水解酸化-UNITANK处理工业园区废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石家庄高新区所排废水成份复杂,水质波动较大,可生化性差,致使现有污水处理厂不能实现达标排放。本文以石家庄高新区所排废水为研究对象,采用“水解酸化-UNITANK”工艺开展中试研究,考察水解酸化对改善水质特性的效能,优化UNITANK池运行控制条件,以达到提高废水可生化性,改善水质,提高整体处理系统的净化效果,研究结果表明:
     1.采用“水解酸化-UNITANK”工艺处理石家庄高新区所排放的废水经试验证明是可行的,当系统进水COD为350~650 mg/L时,COD的平均去除率为81.2%,出水COD为81~103 mg/L,满足《城市污水处理厂污染物排放标准》GB8978-1996表4二级排放标准的要求。
     2.水解酸化池以污水厂储泥池中的污泥作为接种污泥,接种量为6g·VSS/L,启动负荷为0.5 KgCOD/(m3?d),通过逐步缩短HRT来提高容积负荷,实现了水解酸化池的稳定运行。当进水COD为400~600 mg/L时,COD的平均去除率为19.8%,B/C值由原来的0.26~0.32提高至0.38~0.43,水质得到了较好的改善。HRT对水解酸化池的处理效果影响明显,当HRT大于6h时,COD去除率与B/C的增长幅度趋于平缓,因此,水解酸化池的最佳HRT为6h较为合适。进水PH为7~9时,出水pH在5.2~6.2,水解酸化池运行正常;运行温度在12℃~26℃范围,对水解酸化池的处理效果无明显影响。
     3. UNITANK以污水厂储泥池中的污泥作为接种污泥,接种量为3g·VSS/L,逐步增加进水量来提高反应器的容积负荷,实现了UNITANK的稳定运行。当进水COD为380~500 mg/L,B/C0.38~0.42,运行负荷为0.42~0.46 KgCOD/(m3?d),COD平均去除率为81.8%,NH3-N平均去除率为88.1%,TN平均去除率为32.6%,TP平均去除率为9.5%。HRT是影响运行效果的主要因素之一,当HRT低于26h时,COD去除率偏低;HRT大于26h时,COD去除率略有升高,HRT为26h较为合适。DO浓度在0~2 mg/L的范围内对COD去除率有较大的影响,大于2 mg/L时运行效果较好,DO浓度控制在2~3 mg/L时较为合适;在常温下(20℃~25℃),对运行效果无明显影响。
The component of Waste water Emission in Shijiazhuang Hi-tech Industry Development zone is complicated, water quality fluctuations is uneven and biodegradability is bad, so as that waste water treatment plant can not reach standard emission .This article makes waste water emission of Shijiazhuang Hi-tech Industry Development zone as an object, adopting“hydrolytic acidification- UNITANK”technology to research and research the efficiency of hydrolytic acidification for improving the characteristic of water quality, Optimization UNITANK operation control conditions for improving biodegradability of wastewater, improving water quality and raising the purifying system of whole processing systems, the results shows:
     1. Disposing of waster water through“hydrolytic acidification- UNITANK”technology proves feasible through the experiment, the COD is 350~650 mg/L when water enters in system, the average rate of remove COD is 81.2%, out of water is 81~103 mg/L, which satisfy the needs of“waste water treatment plant standard for discharge of pollutants”GB8978-1996, table 4, Grade II emission standards.
     2. Hydrolytic acidification tank make sludge in sludge tank as seed sludge, the amount of seed sludge is 6g?VSS/L, the Organic Loading Rate in the starting stage is 0.5 KgCOD/(m3?d),through shortening HRT to increase OLR step by step ,so as to fullfill the stability of hydrolytic acidification tank. The average rate of remove COD is19.8% when the COD is 400~600 mg/L in the situation of entering water, B/C raised from 0.26~0.32 to 0.38~0.43,water quality has a good improvement . HRT has conspicuous Treatment effect on hydrolytic acidification tank, the rate of remove COD and the growing rate of B/C towards gently when HRT is greater than 6h, therefore , the best hydrolytic acidification tank is suitable for 6h.The PH of income water is 7~9 and the PH of outcome water is between 5.2~6.2, hydrolytic acidification tank work stable , the operation temperature between 12℃~26℃has no influence on treatment effect of hydrolytic acidification tank.
     3. Hydrolytic acidification tank make sludge in sludge tank as seed sludge,the amount of seed sludge is 3g·VSS/L, adding income water improve the reactor’s OLR and it makes the UNITANK work stable . When the COD of incoming water is 380~500 mg/L,B/C is 0.38~0.42,working OLR is 0.42~0.46 KgCOD/(m3?d),the average rate of remove COD is 81.8%, the average rate of remove NH3-N is 88.1%, the average rate of remove TN is 32.6%, the average rate of remove TP is 9.5%.HRT is one of the most factor which influence operation practice, when HRT is lower than26h ,the rate of remove COD is lower, when HRT is greater than 26h, the rate of remove COD increase slightly ,HRT is suitable in 26h. The concentration of DO , between 0~2 mg/L has a significant effect on the rate of remove COD, greater than 2mg/L has good operation practice, between 2~3 mg/L is the most suitable, in normal temperature has no significant effect on operation practice.
引文
[1]郭强,谢从武.有毒难降解工业废水处理技术研究进展.精细石油化工进展.2005,6(4):11-4
    [2]白春学,钟俊波,徐锁洪.难降解有机物去除技术的研究与应用进展.辽宁化工. 2004,33(1): 45-49
    [3]丁真真.难降解有机废水的处理方法研究现状.甘肃科技. 2006, 22(2):113-115
    [4]张志刚,苏永渤,颜军等.化学絮凝-SBR法处理味精废水的研究.环境保护科学,2001,5(2): 17-21
    [5]王连生,陈平,程建光等.棉纺印染废水处理工程实践. 2006,19(21):32-36
    [6]刘茉娥.膜分离技术.北京:化学工业出版社. 2001:101-166
    [7]唐玉斌,陆柱.绿色水处理技术的研究与进展.水处理技术. 2002,28(1):1-5
    [8]冯永凌,叶菊招.聚氨基葡萄糖超滤膜的研究与应用进展.工业水处理. 2001, 18(4):16-18
    [9]喻胜飞,叶菊招.壳聚糖活性炭共混超滤膜的研究.水处理技术. 2003,25(5):255-258
    [10]中国化工防治污染技术协会.化工废水处理技术.南京:化工出版社,2000:115-180
    [11] Glaze W H, Kang, J W, Chapin D H.The chemistry of water and waste water treatment processes in volving ozone, hydrogen peroxide and ultraviolet radiation. JOzone Sci Eng.2007,9(2):335-341
    [12]程丽华,黄君礼,倪福祥.Fenton试剂生成的动力学研究.环境污染治理技术与设备.2003,4(5):12-14.
    [13]李亚峰,王春敏.Fenton氧化与吸附法联合处理焦化废水的研究.沈阳建筑大学学报.2006,21(4),354-359
    [14]李茂,韩永忠.树脂吸附-Feton氧化法处理高浓度焦化废水.工业水处理. 2006,26(10):23-26
    [15]曹磊.高级氧化技术在水处理中的研究与应用.污染防治技术.2008,21(4):23-25
    [16]毛绍春,姚文华.高浓度有机废水处理技术的研究进展.云南化工.2004, 31(3):27-30
    [17] Andreozzi R, Caprio V, Marotta R, et al.Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. Hazard. Mater. 2003, 103(3):233-246
    [18]张洪林.难降解有机物的处理技术进展.水处理技术.2006,24(5): 164-259
    [19]于秀娟,张熙林,王宝贞,等.臭氧-生物活性炭工艺去除水中有机微污染物.环境污染与防治.2003,22(4):1-3
    [20]张治宏,王彩花,王晓昌.高级氧化技术在印染废水处理中的研究进展.工业安全与环保.2008,34(8):19-21
    [21] Jogle HS Kar, SamantS D, Joshi J E.Kinetics of wet air oxidation of Phenol and substituted phenols.Water Research.2005,25(2):135-145.
    [22]雷乐成,汪大翚.湿式氧化法处理高浓度活性染料废水.中国环境学.1999,19(1):42-46
    [23]周天书,杨润昌,黄明,等。湿式过氧化氢氧化处理高浓度燃料废水的工艺研究.重庆环境科学.2005,23(2):62-64
    [24]袁芳,董俊明,胡献舟.过氧化氢湿式催化氧化技术处理高浓度印染废水的研究.化工之友. 2006,8(2):4-5
    [25]李金英,杨春维.水处理中的高级氧化技术.科技导报.2008,26(16):88-92
    [26] Helmut S, Johannes A.Supercritical water oxidation: state of the art.Chem Eng Technol,2005,22(11):903-908
    [27] Rice S F, Steeper, Richard R,et al.Oxidation rates of common organic compounds in supercritical water.J hazardousmaterials,2006,59(4):2-3
    [28] Casal V, Schmidt H, Suwox A.Facility for the destruction of chlorinated hydrocarbons. J Supercrit Fluids,2004,13:269-276
    [29]龚为进.难降解染料废水治理新技术—超临界水氧化法.中原工学院学报. 2005, 16(1):60-62
    [30]马承愚,姜安玺,彭英利,等.超临界水氧化法处理偶氮染料生产废水氨水的实验研究.黑龙江大学自然科学学报,2005,22(4):525-527
    [31]丁军委,陈丰秋,吴素芳.超临界水氧化法处理含酚废水.环境污染与防治.2006,22(1):1-3
    [32]毛绍春,姚文华.高浓度有机废水处理技术的研究进展.云南化工. 2004,31(3): 27-35
    [33]何德文.白腐真菌处理难降解的有机废水研究.工业水处理,2000,20(3):14-17
    [34]唐传祥.塔式生物滤池在废水处理中的应用.工业用水与废水,2002,25(3):8-10
    [35] Odegaard Hallvard, Saupsstad.Method for purification of water: US,5458879.2006
    [36] Rodger M, Zhan X M.Moving-medium biofilm reactors. Environmental Science and Bio/Technology.2007,2:213-224
    [37] Bjorn Rusten, Bjornar Eikebrok, Yngve Ulgenes.Design and operations of the kaldnes moving bed biofilm reactors. Aquacultural Engineering.2006.322-331
    [38] Chen Sheng, Sun De zhi, Chung Jong-shik.Treatment of pesiticide waste water Bymoving-bed reactor combine with Fenton-coagulation pretreatment. Journal of HaZardous Materials.2007, 114(1-2):577-584
    [39]孙华,高延耀,洪英.移动床生物反应器处理染料化工废水工艺研究.环境工程. 2002,20(1):19-21
    [40]李润良,陈平,于荣朴.加压纯氧曝气生化法处理亚铵法木浆中段水的研究.河北工.2002, 18(3):40-41
    [41] Berktay A, Ellis K V.Comparison of the cost of the pressurized waste water treatment process with other established treatment processes. Water Research. 2006,31(12):2973-2978
    [42]王敏,雷艺.一体式膜生物反应器处理中药废水的研究.中国给水排水.2003, 19(12):88-89
    [43]何义亮.厌氧MBR处理高浓度食品废水的应用.环境科学.2004,20(6):60-65
    [44]李春杰,顾国维.膜生物反应器的研究进展.污染防治技术. 2004, 12(1):51-54
    [45]樊耀波.膜生物反应器净化石油化工污水的研究.环境科学学报. 2005, 17(1):66-69
    [46]乌锡康.有机化工废水治理技术.北京:化学工业出版,1999:71-93
    [47]关卫省.A/O生物法处理石化废水的研究.中国环境科学.1995, 15(5) :363-368
    [48]施英乔,丁来保,李萍,等.厌氧-好氧处理高德率APMP废水的研究.环境科学与技术. 2007,3(1):8-11
    [49]安虎仁.厌氧过程在厌氧-好氧工艺处理染料工业废水中的作用.环境科学研究.2004, 7(3):36-40
    [50] Kupferle M J . Anaerobic Pretreatment of Hazardcus waste lea hates in public owned treatment works.Water Environ.Res.1995,(6):910-920
    [51] Inee O . Performance of a two-pbase anaerobic digestion system when treating dairy wastewater. Water Researeh,2004,32(9):2707-2713
    [52]李亚静,孙力平.水解酸化提高维生素B1生产废水可生化性试验研究.天津城市建设学院学报.2005,11(1):56-58
    [53]毛卫兵,陆少鸣,朱争亮.厌氧折流板反应器在制药废水处理中的研究.工业安全与环保.2004, 30(11):3-5
    [54]国家环保局.水和废水检测分析方法.第4版.北京:中国环境科学出版社.2002:105-360
    [55] Stegema M H L, Peijnenburg W J M, Verboom H. A quantitative structure activity.Relationship for the direct photohydrolysis of meta-subtituted halobenzene derivatives in water. Chemosphere, 2007,26(5):837-849
    [56]杨景亮,刘翠英.UASB反应器处理维生素B12淀粉混合废水的研究.环境科学.1996,17(6):63 -65
    [57]于宏兵,林学钰,杨雪梅,等.超高温厌氧水解酸化特征与效果研究.中国环境科学.2005,25(1): 75-79
    [58] Young Ho-Ahn, Kyung Sok-Min, Richard E Speece. Pre-acidification in anaerobic sludge bed process treating brewery wastewater.Wat.Res,2001,35(18):4267-4276
    [59] SEGRER SENGINEERING WATER.Unitank-advanced treatment of industrial and municipal wastewater,1996.
    [60] Feyaerts Met al.Redox control of biological nitrogen removal in the unitank single stage operation. Med Fac Landbouww Uijksuniv Grent.2005
    [61] Vriens Let al.The unitank systems for enhanced biological nutrirent removal wastewaters.Water, 2008:52-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700