Bi_2Te_3体系的材料制备、晶体结构及热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bi2Te3基半导体合金是目前已知的室温附近性能最佳的热电材料,其块体的热电优值ZT在1左右。已有的研究表明,对Bi2Te3基合金的相组成和微观结构进行合理的优化可以有效提高其热电传输性能。本文采用真空熔炼、溶剂热等方法合成了不同化学组分的微米级和纳米级合金粉末,结合放电等离子烧结、热挤压烧结等手段制备出了块体Bi2Te3基半导体合金,系统研究了其微观结构和热电性能。
     采用真空熔炼—高能球磨—放电等离子烧结的方法制备了块体的Bi2Te3基合金,研究了Sb、Se的掺杂量对其热电性能的影响,确定元素的最佳掺量。结果表明,固溶体Bi2(Te1-xSex)3表现出n型半导体特性,x值在0.1-0.15区间时试样具有最佳的热电性能,其热电优值ZT为0.62;固溶体(BixSb1-x)2Te3随x值的增大其半导体的p/n特性会发生变化,当x值在0.2左右时试样表现为p型半导体特性,其最大的热电优值ZT为0.91。
     采用水热法合成出了Bi2Te3纳米合金粉末,研究了不同的反应条件对产物组成、结构的影响。X射线衍射和SEM分析的结果表明,反应温度和反应时间对产物有重要影响,高的反应温度和较长的反应时间有利于反应的完全进行,但不利于获得粒径细小的产物。在反应温度为120℃,反应时间为20h时,合成出单相的Bi2Te3,其颗粒尺寸在100-500nm范围内。以水热法合成出了三元化合物Bi2(Te1-xSex)3和(BixSb1-x)2Te3,通过对产物的物相分析发现,水热合成的化合物主要是结构相同、晶格常数存在差异的两相合金粉末,化合物为层片状六面体结构,其颗粒粒径在几百个纳米左右,厚度在几十个纳米范围内。
     将真空熔炼—球磨得到的微米级粉末和水热合成得到的纳米级粉末按不同比例均匀混合,采用放电等离子烧结的方法制备成设计组分为Bi2(Te0.90Se0.10)3和(Bi0.2Sbo.8)2Te3的块体试样,研究了纳米粉末含量对化合物结构和热电传输性能的影响规律。结果表明,纳米粉末的含量变化显著影响了Bi2Te3基材料的微观结构和热电性能。试样的微观结构为层片状,在尺寸较大的晶粒层中穿插着一些细小的晶粒,试样具有较高的致密度。对于Bi2(Teo.90Seo.10)3试样,试样表现为n型半导体特性,纳米粉末掺加量为12%时,其热电性能达到最佳为0.74。对于(Bi0.2Sb0.8)2Te3试样,材料表现为p型半导体特性,试样在纳米粉末掺杂量为9%时,ZT值达到最佳为1.22。
     Bi2Te3基合金的微观结构中晶粒排布具有一定的取向性,合金表现出热电性能各向异性的特点,所以单晶体的热电性能一般优于多晶体,但其力学性能很差限制了它的应用。提高多晶体的晶粒排布取向程度可以在提高材料力学性能的同时获得类似单晶体的高热电性能。采用粉体热挤压的方式制备了多晶n型Bi2Te3基块体材料,根据X射线衍射结果计算其取向因子最高可达0.49。与区熔的单晶块体相比,热挤压样品的机械性能有了大幅度的提高,其抗折强度为58MPa,是区熔试样的4倍。通过对挤压模具的改进和挤压工艺的优化,显著减小了热挤压试样中由于结构梯度造成的热电性能不均匀的现象。热挤压温度对于试样的热电性能具有较大的影响,过低和过高的温度都会造成固溶体中元素的偏析,在400℃时制备的试样为单相且性能最好,其垂直压力方向上的热电优值ZT为0.75。
     本文研究了复合粉末放电等离子烧结试样和热挤压烧结试样的各向异性特点,通过对取向因子的计算定量考察了样品的各向异性特点,结果表明,纳米相的加入会降低材料的晶粒取向程度,且随纳米相含量的增加这种现象随之增强;热挤压试样的晶粒取向程度随挤压温度的降低而提高。对热挤压试样垂直和平行于压力方向上的电性能进行了测试,结果表明,试样垂直于压力方向上的电导率约是平行于压力方向上的电导率的2.4倍,试样的Seebeck系数随测试方向的变化不明显。
At room temperature, the best thermoelectric material now known is Bi2Te3 based semiconductor, which has the figure of merit ZT=1 for the bulk material. Previous studies showed that the optimization of the phase composition and microstructure can improve the thermoelectric transport properties of Bi2Te3 based materials. The micro-sized and nano-sized alloy powders are synthesized by vacuum melting and hydrothermal method in the thesis. Using these powders, bulk samples are prepared by spark plasma sintering system or hot extrusion sintering, whose microstructures and thermoelectric properties are systematically investigated.
     Bi2Te3 based alloy samples are prepared by the methods of vacuum melting, high energy ball milling and spark plasma sintering. The effects of Sb and Se on the properties are studied. Results indicate that solid solution of Bi2(Te1-xSex)3 exhibits n-type semi-conduction, and the highest thermoelectric properties with the ZT value of 0.62 is acquired when x is from 0.10 to 0.15 at room temperature. It is also noted that the semi-conduction of solid solution (BixSb1-x)2 is transformed from p to n and the ZT value at room temperature reaches 0.91 with x of 0.2.
     Considering different conditions, Nano-structured Bi2Te3 powders are prepared by hydrothermal synthesis. Analytical results.by XRD and SEM. indicate that reaction temperature and time play an important role in the composition and microstruture of the powders. With the increase of temperature and time, higher extent reaction is explored, but not facilitating to form nano-sized powders. The composition is single phase, with the particle size from 100 to 500nm when temperature and reaction time is 120℃and 20h, respectively. Ternary compounds Bi2(Te1-xSex)3 and (BixSb1-x)2Te3 are synthesized by hydrothermal method. The mineralogical analysis shows that the products are composed of two phases with the same structure and different lattice constants, exhibiting lamellar structure of hexahedral. Furthermore, the length and thickness of particle is about hundreds of nm and some dozens of nm, respectively.
     Thermoelectric performance of bulk Bi2Te3 alloys can be improved by introducing nano-sized grains to the matrix. Mixtures with different ratios of nano-sized powder to micro-sized one by weight are used to produce Bi2(Te0.90Se0.10)3 and (Bi0.2Sb0.8)2Te3 bulks. Great influence is brought by introducing nano-sized grains on the thermoelectric properties. The microstructures of samples are lamellar and in the large grain layer interspersed with a number of fine grains, exhibiting higher density and thermoelectric transport properties because the scatter of the phonons and carriers is increaed. For the Bi2(Te0.90Se0.10)3 samples, the optimal dosage of nano-powder is 12%, with the ZT value of 0.74 at room temperature. The ZT value of (Bi0.2Sb0.8)2Te3 can reach 1.22 when the dosage of the nano-powder is 9%.
     As the arrangement of grains with certain orientation, thermoelectric properties of bulk Bi2Te3 based alloys are anisotropic. Generally single crystals have better thermoelectric properties than the polycrystalline, but the poor mechanical properties limit its application. N-type Bi2Te3 based bulk materials with strong grain orientation are prepared by powder hot extraction when its orientation factor F up to 0.49. Compared with the single grains, the mechanical properties of hot extruded samples are greatly improved, with a bending strength of 58MPa. Through the improvement of extrusion mold and optimization of extrusion craft, the difference of thermoelectric properties caused by structure gradient are significantly reduced. The effects of extrusion temperatures on the thermoelectric properties of samples are also explored. Results indicate that Se element in solid solution will be leached with lower or higher temperature. The ZT value up to 0.75 when the extrusion temperature at 400℃.
     In this thesis, the anisotropy of composite powder SPS samples and extrusion samples are systematically studied. The orientation factor F is used to quantitatively evaluate the anisotropic characteristics of samples. The results show that the degree of grain orientation reduces with the increase of nano-sized content and the decrease of extrusion temperature. The electrical conductivity of extrusion samples perpendicular to the pressing direction are 2.4 times of the one parallel to the pressing direction. And there is no obvious difference of Seeback factor at different directions.
引文
[1]Teutsch W B. In Thermoelectricity. Edited by Egli P. H., New York:John White SonInc, (1958).
    [2]Cadoff J B, Miller E. Thermoelectric Materials and Device. New York:Reinhold Publ Corp, (1961).
    [3]Ioffe F. Semiconductors Thermoelements and Thermoelectric Cooling Interscince Publishers, New York-London, (1961):110.
    [4]Guff K F, Horst R B, Weaver J L. Thermomagmetic figure of merit and ettingshausen cooling in Bi-Sb alloys. Applied Physics Letter,36(1963):145
    [5]Rowe D M. CRC Handbook of Thermoelectrics, Boca Raton, CRC Press. Interscience Sales B C, et al. Atomic displacement parameters:a useful tool in the search for new thermoelectric materials. Materials Research Society Symposium-Proceedings,545 (1999):13.
    [6]Sales B C, et al. Atomic displacement parameters:a useful tool in the search for new thermoelectric materials. Materials Research Society Symposium-Proceedings,545 (1999):13.
    [7]Yoon C O, Moses M D, et al. Transports in blends of conducting polymers. Synthetic Metals,69(1995):255.
    [8]Yim W M, Rosi F D. Compound tellurides and their alloys for Peltier cooling-A review. Solid State Electronics,15(1972):1121.
    [9]T.M.Tritt, M.Kanatzidis, G.Mahan, H.B.Lyon, Eds., Thermoelectric materials-the Next Generation Materils for Small Scale Refrigeration and Power Generation Applications, Mater.Res.Soc.Proc in press
    [10]T.Kajikawa. Status and future prospects on the development of thermoelectric power generation systems utilizing combustion heat from municipal solid waste. Proc.16th Int. conf. on Thermoelectrics, (1997):pp.28
    [11]G.S.Nolas, G.A.Slack, J.L.Cohn and S.B.Schujman. The next generation of thermoelectric materials. Proc.17th Int. Conf. on Thermoelectrics, (1998), pp.121
    [12]Heikens. Ure. Thermoelectricity:science and engineering.1961.105-110.
    [13]Rowe D.M. Bhandari C.M. Modern Thermoelectricity. Holt Rinchalt and Wiston London, 1983.28-33
    [14]Cadofl J B, Miller E. Thermoelectric Materials and Device. New York Reinhold Peinhold Publ Corp,1961
    [15]Goldsmid H.J. Application of thermoelectricity. London, Methuen, Monograph,1960
    [16]Gray RE. the Dynamic Behaviour of Thermoelectric Device. New York, Wiley,1960
    [17]Bateman P J. Thermoelectric Power Generation. Contemporary Physics,1960,22(1): 302-311
    [18]Rosi F D, Hocking E F, Lindenblad N E. Semiconducting Materals for Thermoelectric Power Generation, RCA Review,1961,22(1):82-121
    [19]刘恩科,朱秉升,罗晋生。半导体物理学。国防工业出版社,1994.289—290.
    [20]Cadoff J B. M Bhandari C.M. Modern Thermoelectricity. Holt Rinchalt. Wiston London, 1983.28-33
    [21]F D Rosi. Thermoelectricity and Thermoelectric Power Generation. Solid-state electronics,1968,11(2):833-868
    [22]Heikes R. R andUre W. Thermoelectricity Science and Engineering. New York, Interscience,1961
    [23]Ioffe A F. Semiconductor Thermoelements and Thermoelectric Cooling. London, Infosearch,1957
    [24]Rowe D M. Thermoelectric Power Generation Proceedings of Institute of Electrical Engineers Cardiff. U K,1978,125977R:1113-1136
    [25]方俊鑫,陆栋.固体物理学(上册)上海科学技术出版社,1980
    [26]K.西格.半导体物理学(徐东,钱速业,译).北京:人民教育出版社,1980
    [27]Debye P.Ann. Phys,1979,39(1):789
    [28]C.基特尔.固体物理导论(杨顺华等,译).北京:科学出版社,1957
    [29]Bardeen J, Shockley W. Deformation Potentials and Mobilities in Nonpolar Crystals. Phys Rev,1950,80(1):72-76
    [30]Conwell E M, Weisskopf V F. Theory of Impurity Scattering in Semiconductors. Phy.Rev, 1950,77(1):388-393
    [31]Seager C H. grain Boundaries in Semiconductors Amsterdam. Elsevier Science publishing company Inc.1982
    [32]吴大猷.热力学、气体运动论及统计学,理论物理(第五册).北京:科学出版社,1983
    [33]Golidsmid H J, Penn A W. Boundary Scattering of Phonons in Solid Solutions. Phys.Lett, 1 1968,27A(1):523-524
    [34]Bahandari C N, Rowe D.M:Thermal Conduction in Semiconductors. London:Wiley Eastern Edt,1988
    [35]Klemens P G. the Scattering of Low Frequency Lattice Waves by Static Imperfections. Proc.Phys.Soc, London:1955(A68):113-1128
    [36]Medding H R, Parrott J E. the Thermal and Thermoelectric Properties of Sintered Germanium Sillicon Alloys. Solid State Phys,976,9(3):263-1276
    [37]Ziman J M. Electrons and Phonons, Oxford:Oxford University Press,1960
    [38]Callaway J. Model for Lattice Thermal Conducitivity at Low Temperature. Phys. Rev, 1959,113(5):1046-1051
    [39]Parrott J E. the Thermal Conductivity of Sintered Semiconductor Alloy. Solid State Physics,1969,2(1):147-151
    [40]Guff K F, Horst R B, Weaver J L. Thermomagmetic figure of merit and ettingshausen cooling in Bi-Sb alloys. Applied Physics Letter,36(1963):145
    [41]Martin-Lopez R, Dauscher A, Scherrer H. Preparation of n-type Bi-Si-Te thermoelectric material by mechanical alloying. Solid State Communications,108(1998):285.
    [42]Damodara D V, Mallik R C. Study of scattering of charge carriers in thin films of (Bi0.25Sb0.75)2Te2 alloy with 2% excess Te. Materials Research Bulletin,37(2002):1961.
    [43]Tritt. T M. Thermoelectric materials:holey and unholey semiconductors. Science, 283(1999):804-810
    [44]Morelli D.T, Caillat T, Fleurial j. Low-temperature transport of p-type CoSb3. Physical Review B,1995.51:9622-9628
    [45]Peng J, Yang J, Song X, Chen Y, Zhang T. Effect of Fe substitution on the thermoelectric transport properties of CoSb3-based Skutterudite compound. Journal of Alloys and Chskoumakos B.C, Sales B.C, Skutterudites:Their structural response to filling. Journal of Alloys and Compounds,2006.407(1-2):87-93.]Compounds,2006.426(1-2):7-11
    [46]Mi J.L, Zhu T.J, Zhzo X.B, Ma J. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3. Journal of Applied Physics,2007.101(5):054314.
    [47]Zhai.P, Zhao W.Y,Li Y, Liu L.S,Tang X.F, ZhangQ.J, and Niino M. Nanostructures and enhanced thermoelectric pro pertis in Ce-filled skutterudite bulk materials. Applied Physics Letters,2006.89(5):05211
    [48]Yang L,Wu J.S, Zhang L.T, Thermoelectric properties of some skutterudite compounds with different grain size. Journal of Alloys and Compounds,2004.375(1-2):114-119.
    [49]Nolas G.S, Fowler G, Yang J. Assessing the role of filler atoms on the thermal conductivity of filled skutterudites. Journal of Applied Physics,2006.100(4):043705.
    [50]Fowler G, Nolas G. S. Assessing the role of the filler atoms on the thermal conductivity of La-filled skutterudites. Clemson, SC, United States:Institute of Electrical and Electronics Engineers Inc, Piscataway, NJ 08855-1331, United States. (2005):449-451.
    [51]Kendziora C.A. Nolas G.S. Phonons and thermol conductivity in skutterudite thermoelectrics. Boston, MA, United States:Materials Research Society. (2003):07-112.
    [52]Tang X.F, Chen L.D,Takashi G. Toshio H, Yuan R.Z. Effect of Ce filling fraction on thermoelectric transport properties of p-type CeyFe1.5Co2.5Sb12. Acta Physica Sinica,2000. 49(12):2460-2465.
    [53]Li H. Tang X.F, LIU T.X, Song C, Zhang Q.J. Synthesis and thermoelectric properties of dual-atom filled p-type CamCenFexCo4-xSb12 compounds. Acta Physica Sinica,2005. 54(11):5481-5486.
    [54]V.M.Browning, S.J.Poon, T.M.Tritt. Thermoelectric Properties of The Half-Heusler Compound(Zr, Hf)(Ni, Pd)Sn. Fall 1998 Mars:175-185
    [55]Mastronardi.K. Young.D. Wang.CC. Antimondes With The Half-Heusler Structure-New Thermoelectric-Materials. Applied Physics Letters,1999,74(10):1415-1417
    [56]Y.Xia, S.Bhattacharya, V,Ponnambalam. Thermoelectric Properties of Semimetallic (Zr, Hf)CoSb Half-Heusler Phasea. Journal of Applied Physics,2000,88(4):1952-1955
    [57]Hohl.H, Ramirez.A.P. New Class of Materials with Promising Thermoelectric Properties. MniSn(M=Ti, Zr, Hf), TM-NDAMRS Symp. Proc Mars, Warrendale,PA, USA,1997, 478(1):109-114
    [58]Browning V M, Poon S J, Tritt T M, et al. Thermoelectric properties of the Half-Heusler Compound (Zr,Hf)(Ni,Pd)Sn. Journal of Applied Physics,36(1998):175-180
    [59]Xia Y, Bhattacharya S, Pope A L. Thermoelectric properties of Semimetallic(Zr,Hf) CoSb Half-Heusler Phases. Journal of Applied Physics,88(2000):1952.-1959
    [60]Ur S C, Nash P, and Kim I H. Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials. Journal of Alloys and Compounds,361(2003):84-87
    [61]Ueno K, Yamamoto A, Noguchi T, et al. Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance, Physical properties and thermoelectric perfor-mance. Journal of Alloys and Compounds,384(2004):254-259
    [62]Zhang L T, Tsutsumi M and Ito K. Effects of ZnSb and Zn inclusions on the thermoelectric properties of beta-Zn4Sb3. Journal of Alloys and Compounds,358(2003): 252-260
    [63]Snyder G J, Christensen M, Nishibori E, et al. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nature Materials,3(2004): 458-462
    [64]Jansen M V, Hoppe R. Notiz Zur Kenntnis der Oxocobaltata des naturiums. Zeitschrift fur Anorganische und Allgemeine Chemie,408(1974):104-110
    [65]Funahashi R, Urata S, and Kitawaki M, Exploration of n-type oxides by high throughput screening, Applied Surface Science,223 (2004):44-51
    [66]Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single. Physical Review B,56(1977):685-671
    [67]Mikami M, et al. Bi-substitution effects on crystal structure and thermoelectric properties of CaaCo4O9 single crystals. Japanese Journal of Applied Physics,45(2006):4131-4138
    [68]Moon J M, Masude Y, Seo W S. Ca-doped HoCoO3 as p-type oxide thermoelectric material. Materials Letters,48(2001):225-231
    [69]Schilz J and Helmers L. Bismuth-Telluride/Iron-Disilicide segmented thermoelectric elements:patterning, preparation and properties.16th Int. Conf. on Thermoelectrics, IEEE (1997):375-382
    [70]Mohamed S, El-Genk, Hamed H, et al. High efficiency segmented thermoelectric unicouple for operation between 973 and 300K. Energy Conversion and Management, 44(2003):1069-1074
    [71]Orihashi M, Noda Y, and Chen L D, et al. Effect of tin content on thermoelectric properties of p-type lead tin telluride. Journal of Physics and Chemistry of Solids, 61(2000):919-926
    [72]Mohamed S, El-Genk, Hamed H, et al. High efficiency segmented thermoelectric unicouple for operation between 973 and 300K. Energy Conversion and Management, 44(2003):1069-1077
    [73]Orihashi M, Noda Y, and Chen L D, et al. Effect of tin content on thermoelectric properties of p-type lead tin telluride. Journal of Physics and Chemistry of Solids, 61 (2000):919-925
    [74]Yoneda S, Kaibe H T and Okumura T. Improvement and thermal stability of thermo-electric properties for n-type segmented PbTe. Functionally Graded Materials, (1996):575-580
    [75]Kitagawa H, et al. Preparation of Bi2Te3-related thermoelectric materials by plastic deformation. Journal of the Japan Institute of Metals,69(2005):164-169
    [76]Antcliffe G A, Wrobel J S. Spontaneous and lase emission from Pb1-xSnxTe diodes prepared by Sb diffusion. Applied Physical Letter,17(1970):290-297
    [77]Labotz R J, Mason D R, kane D F. Cadmium diffusion studies of PbTe and Pb1-xSnxTe. Journal of the Electrochemical Society,8(1979):99-106
    [78]Crocker A J. The role of sodium in lead telluride. Journal of Physics and Chemistry of Solids,28(1967):1903-1910
    [79]Him W J, et al. New semiconducting ternary compoiunds. Journal of Physics and Chemistry of Solids,3(1957):157-162
    [80]Hockings E F. The thermal conductivity of silver antimony telluride. Journal of Physics and Chemistry of Solids,10(1959):341-349
    [81]Armstrong R W, Tiller W A, et al. A structrual study of the compound AgSbTe2. Journal of Applied Physics,31(1960):1954-1960
    [82]Wolfe R, Wernick J H, and Haszko S E. Anomalous Hall Effect in AgSbTe2. Journal of Applied Physics,31(1960):1959-1963
    [83]Rosi F D, Hockings E F, and Lindenblad N E. Semiconductor materials for thermo-electric power generation. Advanced Energy Conversion,1(1961):151-156
    [84]Christakudis G C, Plachkova S K, Shelimova L E, and Avilov E S. Thermoelectric figure of merit of some compositions in the system (GeTe)1-x[(Ag2Te)1-y(Sb2Te3)y]x, in proceedings of the 8th international conference on thermoelectric energy conversion. Nancy, France, (1989):125-128
    [85]Nolas G.S. Semiconductor clathrates:abPGECsystem with potential for thermoelectric applications. Materials Research Society
    [86]Symposium Nolas G.S, Cohn J.L. Transport properties of tin clathrates.18th internationzl conference on thermoelectrics. Baltimore, MD, USA:IEEE, Piscataway, NJ, USA,1999. 493-495.
    [87]Herrmann R.F.W, Tanigaki K, Kawaguchi T, Kuroshima S, Zhou O. Electronic structure of Si and Ge gold-doped clathrates. Physical Review B,1999.60(19):13245.
    [88]Huo D.X, Sasakawa T. Muro Y,Takabatake T. Thermoelectric properties of a clathrate compound Ba8Cu16P30. Applied Physics Letters,2003.82(16):2640-2642.
    [89]Kuznetsov V.L, Kuznetsova L.A, Kaliazin A.E, Rowe D.M. Preparation and thermoelectric properties of A8ⅡB16ⅢB30Ⅳ clathrate compounds. Journal of Applied Physics,2000.87(11):7871-7875.
    [90]Saramat A. Svensson G, Palmqvist A.E.C,Stiewe C. Mueller E, Platzek D. Lanrge thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30.Journal of Applied Physics,2006.99(2):023708.。
    [91]Kim J.H, Okamoto N.L, Kishida K, Tanaka K, Inui H. High thermoelectric performance of type-Ⅲ clathrate compounds of the Ba-Ge-Ga system. Acta Materialia,2006.54(8): 2057-2062.
    [92]Avila M.A, Suekuni K, Umeo K, Takabatake T. Carrier-tuning of single-crystalline Ba8Ga16Ge30. Physica B:Condensed Matter,2006.383(1):124-125.
    [93]Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B,47(1993):12727.
    [94]Broido D A, Reinecke T L. Thermoelectric figure of merit of quantum wire superlattices. Applied Physics Letters,67(1995):100.
    [95]Yu B L, Tang X F, Zhang Q J, et al. Preparation and thermal transport properties of CoSb3 based nano-compounds.22end Int. Conf. on Thermoelectric, (2003):101
    [96]朱铁军,赵新兵,胡淑红,等.新型热电材料—Zn4Sb3的电学性能,稀有金属材料与工程,30(2001):187.
    [97]Snowden D P, Allem D T, Cook B A, et al. High temperature segmenting for increased specific output.18th International conference on thermoelectrics, (1999):pp.230
    [98]Brown B R, Hughes M E, Russo C. Thermoelectricity in natural and synthetic hydrogels. Physical Review E,70(2004):pp.115.
    [99]Lenior B, Dauscher A, Devaux X. Bi-Sb alloys:An update,15th Int. Conf. on Thermoelectric, (1996):pp.1.
    [100]Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thomspon J R. Filled skutterudite antimonides:Electron crystal and phonon glasses. Physical Review B,56(1997):15081.
    [101]Enrique M. Quasicrystals as thermoelectric Materials:A Theoretical Prospective. Journal of Alloys and Compounds,342(2002):460.
    [102]Yim W M. and Rosi F D. Compound tellurides and their alloys for peltier colling—A review. Solid-Stata Electronics,1972.15(10):1121-1134
    [103]Y. Iwaisako, T. Aizzawa, A. Yamamoto, T. Ohta. Proceedings of the 19th International Conference on Thermoelectrics, ICT2000 Cardiff, UK,2000,pp.82-85
    [104]N. Gerovac, G. J. Snyder, T. Caillat, Thermoelectric Properties of n-type Polycrystalline BixSb2-xTe3 Alloys, Proc.21th International Conference on Thermoelectrics, Long Beach, Californie, USA, August 2002, pp.31-34
    [105]H.S.Shin, H.P.Ha, D.B.Hyun, J.D.Shim, D.H.Lee. Thermoelectric properties of 25%Bi2Te3-75%Sb2Te3 solid solution prepared by hot-pressing method. Journal of Physics and Chemistry of Solid,58(1997):671-678.
    [106]J.Seo, K.Park, D.Lee, C.Lee, Themoelectric properties of hot-pressed n-type Bi2Te2.85Se0.15 compounds doped with SbI3. Materials Science and Engineering B-Solid State Materials for Advanced Technology,49(1997):247-250
    [107]T.S.Kim, I.S.Kim, T.K.Kim, S.J.Hong, B.S.Chunm Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 90(2002):42-46
    [108]X.A.Fan, J.Y.Yang, R.GChen, W.Zhu, S.Q.Bao, Phase transformation and thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared by mechanical alloying and hot pressing. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,438(2006):190-193
    [109]J.Y.Yang, X.A.Fan, R.GChen, X.A.Fan, S.Q.Bao, W.Zhu, Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing. Journal of Alloys and Compounds,407(2006):330-333。
    [110]J.-M. Simard, D. Vasilevskiy, S. Turenne, Influence of Composition and Texture on the Thermoelectric and Mechanical Properties of Extruded (Bi1-xSbx)2(Te1-ySey)3, Proc.22th International Conference on Thermoelectrics,2003. pp.13-18
    [111]T.M.Tritt. Thermoelectric Materials Holey and Unholy Semiconductors. Science,1999, 5(283):804-805
    [112]J.Horak, K.Cermak, L.Koudelka, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. Journal of Physics and Chemistry of Solids,47(1986)805
    [113]D.A.Porter and K.E.Eastering, Phase Transformations in Metals and Alloys,2nd Chapman & Hall. London,1992,199-200
    [114]Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m bulk thermoelectric materials with high figure of merit. Science,303(2004):818
    [115]Anno H, Hatada K, Shimizu H. Structure and electric transport properties of polycrystalline p-type CoSb3. J. Appl. Phys.,83(10)(1998):5270
    [116]Muhamme S, Christian S, Dieter P, et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Advanced. Func. Mater.,14(12)(2004):1189
    [117]F.K. Lotgering. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures Inorg.Nucl. Chem.9(1959) 113-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700