sEng、TGFβ1与妊娠期高血压疾病发生的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
妊娠期高血压疾病(Hypertensive disorder complicating pregnancy, HDCP)是妊娠期特有疾病,病因和发病机制尚未完全阐明,已有研究表明,转化生成因子TGFβ1及其受体与妊娠期高血压疾病发生的中心环节--血管内皮损伤及胎盘血管重铸过程密切相关,本研究将通过观察TGFβ1及其可溶性受体成份-sEng对体外培养的脐静脉内皮细胞及滋养细胞的影响,探讨其在妊娠期高血压疾病发生、发展中的作用。
     第一部分sEng及TGFβ1与内皮细胞损伤的相关性研究目的:观察可溶性Endoglin (soluble endoglin, sEng)及转化生长因子β1(TGFβ1)对体外培养的人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC)增殖、凋亡的影响,及其对HUVEC产生一氧化氮(nitric oxide, NO)量,内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)1177位点丝氨酸磷酸化程度的影响,探讨sEng及TGFβ1参与内皮细胞损伤的可能机制。
     方法:体外培养HUVEC,将3代以内的HUVEC接种于96孔培养板,分4组:对照组(单纯RPMI-1640完全培养液培养)、sEng组、TGFβ1及(sEng+TGFβ1)组:根据四甲基偶氮唑蓝(MTT)结果,将sEng组、TGFβ1及(sEng+TGFβ1)组按加药浓度分别分为110、100μg/L三个亚组,收集6h、12h,24h时间点的细胞及培养液。ELISA法测定细胞培养液中sEng及TGFβ1含量;MTT比色法检测对照组、不同浓度sEng、TGFβ1及(sEng+TGFβ1)培养6h、12h、24h后HUVEC的细胞的存活率,流式细胞技术观察各组凋亡率和细胞周期分布;硝酸酶还原法测定细胞培养液中NO含量,Western印迹法检测各组细胞eNOS蛋白相对表达量及其1177位点丝氨酸磷酸化情况,实时荧光PCR检测各组细胞eNOS mRNA的相对表达量。
     结果:(1)细胞培养液中sEng及TGFβ1的含量:24h、48h、72hHUVEC培养液中未测得sEng;24h、48h、72h细胞培养液中TGFβ1含量分别为(3.12±0.78)、(3.33±0.91)、(3.08±0.87)ng/L,三个时间段TGFβ1含量无明显变化(F=2.10,p>0.05)。(2)细胞存活率:sEng组HUVEC存活率在各个浓度点及时间点均低于对照组和其它各组,且与时间和加药浓度均呈负相关;TGFβ1组,加1μg/L时HUVEC表现为增殖,存活率高于对照组,加10、100μg/L时,HUVEC存活率与时间和加药浓度均呈负相关(sEng+TGFβ1)组HUVEC存活率与对照组比较无显著性差异,无时间及浓度依赖性。(3)细胞凋亡率和周期分布:sEng组,HUVEC凋亡率明显增加,与加药浓度及作用时间均呈正相关,sEng组G1期细胞比例显著高于对照组,亦与浓度及时间呈正相关;TGFβ1各组HUVEC凋亡率与对照组各点比较均无明显差异,1μg/L组G1期细胞比例显著低于对照组并与作用时间呈负相关,10、100μg/L组G1期细胞比例显著高于对照组且与作用浓度及时间呈正相关;(sEng+TGFβ1)组HUVEC凋亡率、G1期细胞比例、存活率与对照组比较无显著性差异,且无浓度及时间依赖性。(4)细胞培养液中NO含量变化:对照组培养液内NO含量24h内无明显变化(F=2.30,p>0.05), sEng组细胞培养液中NO含量低于对照组和其它各组并与作用时间和加药浓度均呈负相关;TGFβ1组,加1gg/L时,细胞培养液中NO含量显著高于对照组及其它各组,与作用时间呈正相关,加10、100gg/L时,细胞培养液中NO含量与时间和加药浓度均呈负相关;(sEng-TGFβ1)组细胞培养液中NO含量与对照组比较无显著性差异,亦无时间及浓度依赖性。(5) eNOS蛋白及mRNA表达水平变化:sEng组,HUVEC eNOS蛋白及mRNA表达在各个时间点及浓度点均低于对照组及其它各组,且与作用时间及加药浓度呈明显的负相关;TGFβ1组,加1μg/L时eNOS蛋白及mRNA表达水平在各个时间点均高于对照组及其它各组,且与时间呈正相关,加10、100μg/L时,eNOS蛋白及mRNA表达水平在各个浓度点及时间点均低于对照组但高于sEng组,且与作用时间及浓度呈负相关(sEng+TGFβ1)组各个时间点及浓度点细胞eNOS蛋白及mRNA表达水平与对照组比较无显著性差异。(6) eNOS蛋白活化情况:sEng组,eNOS-Ser(p)1177/eNOS在各个时间点及浓度点均低于对照组及其它各组,并与作用时间及加药浓度呈负相关;TGFβ1组,加1μg/L时eNOS-Ser(p)1177/eNOS在各个时间点均高于对照组及其它各组并与时间呈正相关,加10、100μg/L时,eNOS-Ser(p)1177在各个浓度点及时间点均低于对照组但高于sEng组,且与时间及浓度呈负相关;(sEng+TGFβ1)组各个时间点及浓度点细胞eNOS-Ser(p)1177/eNOS与对照组比较无显著性差异。
     结论:1、加入外源性sEng可与内源性产生的TGFβ1结合阻断TGFβ1的信号传导,通过促进凋亡,并使细胞受阻于G1期,延缓其从Gl期向S期过渡的方式,抑制HUVEC的增殖.同时通过下调eNOS1177位点丝氨酸的磷酸化水平,抑制eNOS的活性,使HUVEC分泌NO功能下降,进而影响内皮细胞的舒缩功能。2、加入外源性的TGFβ1,对HUVEC的影响取决于作用浓度.高浓度TGFβ1主要通过使内皮细胞受阻于G1期.延缓其从G1期向S期过渡的方式,抑制HUVEC的增殖,同时通过下调eNOS1177位点丝氨酸的磷酸化水平,抑制eNOS的活性,使HUVEC分泌NO的能力下降,影响内皮细胞的舒缩功能,低浓度的TGFβ1对HUVEC的作用与之相反。3、(sEng+TGFβ1)组HUVEC的增殖、eNOS活性、NO的产生与对照组比较无显著差异,说明两因子等量加入细胞培养液,sEng作为TGFβ1的受体,二者几乎达到1:1结合,结合后二者均不能发挥前述作用,推断受体与配体成比例结合有助于内皮细胞发挥正常的作用,任一因子过量使比例失调,则对HUVEC产生不同程度的影响,进而参与内皮细胞功能的紊乱。
     第二部分sEng与TGFβ1对人早孕绒毛膜滋养细胞增殖及浸润的影响
     目的:探讨可溶性Endoglin与TGFβ1对人早孕绒毛膜滋养细胞增殖能力和浸润功能的影响。
     方法:采用胰蛋白酶-DNase消化法培养人早孕期(孕6-8周)绒毛膜滋养层细胞,将3代以内的滋养细胞接种于96孔培养板,分4组:对照组(单纯DMEM完全培养液培养)、sEng组、TGFβ1及(sEng+TGFβ1)组ELISA法测定细胞培养液中sEng及TGFβ1含量;MTT法观察滋养细胞的增殖情况并确定后续试验中sEng、TGFβ1及(sEng-TGFβ1)(?)的加药浓度及作用时间:MTT法观察各组细胞存活率,流式细胞技术观察各组细胞的细胞周期变化,Transwell技术检测各组滋养细胞的浸润功能;Western印迹法检测各组滋养细胞MMP-2、MMP-9蛋白的表达;RT-PCR法检测各组滋养细胞MMP-2、MMP-9mRNA的表达。
     结果:24h、48h、72h滋养细胞培养液中未测得sEng:24h、48h、72h细胞培养液中TGFβ1含量分别为(5.03±0.54)、(4.09+0.27)、(5.91+0.68)ng/L,三个时间段TGFβ1含量无明显变化(F=3.09,p>0.05);10μg/LsEng、TGFβ1分别作用6h、12h、24h,各组细胞存活率与对照组比较均无明显差异:作用36h、48h,存活率明显降低,分别为(71.44±6.07)%、(51.44±6.34)%(36h),(62.37±8.12)%、(23.48±4.36)%(48h),无明显的时间及浓度依赖性;(sEng+TGFβ1)组滋养细胞存活率在各个时间点及浓度点与对照组比较无明显差异.确定各组加药浓度为10μg/L;作用48h,各组均未见明显凋亡;sEng组G1期细胞比例(88.24±2.11)%显著高于对照组(55.23±1.22)%%但低于TGFβ1组(95.63±2.98)%,(均p<0.05);TGFβ1组G1期细胞比例显著高于其它各组(均p<0.05);(sEng+TGFβ1)组G1期细胞比例(58.11±1.25)%与对照组比较无明显差异;各组加药10μg/L、作用24h, sEng组滋养细胞穿透Transwell基底膜的细胞数为(87+6.3)个/5HP显著低于对照组(143±41.3)个/5HP, TGFβ1组滋养细胞穿透Transwell基底膜的细胞数为(157-±-55.9)个/5HP显著高于对照组,而(sEng+TGFβ1)组细胞穿透数与对照组比较无显著性差异(p>0.05)。sEng组滋养细胞MMP-2和MMP-9蛋白及mRNA的表达明显低于对照组,TGFβ1组滋养细胞MMP-2和MMP-9蛋白及mRNA的表达明显高于对照组,差异均有统计学意义(均p<0.05),而(sEng+TGFβ1)组MMP-2和MMP-9蛋白及mRNA的表达与对照组无显著差异(p>0.05)。
     结论:sEng和TGFβ1可能通过调节滋养细胞的G、期细胞比例,影响其增殖能力,但并不导致细胞的死亡;通过调节滋养细胞MMP-2和MMP-9的表达影响其浸润能力;在体外细胞培养环境下,sEng和TGFβ1可达到1:1的结合,并失云各自对滋养细胞的影响,据此推测,早孕期绒毛局部两种因子比例失调,可能不同程度的影响滋养细胞向子宫肌层的正常浸润,造成“胎盘浅着床”引起妊娠期高血压等相关疾病。
Hypertensive disorder complicating pregnancy is a pregnancy-specific disease which etiology and pathogenesis has not been fully elucidated. Previous studies have been shown that angiogenic factors TGFβ1and its receptor are closely related to the central steps of hypertensive disorders in pregnancy:vascular endothelial injury and placental vascular remodeling process. This study will observe the impact of TGFβ1and its soluble receptor components (sEng) in cultured human umbilical vein endothelial cells and trophoblasts explore the roles of these two factors in the development of hypertensive disorder complicating pregnancy.
     Section Ⅰ. Research on the correlation between soluble endoglin. transforming growth factor β1and injury of vein endothelial cell
     Objectives:To discuss the correlation between soluble endoglin. transforming growth factor β1and injury of vein endothelial cell. investigating the effects of these two factors on human umbilical vein endothelial cell (HUVEC). included apoptosis. proliferation, nitric oxide (NO) production and nitric oxide synthase (eNOS) phosphoryiation.
     Methods:Cells (within3passages) were seeded in culture plates of96wells. There are4groups:controlled group with RPMI-1640culture medium only. sEng group. TGF(31group and (sEng-TGFβ1) group. These groups were divided into3subgroups (1、10、100μg/L) respectively on account of MTT results. Collecting the cells and cell cultures at6h.12h and24h for follow-up experiments. The concentration of soluble endoglin and TGFβ1in cell culture was evaluated by ELISA. Cell apoptosis and cell cycle were detected by flow cytometry. Cell viability was determined by methyl thiazolyl tetrazolium assay (MTT). The concentration of the metabolites of nitric oxide in each group was measured by nitrate reductase method. The expression of eNOS and eNOS-Ser(p)1177protein were detected by Western blot. eNOS mRNA in each group was detected by real-time fluorescence reverse transcription polymerase chain reaction (PCR).
     Results:(1) The concentration of sEng in cell culture was0at24h.48h and72h. The concentration of TGFβ1in cell culture was (3.12±0.78).(3.33±0.91). (3.08±0.87)ng/L respectively. There were no significant difference at these three time points (F=2.10, p>0.05).(2) Cell viability:The cell viability was significantly decreased in sEng group. It had negative correlation with time and medicine concentration. The cell viability were significantly increased in1μg/L TGFP1group, but decreased in10and100μg/L groups. It had negative correlation with time and medicine concentration in the latter groups. There was no significant difference between (sEng+TGFβ1) group and controlled group at any concentration and time points.(3) Cell apoptosis and cell cycle:the cell apoptosis rate and the G1phase proportion in sEng group were higher than those in other groups. It had positive correction with time and medicine concentration. The cell G1proportion were significantly decreased in1μg/L TGFβ1group, but increased in10and100μg/L groups. It had positive correlation with time and medicine concentration in the latter groups. But TGFβ1had no business of apoptosis. There was no significant difference between (sEng-TGFβ1) group and controlled group on cell apoptosis and cell cycle at any concentration and time points.(4) Nitric oxide levels in cell culture:sEng decreased the concentration of nitric oxide levels through negative correlation with stimulate time and medicine concentration.1μg/L TGFβ1increased the concentration of nitric oxide levels through positive affection with stimulate time. But10and100μg/L TGFβ1decreased the concentration of nitric oxide levels through negative affection with stimulate time and medicine concentration. There was no significant difference between (sEng+TGFβ1) group and controlled group on nitric oxide levels at any concentration and time points.(5) The expression of eNOS protein and mRNA: The expression of eNOS protein and mRNA decreased significantly in sEng groups. It also had negative correlation with stimulate time and medicine concentration.1μg/L TGFβ1increased the expression of eNOS protein and mRNA through positive affection with stimulate time. But10and100μg/L TGFβ1decreased the expression of eNOS protein and mRNA through negative affection with stimulate time and medicine concentration. There was no significant difference between (sEng+TGFβ1) group and controlled group on the expression of eNOS protein and mRNA at any concentration and time points.(6) Nitric oxide synthase phosphorylation (eNOS-Ser(p)1177/ENOS ratio):eNOS-Ser(p)1177/eNOS ratio decreased significantly in sEng groups. It also had negative correlation with stimulate time and medicine concentration.1μg/L TGFβ1increased the eNOS-Ser(p)1177/eNOS ratio through positive affection with stimulate time. But10and100μg/L TGFβ1decreased the eNOS-Ser(p)1177/eNOS ratio through negative affection with stimulate time and medicine concentration. There was no significant difference between (sEng+TGFβ1) group and controlled group on the eNOS-Ser(p)1177/eNOS ratio at any concentration and time points.
     Conclusions:1.sEng inhibited the proliferation of HUVEC in vitro through blocking the HUVEC in G1phase and increasing the apoptosis rate. It reduced the production of NO through inhibiting the proliferation of HUVEC and activation of eNOS. sEng participated the injury of endothelial cells.2. TGFβ1inhibited the proliferation of HUVEC in vitro through blocking the HUVEC in G1phase occasionally. The affection on HUVEC was up to medicine concentration. Low dose had promoted affection on HUVEC. But high dose had converse affections.3. sEng together with TGF(31were added in the cell culture seemed like having no affection on HUVEC. but it reflected that appropriate proportion of sEng and TGFβ1was very important to keep normal form and function of endothelial cells. All of above. sEng and TGFβ1participated the injury of endothelial cells by many ways.
     Section Ⅱ. Effects of soluble endoglin and TGFβ1on proliferation and invasive ability of cultured cytotrophoblasts from human early pregnancy chorionic villus
     Objective:To investigate the effects of soluble endoglin and TGFβ1on proliferation and invasive ability of cultured cytotrophoblasts from human early pregnancy chorionic villus.
     Methods:Cytotrophoblasts of normal6to8week pregnancy were cultured by trypsin digestion method. Cells (within3passages) were seeded in culture plates of96wells. There are4groups:controlled group with DMEM culture medium only. sEng group. TGFβ1group and (sEng-TGFβ1) group. The concentration of soluble endoglin and TGFβ1in cell culture was evaluated by ELISA. The medicine concentration at follow-up experiments of these two factors was determined by MTT. The proliferation ability was determined by MTT. Cell cycle was detected by flowcvtometry. The invasive ability was determined by Transwell invasion assay. The expression of MMP-2and MMP-9protein was detected by Western blot. The expression of MMP-2and MMP-9mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR).
     Results:The concentration of sEng in cell culture was0at24h,48h and72h. The concentration of TGFfβ1in cell culture was (5.03±0.54),(4.09±0.27). and (5.91±0.68)ng/L respectively. There were no significant difference at these three time points (F=3.09, p>0.05). Cell survival probability were degraded in sEng and TGFβ1groups at36h (71.44±6.07)%.(51.44±6.34)%and48h (62.37±8.12)%.(23.48±4.36)%versus controlled group. There was no significant difference between (sEng±TGFβ1) group and controlled group at any concentration and time points. The medicine concentration was10μg/L in every group on account of MTT. There was no significant cell apoptosis in every group. G1phase proportion in sEng group (88.24±2.11)%was higher than that of (sEng+TGFβ1)(58.11±1.25)%and control groups (55.23±1.22)%. G1phase proportion in TGFβ1group (95.63±2.98)%was higher than any other groups. There had no significant difference between (sEng+TGFβ1) group and control group. Cell numbers penetrating basement membrane was decreased significantly in sEng group (87±6.3) versus controlled group (143±41.3) but increased significantly in TGFβ1group (157±55.9). There was no significant difference between (sEng+TGF±1) group and controlled group. Compared with controlled group, the expression of MMP-2and MMP-9mRNA and protein of cytotrophoblasts was significantly lower in sEng group but higher in TGF(31group. There also was no significant difference between (sEng+TGFβ1) group and controlled group.
     Conclusions:sEng and TGFβ1correlated with the procedure of cytotrophoblasts proliferation through moderating G1phase proportion in vitro. They also regulated cytotrophoblasts invasive ability by affecting the expression of MMP-2and MMP-9. Keeping suitable proportion was very important for cytotrophoblasts to invasive in mvometrium with normal depth at the first trimester.
引文
[1]张小燕,梁朝、赵林,等.人脐静脉内皮细胞分离培养的改进及其鉴定[J].中华医学研究杂志.2005.5:386-388.
    [2]Goodrich L R. Hidaka C. Robbins P D et al. Genetic Modification of Chondrocytes with Insulin-Like Growth Factor-1 Enhances Cartilage Healing in an Equine-Model[J], J Bone Joint Surg Br.2007,89(5):672-685.
    [3]Venkatesha S, Toporsian M, Lam C et al. Soluble Endoglin Contributes to the Pathogenesis of Preeclampsia[J].Nat Med.2006,12(6):642-649.
    [4]Matyas J R, Huang D, Chung M et al. Regional Quantification of Cartilage Type Ii Collagen and Aggrecan Messenger Rna in Joints with Early Experimental Osteoarthritis[J].Arthritis Rheum.2002.46(6):1536-1543.
    [5]Ruiz-Ruiz S. Moreno P. Guerri J et al. A Real-Time Rt-Pcr Assay for Detection and Absolute Quantitation of Citrus Tristeza Virus in Different Plant Tissues[J].J Virol Methods.2007.145(2):96-105.
    [6]Guehring T. Omlor G W,Lorenz H et al. Stimulation of Gene Expression and Loss of Anular Architecture Caused by Experimental Disc Degeneration--An in vivo Animal Study [J]. Spine (Phila Pa 1976).2005.30(22):2510-2515.
    [7]Johansson S. Fuchs A. Okvist A et al. Validation of Endogenous Controls for Quantitative Gene Expression Analysis:Application On Brain Cortices of Human Chronic Alcoholics [J]. Brain Res.2007.1132(1):20-28.
    [8]乐杰主编.妇产科学[M].第七版.北京:人民卫生出版社.2008:92.
    [9]Lindheimer MD. Taler SJ. Cunningham FG. Hypertension in pregnancy[J]. J Am Soc Hypertens.2010.4(2):68-78.
    [10]朱毓纯,孙瑜,杨慧霞.等.孕妇血清中可溶性endoglin水平变化与重度子痫前期及子痫患者发病的关系[J].中华妇产科杂志.2009,44:91-93.
    [11]Illsinger S. Janzen N. Sander S et al. Preeclampsia and HELLP syndrome: impaired mitochondrial function in umbilical endothelial cells[J]. Reprod Sci. 2010.17(31:219-226.
    [12]王鹤.马莉.血管内皮细胞功能损伤与保护的研究进展[J].实用医学杂志.2008.24(10):1665-1667.
    [13]Velasco-Loyden C, Arribas J. Lpez-Casillas F. The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1 [J]. J Biol Chem,2004.279(9):7721-7733.
    [14]张东妹,颜建英.子痫前期与sEng及sFlt-1的关系[J].中华妇产科杂志.2008.35(4):284-287.
    [15]Myatt L, Webster RP. Vascular biology of preeclampsia[J]. Throm Haemost, 2009.7:375-384.
    [16]Lyall F, Simpson H, Bulmer JN et al. Transforming growth factor-beta expression in human placental bed in third trimester normal pregnancy preeclampsia, and fetal growth restriction [J]. Am L Pathol, 2001,159:1827-1838.
    [17]Toporsian M. A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia [J]. Circ Res.2005.96:684-692.
    [18]Gu Y, Lewis DF. Zhang Y, Groome LJ, Wang Y. Increased superoxide generation and decreased stress protein Hsp90 expression in human umbilical cord vein endothelial cells (HUVECs) from pregnancies complicated by preeclampsia [J]. Hypertens Pregnancy.2006.25(3):169-182.
    [19]Chedraui P. Lockwood CJ. Schatz F et al. Increased plasma soluble fins-like tyrosine kinase 1 and endoglin levels in pregnancies complicated with preeclampsia [J]. J Matern Fetal Neonatal Med.2009.22:565-570.
    [20]Li B. Khanna A. Sharma V et al. TGF-Betal Dna Polymorphisms. Protein Levels. and Blood Pressure [J]. Hypertension,1999.33(12):271-275.
    [21]Peracoli MT. Menegon FT. Borges VT et al. Platelet aggregation and TGF-beta(1) plasma levels in pregnant women with preeclampsia[J]. J Reprod Immunol.2008.79(1):79-84.
    [22]Ayatollahi M. Geramizadeh B, Samsami A. Transforming growth factor beta-1 influence on fetal allografts during pregnancy [J]. Transplant Proc, 2005.37(10):4603-4604.
    [23]ten Dijke P. Goumans MJ. Pardali E. Endoglin in angiogenesis and vascular diseases[J]. Angiogenesis.2008.11(1):79-99.
    [24]Levine RJ. Maynard SE. Qian C et al. Circulating angiogenicfactors and the risk of preeclampsia[J]. N Engl J Med.2004.350(7):672-683.
    [25]Sandrim VC, Palei AC. Metzger IF et al. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endogline in preeclampsia [J]. Hypertension.2008,52(2):402-407.
    [26]Bala K, Ambwani K. Gohil NK, Effect of different mitogens and serum concentration on HUVEC morphology and characteristics:implication on use of higher passage cells. Tissue cell,2011,43(4):216-222.
    [27]吴荣谦,宋旭华,徐迎新等.内皮细胞凋亡在脓毒症小鼠肺微血管通透性改变中的作用.中华外科杂志,2000.38:385-387.
    [28]Guerreiro JR. Lameu C. Oliveira EF et al. Argininosuccinate synthetase is a novel functional target for a snake venom anti-hypertensive peptide:role in arginine and nitric oxide production [J]. J Biol Chem.2009.284(30):20022-20033.
    [29]武海英,张菊新,张予辉.妊娠高血压综合征患者血液VEGF、TNF及胎盘NO含量测定[J].郑州医科大学学报.2005.40:83-85.
    [30]Levine RJ, Maynard SE. Qian C et al. Circulating angiogenic factors and the risk of preeclampsia [J]. N Engl J Med.2004.350:672-683.
    [31]张立军,韩玉环,吴莹.妊娠晚期孕妇血清可溶性endoglin水平与子痫或子痫前期的关系[J].中华围产医学杂志.2009.12:401-403.
    [32]董微.许群星,韩玉环、等.可溶性endoglin对脐静脉内皮细胞凋亡的影响.中华围产医学杂志[J].2011.14:186-188.
    [33]Hirashima C. Ohkuchi A. Matsubara S et al. Alteration of serum soluble endoglin levels after the onset of preeclampsia is more pronounced in women with early-onset [J]. Hypertens Res,2008.31:1541-8.
    [34]Kim YN, Lee DS, Jeong DH et al. The relationship of the level of circulating antiangiogenic factor to the clinical manifestations of preeclampsia [J]. Prenat Diagn. 2009.29:464-470.
    [1]李富军,王雪萍,刘斌.人早孕胎盘绒毛滋养层细胞的培养[J].第四军医大学学报,2004.25(24):2261-2263.
    [2]Raffetto JD. Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease [J]. Biochem Pharmacol,2008.75(2):346-359.
    [3]朱毓纯,孙瑜,杨慧霞,等.孕妇血清中可溶性endoglin水平变化与重度子痫前期及子痫患者发病的关系[J].中华妇产科杂志.2009,44:91-93.
    [4]Staun-Ram E. Goldman S. Gabarin D, Shalev E. Expression and importance of matrix metalloproteinase 2 and 9(MMP-2 and-9)in human tropboblast invasion[J]. Reprod Biol Endocrinol,2004,2:59.
    [5]Reister F. Kingdom JC, Ruck P et al. Altered protease expression by periarterial trophoblast cells in severe early-onset preeclampsia with IUGR[J]. J Pefinat Med.2006,34(4):272-279.
    [6]Myatt L, Webster RP. Vascular biology of preeclampsia [J]. Throm Haemost, 2009,7:375-384.
    [7]Lyall F, Simpson H, Bulmer JN et al. Transforming growth factor-beta expression in human placental bed in third trimester normal pregnancy, preeclampsia and fetal growth restriction [J]. Am L Pathol.2001.159:1827-1838.
    [8]张东妹,颜建英.子痫前期与sEng及sFlt-1的关系[J].中华妇产科杂志,2008.35(4):284-287.
    [9]Baumann MU, Bersinger NA. Mohaupt MG et al. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsea[J]. Am J Obstet Gynecol, 2008.199(3):266.e1-6.
    [10]Farina A. Sekizawa A. De Sanctis P et al. Gene expression in chorionic villous samples at 11 weeks" gestation from women destined to develop preeclampsia [J]. Prenat Diagn.2008.28(10):956-961.
    [11]Lockwood CJ. Huang SJ. Krikun G et al. Decidual hemostasis. inflammation, and angiogenesis in pre-eclampsia [J]. Semin Thromb Hemost.2011.37(2):158-164.
    [12]Aplin JD, Implantation, trophoblast differentiation and haemochorial placentation:mechanistic evidence in vivo and vitro[J]. J Cell Sci,1991.99:681-692.
    [13]Farina A. Zucchini C, De Sanctis P et al. Gene expression in chorionic villous samples at 11 weeks of gestation in women who develop pre-eclampsia later in pregnancy:implications for screening[J]. Prenat Diagn.2011.31(2):181-185.
    [14]庞战军TGF-β和IGF表达异常与滋养层相关疾病的关系研究[J].现代妇产科进展.2003.12(2):89-92.
    [15]孙刚.胎盘内分泌的基础与临床[M].上海:第二军医大学出版社.2001:2.
    [16]Al-Nasiry S. Vercruysse L. Hanssens M et al. Interstitial trophoblastic cell fusion and E-cadherin immunostaining in the placental bed of normal and hypertensive pregnancies [J]. Placenta.2009.30(8):719-725.
    [1]Roberts JM. Gammill HS. Preeclampsia:recent insights [J]. Hypertension. 2005.46(6):1243-1249.
    [2]Bdolah Y, Sukhatme VP. Karumanchi SA. Angiogenic imbalance in the pathophysiology of preeclampsia:newer insights [J]. Semin Nephrol.2004.24(6):548-556,
    [3]Chaiworapongsa T. Romero R. Kim YM et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia [J]. J Matern Fetal Neonatal Med.2005.17(1):3-18.
    [4]Richaral LA, Jones JM, Deloia JA et al. Comparison of cell cycle regulatory gene mRNA in three different types of human trophoblasts effect of transforming growth factor [J]. J Obstet Gynaecol Res.2008;34(2):152-161.
    [5]Jones RL, Stoikos C, Findlay JK. et al. TGF-beta superfamily expression and actions in the endometrium and placenta [J]. Reproduction.2006:132(2):217-232.
    [6]Kurisaki A. Kose S, Yoneda Y et al. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-betal and Ran-dependent manner [J]. Mol Biol Cell.2001.12(4):1079-1091.
    [7]Chen HB. Rud JG, Lin K et al. Nuclear targeting of transforming growth factor-β-activated Smad complexes [J]. J Biol Chem.2005.280:21329-21336.
    [8]Shih IeM. Hsu MY. Oldr RJ et al. The role of E-cadherin in the motility and invasion of implantation site intermediate rophoblast [J]. Plancenta.2002.23:706-715.
    [9]Aplin JD. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and vitro [J]. J Cell Sci,1991,99:681-692.
    [10]Bischof P. Meisser A. Campana A. Paracrine and autocrine regulators of trophoblast invasion-A review [J]. Placenta.2000.21:55-60.
    [11]Tjoa ML, Levine RJ. Karumanchi SA. Angiogenic factors and preeclampsia [J]. Front Biosci,2007,12:2395-2402.
    [12]Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia [J]. Hypertension.2005,46:1077-1085.
    [13]Schilling B, Yeh J. Transforming growth fator-beta(1),-beta(2),-beta(3) and their type Ⅰ and Ⅱ receptors in human term placenta [J]. Gynecol Obstet Invest.2000, 50:19-23.
    [14]Chung IB. Yelian FD, Zaher FM et al. Expression and regulation of vascular endothelial growth factor in a first trimester trophoblast cell line [J]. Placenta. 2000.21:320-324.
    [15]Karmakar S. Das C. Regulation of trophoblast invasion by IL-1 beta and TGF-betal [J]. Am J Reprod Immunol.2002.48:210-219.
    [16]Ayatollahi M. Geramizadeh B. Samsami A. Transforming growth factor beta-1 influence on fetal allografts during pregnancy [J]. Transplant Proc. 2005.37(10):4603-4604.
    [17]庞战军TGF-β和IGF表达异常与滋养层相关疾病的关系研究[J].现代妇产科进展.2003.12(2):89-92.
    [18]Irving JA. Lala PK. Functional role of cell surface integrins on human trophoblast cell migration:regulation by TGF-β1、IGF-Ⅱ. and IGFBP-1 [J]. Exp cell Res,1995.217(3):419-427.
    [19]胡燕HDCP患者胎盘滋养细胞中转化因子β1的表达及意义[J].现代妇产科进展.2004,,13(1):19-21.
    [20]Lyall F. Priming and remodeling of human placental bed spiral arteries during pregnancy-a review [J]. Placenta.2005.26:31-36.
    [21]Johansson M. Bromfield JJ. Jasper MJ et al. Semen activates the female immune response during early pregnancy in mice [J]. J Immunol.2004.112:290-300.
    [22]Zhou Y. Damsky CH. Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome [J]? J Clin Invest.1997.99:2152-2164.
    [23]Fortunato SJ. Menon R. Lombardi SJ. Interleukin-10 and transforming growth factor-beta inhibit amniochorion tumor necrosis factor-alpha production by contrasting mechanisms of action:therapeutic implications in prematurity [J]. Am J Obstet Gynecol,1997.177:803-809.
    [24]Benian A. Madazli R, Aksu f et al. Plasma and placental levels of interleukin-10, transforming growth factor-beta 1 and epithelial-cadherin in preeclampsia [J]. Obstet Gynecol.2002.100:327-331.
    [25]Enquobahrie DA. Williams MA. Qiu C et al. Maternal plasma transforming growth factor-betal concentrations in preeclamptic and normotensive pregnant Zimbabwean women [J]. J Matern Fetal Neonatal Med.2005.17(5):343-348.
    [26]Muy-Rivera M. Sanchez SE, Vadachkoria S, et al. Transforming growth factor-betal (TGF-betal) in the plasma is associated with preeclampsia risk in Peruvian women with systemic inflammation [J]. Am J Hypertens.2004.17(4):334-338.
    [27]Peracoli MT. Menegon FT. Borges VT et al. Platelet aggregation and TGF-beta(1) plasma levels in pregnant women with preeclampsia[J]. J Reprod Immunol.2008.79(1):79-84.
    [28]Emanuelli M. Giannubilo SR. Landi B et al. Placental overexpression of transforming growth factor-beta3 in the HELLP syndrome [J]. Gynecol Obstet Invest. 2008.65(1):1-5.
    [29]Hennessy A. Orange S. Willis N et al. Transforming growth factor-betal does not relate to hypertension in pre-eclampsia [J]. Clin Exp Pharmacol Physiol.2002.29(11):968-971.
    [30]Lyall F, Simpson H. Bulmer JN et al. Transforming growth factor-beta expression in human placental bed in third trimester normal pregnancy, preeclampsia, and fetal growth restriction. Am L Pathol.2001.159:1827-1838.
    [31]Ayatollahi M. Geramizadeh B. Samsami A. Transforming growth factor beta-1 influence on fetal allografts during pregnancy [J]. Transplant Proc.2005.37(10):4603-4604.
    [32]Lim JH. Kim SY, Park SY et al. Soluble endoglin and transforming growth factor-betal in women who subsequently developed preeclampsia [J]. Prenat Diagn.2009.29(5):471-476.
    [33]Wipff J, Avouac J. Borderie D et al. Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin [J]. Rheumatology (Oxford).2008.47(7):972-975.
    [34]Toporsian M. Gros R. Kabir MG et al. A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia [J]. Circ Res.2005,96(6):684-692.
    [35]ten Dijke P. Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases [J]. Angiogenesis.2008.11(1):79-99.
    [36]Perez-Gomez E, Eleno N, Lopez-Novoa JM et al. Characterization of murine S-endoglin isoform and its effects on tumor development [J]. Oncogene.2005.24(27):4450-4461.
    [37]Venkatesha s. Toporsian M, Lam C et al. Soluble endoglin contributes to the pathogenesis of preeclampsia [J]. Nat Med.2006 12(6):642-649.
    [38]Velasco-Loyden C, Arribas J, Lpez-Casillas F. The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1 [J]. J Biol Chem.2004.279(9):7721-7733.
    [39]张东妹、颜建英.子痫前期与sEng及sFlt-1的关系[J].中华妇产科杂志,2008、35(4):284-287.
    [40]Chedraui P. Lockwood CJ. Schatz F et al. Increased plasma soluble fms-like tyrosine kinase 1 and endoglin levels in pregnancies complicated with preeclampsia[J]. J Matern Fetal Neonatal Med.2009.6:1-6.
    [41]Thadhani R. Ecker JL. Mutter WP et al. Insulin resistance and alterations in angiogenesis:additive insults that may lead to preeclampsia [J]. Hypertension.2004.43(5):988-992.
    [42]Myatt L. Webster RP. Vascular biology of preeclampsia [J]. J Thromb Haemost. 2009.7(3):375-84.
    [43]Boulanger H. Flamant M. New insights in the pathophysiology of preeclampsia and potential therapeutic implications [J]. Nephrol Ther.2007.3(7):437-448.
    [44]Gilbert JS, Ryan MJ. LaMarca BB et al. Pathophysiology of hypertension during preeclampsia:linking placental ischemia with endothelial dysfunction [J].Am J Physiol Heart Circ Physiol.2008.294(2):541-550.
    [45]Steinberg G, Khankin EV, Karumanchi SA. Angiogenic factors and preeclampsia [J]. Thromb Res.2009.123 (2):593-599.
    [46]Holston AM. Qian C. Yu KF et al. Circulating angiogenic factors in gestational proteinuria without hypertension [J]. Am J Obstet Gynecol,2009.200(4):392.e1-10.
    [47]Gilbert JS. Nijland MJ. Knoblich P. Placental ischemia and cardiovascular dysfunction in preeclampsia and beyond:making the connections [J]. Expert Rev Cardiovasc Ther.2008.6(10):1367-1377.
    [48]Gilbert JS. Gilbert SA. Arany M et al. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression [J]. Hypertension.2009,53(2):399-403.
    [49]Yinon Y. Nevo O, Xu J et al. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels:hypoxic regulation via transforming growth factor-beta 3 [J]. Am J Pathol,2008.172(1):77-85.
    [50]Munaut C, Lorquet S. Pequeux C et al. Hypoxia is responsible for soluble vascular endothelial growth factor receptor-1 (VEGFR-1) but not for soluble endoglin induction in villous trophoblast[J]. Hum Reprod.2008.23(6):1407-1415.
    [51]Hirashima C, Ohkuchi A, Matsubara S et al. Alteration of serum soluble endoglin levels after the onset of preeclampsia is more pronounced in women with early-onset[J]. Hypertens Res.2008.31(8):154]-1548.
    [52]Kim YN, Lee DS. Jeong DH et al. The relationship of the level of circulating antiangiogenic factor to the clinical manifestations of preeclampsia[J]. Prenat Diagn.2009.29(5):464-470.
    [53]Staff AC. Braekke K, Johnsen GM et al. Circulating concentrations of soluble endoglin (CD 105) in letal and maternal serum and inamniotic fluid in preeclampsia[J]. Am J Obstet Gynecol,2007.197(2):176.el-6.
    [54]Masuyama H. Nakatsukasa H. Takamoto N et al. Correlationbetween soluble endoglin. vascular endothelial growth factor receptor-1 and adipocytokines in preeclampsia [J]. J Clin Endocrinol Metab.2007.92(7):2672-2679.
    [55]朱毓纯,孙瑜,杨慧霞等.妇血清中可溶性endoglin水平变化与重度PE及子痫患者发病的关系[J].中华妇产科杂志.2009.44(2):91-93.
    [56]Salahuddin S, Lee Y. Vadnais M et al. Diagnostic utility of soluble fins-like tyrosine kinase 1 and soluble endoglin in hypertensive diseases of pregnancy [J]. Am J Obstet Gynecol.2007.197(1):28.e1-6.
    [57]Jeyabalan A. McGonigal S. Gilmour C et al. Circulating and placental endoglin concentrations in pregnancies complicated by intrauterine growth restriction and preeclampsia [J]. Placenta.2008.29(6):555-563.
    [58]Signore C. Mills JL. Qian C et al. Circulating soluble endoglin and placental abruption [J]. Prenat Diagn.2008.28(9):852-858.
    [59]Lindheimer MD. Taler SJ. Cunningham FG. Hypertension in pregnancy[J]. J Am Soc Hypertens.2010.4(2):68-78.
    [60]Romero R. Nien JK. Espinoza J et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate [J]. J Matern Fetal Neonatal Med,2008.21 (1):9-23.
    [61]Chaiworapongsa T, Espinoza J. Gotsch F et al. The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation [J]. J Matern Fetal Neonatal Med.2008.21(1)25-40.
    [62]Farina A, Sekizawa A, De Sanctis P et al. Gene expression in chorionic villous samples at 11 weeks' gestation from women destined to develop preeclampsia [J]. Prenat Diagn,2008,28(10):956-961.
    [63]Savvidou MD, Noori M, Anderson JM et al. Maternal endothelial function and serum concentrations of placental growth factor and soluble endoglin in women with abnormal placentation [J]. Ultrasound Obstet Gynecol,2008.32(7):871-876.
    [64]Levine RJ. Maynard SE, Qian c et al. Circulating angiogenicfactors and the risk of preeclampsia[J]. N Engl J Med.2004.350(7):672-683.
    [65]Toporsian M. Gros R. Kabir MG. et al. A role for endoglin:incoupling eNOS activity an d regulating vascular tone revealed inhereditary hemorhagic telangiectasia [J]. Circ Res.2005.96(6):684-692.
    [66]Sandrim VC. Palei AC. Metzger IF et al. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endogline in preeclampsia[J]. Hypertension.2008.52(2):402-407.
    [67]Enquobahrie DA,Williams MA.Qiu C et al.Maternal plasma transforming growth factor-betal concentrations in preeclamptic and normotensive pregnant Zimbabwean women[J].J Matern Fetal Neonatal Med.2005,17(5):343-348.
    [68]Heikkinen J.Mottonen M.Pulkki K et al. Cytokine levels in midtrimester amniotic fluid in normal pregnancy and in the prediction of preeclampsia[J]. Scand Immunol,2001.53(3):310-314.
    [69]Erez O, Romero R. Espinoza J et al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age [J]. J Matern Fetal Neonatal Med.2008.21 (5):279-287.
    [70]Shan HY. Rana S, Epstein FH et al. Use of circulating antiangiogenic factors to differentiate other hypertensive disorders from preeclampsia in a pregnant woman on dialysis [J]. Am J Kidney Dis.2008.51(6):1029-1032.
    [71]Salahuddin S. Lee Y. Karumanchi SA et al. Diagnostic utilith of soluble fins-like tyrosine kinase 1 and soluble endoglin in hypertensive diseases of pregnancy [J]. Am J Obstet Gynecol.2007,197:el-6.
    [72]Robinson CJ, Johnson DD. Soluble endoglin as a second-trimester marker for preeclampsia[J]. Am J Obstet Gynecol,2007,197(2):174.el-5.
    [73]Levine RJ, Lam C, Qian C et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia [J]. N Engl J Med.2006.355(101):992-1005.
    [74]Baumann MU, Bersinger NA, Mohaupt MG et al. First-trimester serum levels of soluble endoglin and soluble fins-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsea[J]. Am J Obstet Gynecol.2008.199(3):266.e1-6.
    [75]De Vivo A. Baviera G, Giordano D et al. Endoglin PIGF and sFlt-1 as markers for predicting pre-eclampsia [J]. Acta Obstet Gynecol Scand.2008.87(8):837-842.
    [76]Stepan H, Geipel A. Schwarz F et al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion[J]. Am J Obstet Gynecol.2008.198(2):175.el-6.
    [77]Lim JH. Kim SY. Park SY et al. Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors[J]. Obstet Gynecol.2008,111(6):1403-1409.
    [78]Wang A. Rana S. Karumanchi SA. Preeclampsia:the role of angiogenic factors in its pathogenesis [J]. Physiology (Bethesda).2009.24:147-158.
    [79]Stepan H, Jank A. Angiogenic Factor and Their Role in Pathogenesis and Prediction of Preeclampsia[J]. Z Geburtshilfe Neonatol,2009.213(3):101-105.
    [80]Xu B, Thornton C, Tooher J et al. Anti-Hypertensive Drugs Effects On SFLT-1 and Sendoglin Production from Human Normal and Preeclamptic Placentas In-Vitro[J]. Clin Exp Pharmacol Physiol,2009.36(8):839-842.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700