-8
    110. Christensen N E. Electronic structure of β-FeSi_2[J]. Phys. Rev., 1990, B42: 7148-7153
    111. Hiroahi Nagai. Effects of mechanical alloying and grinding on the preparation and thermoelectric properties of β-FeSi_2[J]. Mater. Trans., JIM, 1995, 136(2): 363-372
    112. Isoda Y, Shinohara Y, Imai Y, Nishida I, Ohashi O. Thermoelectric properties of boron doped iron disilicide[J]. 17th International Conference on Thermoelectrics, 1998, p.390-393
    
    
    113. Cho W S, Park K, Choi S K and Yoon Y S. Thermoelectric properties of thermoelectric modules consisted of porouos FeSi_2 based compounds fabricated by pressureless sintering [J]. Materials Science and Engineering, 2000, B76: 200-205
    114. Rowe D W, Shuka U S. The effect of phonon grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy[J]. J Appl Phys, 1981, 52(12): 7421-7426
    115. Mikio Ito, H Iroshi nagai, Shigeru Katsuyama, Kazuhiko Majima. Effects of Ti, Nb, and Zr doping on thermoelectric performance of β-FeSi_2[J]. J. Alloys Comp. 2001, 315: 251-258
    116. Masashi Komabayashi, Ken-ichi Hijikata, Shunji Ido. Effects of some additives on thermoelectric properties of FeSi_2 thin films[J]. Jpn J Appl Phys, 1991, 30(2):331-334
    117. Tokiai T, Uesugi T, Nosaka M, Hirayama A, Ito K, Koumoto K. Thermoelectric properties of Mn-doped iron disilicide ceramics fabricated from radio-frequency plasms-treated fine powers[J]. J Mater Sci, 1997,32: 3007-3011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700