低温等离子体改性碳材料吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料作为现代社会经济发展的物质基础和先导,对人类文明的发展起着极其重要的作用,同时也是造成目前环境问题的主要原因之一。开发环境友好型材料,减少环境的污染,恢复被破坏的生态环境,用材料科学与技术来改善生态环境,是历史发展的必然。碳材料化学性能稳定,方便易得,价格低廉,在环境中被广泛用于吸附处理、有机物回收、电化学反应电极材料等。本文从材料的表面改性入手,利用低温等离子体对碳材料的蚀刻与官能团加载,建立利用固相微萃取技术对材料的吸附性能进行快速考察的方法,探索了在水中与电化学结合对水中有机污染物的增强吸附性能。以分布最广的大气和水等典型的环境进行吸附研究,为碳材料改性提供基础数据和理论依据。
     在15.7 kV电压下,以空气作为反应气体,采用直流电源电晕放电对石墨材料进行辐照改性。借助扫描电镜、傅里叶红外光谱、元素分析、失重率测定仪等现代分析技术,考察了等离子体对碳材料表面的改性效果,在等离子体改性过程中氧化和蚀刻反应共同进行,相互影响。改性后材料比表面积和孔容积增加,表面出现C=O,OH等新的官能团,失重率有所下降,材料的稳定性提高。证实了电晕放电低温等离子体辐照会改变碳材料表面的物理以及化学性状。
     将不同改性碳材料制成固相微萃取的萃取纤维,装备在固相微萃取器上,通过对比不同处理时间的萃取纤维对同种气体样品的吸附评价其吸附性能,建立固相微萃取技术可作为评价材料吸附性能的方法。空气低温等离子体改性3-8 min的碳材料对有机污染物的吸附容量最大;改性后的碳材料对弱极性、中等分子量的有机物(正丁醇,苯)吸附性能提高。在前5 min内对苯系物的吸附大于对醇类的吸附,随着吸附时间的延长,不同物质之间存在竞争吸附。
     通过对苯、甲苯、乙苯、二甲苯,以及甲醇、乙醇、异丙醇、正丁醇八种有机物的吸附和脱附实验发现,改性石墨的吸附在前5 min内较快,35 min后吸附达到平衡,脱附在200℃、3 min内可完成,再生方便。改性石墨对极性和非极性物质都有良好的吸附效果;改性石墨纤维使用寿命达400多次,并且可以保持良好的吸附性能。
     将改性石墨浸入水中,考察其对水中的极性有机污染物如甲醇、乙醇、异丙醇、正丁醇的吸附性能。水样中的盐含量、温度、pH等对改性材料吸附水中的极性污染物都有一定的影响。改性石墨对水中醇类的吸附在10 min左右达到吸附平衡,比吸附气体中的同样物质更容易达到饱和吸附容量。脱附温度220℃就足够使吸附在纤维表面的醇脱附下来,在240℃下脱附1 min,石墨纤维表面的醇可以完全脱附。
     将改性碳材料用于电助吸附水中异丙醇以及2,4-二氯苯酚。物质结构、极化电压对材料的电吸附有不同的影响。对于异丙醇正极化可以促进碳材料对其的吸附,而负电压的加载对吸附有阻碍作用,而电化学对2,4-二氯苯酚的影响则相反。电解质浓度的增加对电吸附有机物有促进作用,但是浓度的继续升高材料对无机离子的吸附也增加,占据部分活性吸附位,阻碍了对有机物的吸附。弱酸性环境下碳材料对对异丙醇和2,4-二氯苯酚的电吸附最显著。
     将改性石墨纤维作为固相微萃取的萃取纤维对水中的硝基苯含量进行了分析,探讨了无机盐浓度、pH、水温、吸附时间、脱附温度和脱附时间等参数对样品前处理的影响。吸附的硝基苯利用气相色谱-氢火焰离子检测器进行分析,方法的线性范围在10-1000μg L~(-1)之间,检测限为5μg L~(-1),是良好的样品前处理技术。
Material as a basis and pilot of the modern socio-economic progress, plays anextremely important role for the development of human civilization. Developingenvironment-friendly materials, reducing environmental pollution, restoring thedamaged ecological environment, and improving the surrounding of people by makinguse of materials science and technology are an inevitable historical advance. Carbonmaterials have the advantages of stable to chemical, easy to gain, low cost, so they arewidely used in environmental fields, such as adsorption process, organic substancesrecycle and electrochemical reactions. This paper started with surface modification ofmaterial, creatively adopted nonthermal plasma to etch and load functional groups,established the methodology of rapid evaluation of carbon materials properties usingsolid-phase microextraction(SPME) method, and explored the combination ofelectrochemistry with adsorption to enhance the adsorption properties of organicpollutants in the water. The adsorption studies were conducted for the most widelydistributed typical pollutants at atmosphere and in water environment, and providedbasic data and theoretical evidence for modification of carbon materials.
     The nonthermal plasma was produced by air, under 15.7 kV potential. Thechanges of the materials surface which were treated by the plasma were surveyed usingscanning electron microscopy, Fourier transform infrared spectroscopy, elementalanalysis, thermogravimetric analysis and other modern techniques. The resultsindicated the etching process and oxidation reaction were happened simultaneouslyduring the modifying process. After modification, the surface area and pore volume ofthe carbon material increased, and new functional groups such as C=O, OH wereenriched. Also, the weight loss decreased and stability improved were observed on themodified materials. The fact that the nonthermal plasma was efficient for changing thephysical and chemical characteristics of the material was proved.
     The adsorption performance and the selectivity of the material were evaluated by adsorption on same gas with same conditions by different modified carbon materialsand different gases by the same modified carbon material, respectively. It was foundthat the material with treatment of 3 to 8 min by nonthermal plasma has bestadsorption performance to organic pollutants; and the adsorption performance of thecarbon materials for weak polar, middle-molecular weight organic compounds(n-butylalcohol, benzene) is improved after modification. The results also showed that theadsorption speed of benzene is greater than that of alcohols in the first 5 min, and withthe extension of the adsorption time, competition adsorption will happen amongdifferent compounds.
     The adsorption of gaseous organic pollutants by modified carbon material wasdeveloped in the research. Through adsorption experiments by adsorption anddesorption of eight organic pollutants, including benzene, toluene, ethylbenzene andxylene, as well as methanol, ethanol, isopropanol and n-butanol on modified carbongraphite, it was found that the modified fiber has rapid adsorption in the first 5 min,and the balance of adsorption is achieved after 35 min; desorption can be finished in 3min at 200℃. Modified graphite has good adsorption performance on both polar andnon-polar substances, and it has good adsorption performance even after 400 timesusage. The modified graphite fiber is suitable for industrial applications.
     The adsorption performance of polarity organic pollutants in water wasinvestigated for the modified graphite fiber. It was found that the modified fiber hasvery high adsorption efficiency for methanol, ethanol, isopropanol and n-butanoldissolved in water. The salt content, temperature and the pH values of the watersamples were all have certain impacts on the adsorption of polarity organic pollutantsby modified graphite fiber. It cost 10 min to reach adsorption equilibrium for alcoholsusing modified graphite, and it was easier to reach saturation adsorption capacitycompared with the same conditions in gas sample. The temperature 220℃is enoughto desorb the alcohols absorbed on graphite fiber and 1 min is enough to completedesorption of the alcohols with 240℃.
     The methods of electro-assisted adsorption of organic pollutants in water by modified carbon materials were probed. It was found that the different substancestructure and polarization voltage both have different effects on electro-adsorption. Asfor isopropanol, the polarization improved its adsorption, and the negative voltageblocked its adsorption; whereas the electrochemical effects is reversed to theadsorption of 2, 4-dichlorophenol. The inproveing of the of the electrolyte was goodfor the eledtro-adsorption, while high concentration will intrduce more ions adsorbedon the material which was for organic compounds before. The electro-adsorption of thecarbon materil was significantly improved in acid solution for isoproanol and 2, 4-DCP.
     The nitrobenzene in the water was sampled by the modified graphite fiber as asolid-phase microextraction fiber. Concentration of inorganic salts, pH, temperature,adsorption time, desorption temperature and desorption time parameters on the impactof pre-treatment samples were discussed. The adsorbed nitrobenzene was analyzed bygas chromatography-flame ionization detector. The linear range of the method wasbetween 10 and 1000μg L~(-1), and the detection limit was 5μg L~(-1), and the approach isshowna good sample preparation method.
引文
[1] Foley J.A., Defiles R., Asner GP., et al. Global consequences of land use. [J] Science. 2005, 309(5734):570-574
    [2] Ruthven D.M. Past progress and future challenges in adsorption research. [J] Industrial & Engineering Chemistry Research. 2000, 39(7):2127-2131
    [3] Collins P.G, Bradley K., Ishigami M., et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. [J] Science. 2000, 287(5459): 1801-1804
    [4] Garcia-Perez E., Parra J.B., Ania C.O., et al. A computational study of CO2, N-2, and CH4 adsorption in zeolites. [J] Adsorption-Journal of the International Adsorption Society. 2007,13(5-6):469-476
    [5] Li K.H., Olsan D.H., Lee J.Y., et al. Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. [J] Advanced Functional Materials. 2008, 18(15):2205-2214
    [6] Atwood J.L., Barbour L.J., Jerga A. A new type of material for the recovery of hydrogen from gas mixtures. [J] Angew Chem Int Ed Engl. 2004, 43(22):2948-2950
    [7] Dillon A.C., Jones K.M., Bekkedahl T.A., et al. Storage of hydrogen in single-walled carbon nanotubes. [J] Nature. 1997, 386(6623):377-379
    [8] Dinca M., Yu A.F., Long J.R. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: Syntheses, structures, and hydrogen storage properties. [J] Journal of the American Chemical Society. 2006, 128(27):8904-8913
    [9] Zhao X.B., Xiao B., Fletcher A.J., et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. [J] Science. 2004, 306(5698):1012-1015
    [10] Haderlein S.B., Schwarzenbach R.P. Adsorption of Substituted Nitrobenzenes and Nitrophenols to Mineral Surfaces. [J] Environmental Science & Technology. 1993, 27(2):316-326
    [11] Jonker M.T.O., Koelmans A.A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations. [J] Environmental Science & Technology. 2002, 36(17):3725-3734
    [12] Gauthier-Manuel B. Porous silicon: some new applications of this material with astonishing properties. [J] Actualite Chimique. 2009, (327-28): 104-108
    [13] Carianescu G, Cristian P., Grigorescu M., et al. High Temperatures, Abradability and Corrosion New Resistant Material Integrated with Original Technologies Addressed to Surface Covering of Elastic Components of Gas Turbine. [J] Metalurgia International. 2008,13:63-66
    [14] Zheng Y., Pearson J., Tan R.H.C., et al. Erbium bis(pentafluorophenyl) phosphinate: a new hybrid material with unusually long-lived infrared luminescence. [J] Journal of Materials Science-Materials in Electronics. 2009,20:430-434
    [15] Boaz B.M., Palanichamy M., Varghese B., et al. Synthesis, growth, structural, optical, photoconductivity and dielectric studies on potassium p-nitrophenolate dihydrate: A new semiorganic nonlinear optical material. [J] Materials Research Bulletin. 2008, 43(12):3587-3595
    [16] Majumdar K.C., Chattopadhyay B., Chakravorty S., et al. A new type of symmetrical banana-shaped material based on N-methyldiphenylamine as a core moiety exhibiting an A(d)-> A(2) transition. [J] Tetrahedron Letters. 2008, 49(50):7149-7152
    [17] Dabrowski A., Podkoscielny P., Hubicki Z., et al. Adsorption of phenolic compounds by activated carbon - a critical review. [J] Chemosphere. 2005, 58(8): 1049-1070
    [18] Garcia-Araya J.F., Beltran F.J., Alvarez P., et al. Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater. [J] Adsorption-Journal of the International Adsorption Society. 2003, 9(2): 107-115
    [19] Hyde R.A. Application of Granular Activated Carbon in the Water Industry. [J] Journal of the Institution of Water and Environmental Management. 1989, 3(2):174-181
    [20] Kim T.Y., Kim S.J., Cho S.Y. Adsorption and separation characteristics of herbicides onto activated carbon. [J] Adsorption-Journal of the International Adsorption Society. 2005,11:217-221
    [21] Long X.L., Cheng H., Xin Z.L., et al. Adsorption of ammonia on activated carbon from aqueous solutions. [J] Environmental Progress. 2008,27(2):225-233
    [22] Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. [J] Carbon. 2004,42(l):83-94
    [23] Yoo J.W., Kim T.Y., Cho S.Y., et al. Adsorption and desorption characteristics of maltooligosaccharide for the surface treated activated carbons. [J] Adsorption-Journal of the International Adsorption Society. 2005, 11:719-723
    [24] Mota J.P.B., Rodrigues A.E., Saatdjian E., et al. Dynamics of natural gas adsorption storage systems employing activated carbon. [J] Carbon. 1997, 35(9):1259-1270
    [25] Ko T.H., Huang L.C. The influence of cobaltous chloride modification on physical properties and microstructure of modified PAN fiber during carbonization. [J] Journal of Applied Polymer Science. 1998, 70(12):2409-2415
    [26] Mironov V.S., Park M., Choe C., et al. Influence of carbon fiber surface treatments on the structure and properties of conductive carbon fiber/polyethylene films. [J] Journal of Applied Polymer Science. 2002, 84(11):2040-2048
    [27] Stein A., Wang Z.Y., Fierke M.A. Functionalization of Porous Carbon Materials with Designed Pore Architecture. [J] Advanced Materials. 2009, 21(3):265-293
    [28] Menendez J.A., Pis J.J. Importance, characterization and modification of the surface chemistry of activated carbons. Review. [J] Afinidad. 1998, 55(477):315-325
    [29] Nouri S., Haghseresht F. Adsorption of p-nitrophenol in untreated and treated activated carbon. [J] Adsorption-Journal of the International Adsorption Society. 2004,10(l):79-86
    [30] Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., et al. Modification of the surface chemistry of activated carbons. [J] Carbon. 1999, 37(9):1379-1389
    [31] Beebe R.A., Biscoe J., Smith W.R., et al. Heats of Adsorption on Carbon Black .1. [J] Journal of the American Chemical Society. 1947, 69(l):95-101
    [32] Lee J., Kim J., Hyeon T. Recent progress in the synthesis of porous carbon materials. [J] Advanced Materials. 2006, 18(16):2073-2094
    [33] Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomically thin carbon films. [J] Science. 2004, 306(5296):666-669
    [34] Riley H.L. Amorphous Carbon and Graphite. [J] Quarterly Reviews. 1947, l(l):59-72
    [35] Jiang Q., Qu M.Z., Zhang B.L., et al. Preparation of activated carbon nanotubes. [J] Carbon. 2002, 40(14):2743-2745
    [36] Wang X.S., Guo X.W., Li G. Synthesis of titanium silicalite (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene. [J] Catalysis Today. 2002, 74(l-2):65-75
    [37] Abiko H., Shinohara Y. Adsorption of aromatic vapors by porous template carbon material synthesized from polyfurruryl alcohol. [J] Transactions of the Materials Research Society of Japan, Vol 30, No 4. 2005, 30(4):917-920
    [38] Venkatraman B.R., Hema M., Rajachandrasekar T., et al. Adsorption of ferrous ion from aqueous solution by acid activated low cost carbon obtained from natural plant material. [J] Research Journal of Chemistry and Environment. 2007,11(l):70-78
    [39] Hameed B.H., Rahman A.A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. [J] Journal of Hazardous Materials. 2008, 160(2-3):576-581
    [40] Nhut J.M., Pesant L., Tessonnier J.P., et al. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. [J] Applied Catalysis a-General. 2003,254(2):345-363
    [41] Steriotis T.A., Stefanopoulos K.L., Katsaros F.K., et al. In situ neutron diffraction study of adsorbed carbon dioxide in a nanoporous material: Monitoring the adsorption mechanism and the structural characteristics of the confined phase. [J] Physical Review B. 2008, 78(ll):l-10
    [42] Liu S.H., Yu W.Y., Chen C.H., et al. Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell. [J] Chemistry of Materials. 2008,20(4): 1622-1628
    [43] Oda H., Yamashita A., Minoura S., et al. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. [J] Journal of Power Sources. 2006, 158(2) :1510-1516
    [44] Pyun S.I., Kim C.H., Kim S.W., et al. Effect of pore size distribution of activated carbon electrodes on electric double-layer capacitor performance. [J] Journal of New Materials for Electrochemical Systems. 2002, 5(4):289-295
    [45] Doi T., Takeda K., Fukutsuka T., et al. Surface modification of graphitized carbonaceous materials by electropolymerization of thiophene and their effects on electrochemical properties. [J] Carbon. 2005,43(ll):2352-2357
    [46] Xing W., Zhuo S., Cui H., et al. Morphological control in synthesis of cobalt basic carbonate nanorods assembly. [J] Materials Letters. 2008, 62(8-9): 1396-1399
    [47] Iwashita N., Psomiadou E., Sawada Y. Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites. [J] Composites Part a-Applied Science and Manufacturing. 1998, 29(8):965-972
    [48] Singh A., Lal D. Microporous Activated Carbon Spheres Prepared from Resole-Type Crosslinked Phenolic Beads by Physical Activation. [J] Journal of Applied Polymer Science. 2008, 110(5):3283-3291
    [49] Dominguez A., Arenillas A., Menendez J.A., et al. Modification by air and CO2 oxidation of the surface properties of carbon nanofibres produced at industrial scale. [J] Afinidad. 2006, 63(525):370-378
    [50] Cuervo M.R., Asedegbega-Nieto E., Diaz E., et al. Modification of the adsorption properties of high surface area graphites by oxygen functional groups. [J] Carbon. 2008, 46(15):2096-2106
    [51] Kabashima H., Einaga H., Futamura S. Hydrogen generation from water, methane, and methanol with nonthermal plasma. [J] Ieee Transactions on Industry Applications. 2003, 39(2):340-345
    [52] Serp P., Figueiredo J.L., Bertrand P., et al. Surface treatments of vapor-grown carbon fibers produced on a substrate. [J] Carbon. 1998, 36(12):1791-1799
    [53] Xu B., Lu Y. Chemical modification and surface reactions on carbon fibers studied by SERS. [J] Journal of Raman Spectroscopy. 2006, 37(12):1423-1426
    [54] Zhang N., Wang L.Y., Liu H., et al. Nitric acid oxidation on carbon dispersion and suspension stability. [J] Surface and Interface Analysis. 2008, 40(8): 1190-1194
    [55] Zhou X.J., Li Q.Y., Wu C.F. Grafting of maleic anhydride onto carbon black surface via ultrasonic irradiation. [J] Applied Organometallic Chemistry. 2008, 22(2):78-81
    [56] Yong Z., Mata V.G., Rodrigues A.E. Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. [J] Adsorption-Journal of the International Adsorption Society. 2001, 7(l):41-50
    [57] Allongue P., Delamar M., Desbat B., et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. [J] Journal of the American Chemical Society. 1997,119(l):201-207
    [58] Delamar M., Desarmot G, Fagebaume O., et al. Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites. [J] Carbon. 1997, 35(6):801-807
    [59] Park S.J., Donnet J.B. Anodic surface treatment on carbon fibers: Determination of acid-base interaction parameter between two unidentical solid surfaces in a composite system. [J] Journal of Colloid and Interface Science. 1998,206(l):29-32
    [60] Tsubokawa N., Abe N., Wei G, et al. Grafting of polymers onto a carbon-fiber surface by ligand-exchange reaction of poly(vinyl ferrocene-co-vinyl monomer) with polycondensed aromatic rings of the surface. [J] Journal of Polymer Science Part a-Polymer Chemistry. 2002,40(ll):1868-1875
    [61] Wang X.Y., Zhang F., Xia B.Y., et al. Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles. [J] Solid State Sciences. 2009,11l(3):655-659
    [62] Qu L.T., Dai L.M., Osawa E. Shape/size-control led syntheses of metal nanoparticles for site-selective modification of carbon nanotubes. [J] Journal of the American Chemical Society. 2006, 128(16):5523-5532
    [63] Bilek M.M.M., McKenzie D.R., Tarrant R.N., et al. Practical plasma immersion ion implantation for stress regulation and treatment of insulators. [J] Contributions to Plasma Physics. 2004, 44(5-6):465-471
    [64] Makarets M.V., Prylutskyy Y.I., Schur D.V., et al. Computer simulation of the electron beam irradiation effect on the modification of carbon nanotubes. [J] Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. 2007:119-125
    [65] Iwamura E., Yamaguchi M. Nano-structural modification of amorphous carbon thin films by low-energy electron beam irradiation. [J] 14th Congress of International Federation for Heat Treatment and Surface Engineering, Vols 1 and 2, Proceedings. 2004:1247-1252
    [66] Zhou W., Xu H.W., Shi W.F. Surface modification of multi-wall carbon nanotube with ultraviolet-curable hyperbranched polymer. [J] Thin Solid Films. 2008, 516(12):4076-4082
    [67] Boudou J.P., Paredes J.I., Cuesta A., et al. Oxygen plasma modification of pitch-based isotropic carbon fibres. [J] Carbon. 2003, 41(1):41-56
    [68] Jin B.S., Lee K.H., Choe C.R. Properties of Carbon-Fibers Modified by Oxygen Plasma. [J] Polymer International. 1994, 34(2): 181-185
    [69] Favia P., De Vietro N., Di Mundo R., et al. Tuning the acid/base surface character of carbonaceous materials by means of cold plasma treatments. [J] Plasma Processes and Polymers. 2006, 3(1):66-74
    [70] Vinitnantharat S., Rattanasirisophon W., Ishibashi Y. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances. [J] Water Science and Technology. 2007, 55(5): 145-152
    [71] Lu Z.H., Sun K.N., Sun X.N., et al. Surface modification and hydroxyapatite coating of carbon nanotubes. [J] Journal of Inorganic Materials. 2007, 22(6): 1127-1130
    [72] 冀克俭,邓卫华,陈刚,等.臭氧处理对碳纤维表面及其复合材料性能的影响.[J] 工程塑料应用 2003,31(5):34-36
    [73] 胡培贤,温月芳,杨永岗,等.氨气处理碳纤维第Ⅰ报 表面组成和反应机理.[J] 合成纤维 2008,37(6)-9-12
    [74] 杜慧玲,庞洪涛,等.表面处理对碳纤维增强聚乳酸材料界面性能的影响.[J] 材料保护 2003,36(2):16-18
    [75] Guo Y.X., Liu J., Liang J.Y. Surface modification of carbon fibers by anodic oxidation. [J] New Carbon Materials. 2006, 21(4):343-348
    [76] 刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.[J] 化工进展 2004,23(3):282-285
    [77] 彭佳,胡陈果.电化学氧化对碳纤维表面电化学性质的影响.[J] 表面技术 2008,37(4):12-14
    [78] 王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展.[J] 合成纤维 2007,36(1):29-32,39
    [79] Wen H.C., Yang K., Ou K.L., et al. Effects of ammonia plasma treatment on the surface characteristics of carbon fibers. [J] Surface & Coatings Technology. 2006, 200(10):3166-3169
    [80] Kogelschatz U., Eliasson B., Egli W. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. [J] Pure and Applied Chemistry. 1999, 71(10):1819-1828
    [81] Dumitrascu N., Topala I., Popa G. Dielectric barrier discharge technique in improving the wettability and adhesion properties of polymer surfaces. [J] Ieee Transactions on Plasma Science. 2005, 33(5):1710-1714
    [82] 唐恩凌,张静,刘明石.低温等离子体技术在材料表面改性中的应用.[J] 电工材料 2008(3):38-41
    [83] 陈国荣,郑昌平.等离子体技术在医用材料表面改性中的应用.[J] 化学通报 1992(7):26-26
    [84] 刘勇.材料表面处理高频高压低温等离子体放电电源技术的研究.[D].杭州:浙江大学;2006
    [85] 赵化侨.等离子体化学与工艺.[M].北京;1993
    [86] Rosenberg M., Sheehan D.P., Petrie J.R. Use of dusty plasmas for surface-enhanced vibrational spectroscopy studies. [J] Journal of Physical Chemistry A. 2004, 108(26):5573-5575
    [87] 邱介山.低温等离子体技术在炭材料改性方面的应用.[J] 新型炭材料 2001,16(3):58-63
    [88] 杨岳,黄碧纯,叶代启.低温等离子体对多孔材料的表面改性研究进展.[J] 化工进展 2008,27(11):1760-1764
    [89] 程抗,王祖武,左蓉,等.等离子体改性对活性炭纤维表面化学结构的影响.[J] 炭素 2008(3):15-19,37
    [90] Fukunaga A., Komami T., Ueda S., et al. Plasma treatment of pitch-based ultra high modulus carbon fibers. [J] Carbon. 1999, 37(7): 1087-1091
    [91] Chen Q.D., Dai L.M., Gao M., et al. Plasma activation of carbon nanotubes for chemical modification. [J] Journal of Physical Chemistry B. 2001, 105(3):618-622
    [92] Cui N.Y., Brown N.M.D. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. [J] Applied Surface Science. 2002, 189(1-2):31-38
    [93] Okajima K., Ohta K., Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. [J] Electrochimica Acta. 2005, 50(11):2227-2231
    [94] Jagiello J., Bandosz T.J., Schwarz J.A. A Study of the Activity of Chemical Groups on Carbonaceous and Model Surfaces by Infinite Dilution Chromatography. [J] Chromatographia. 1992, 33 (9-10):441-444
    [95] Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical. [J] Analytical Chemistry. 1990, 62:2145
    [96] Gorecki T., Yu X.M., Pawliszyn J. Theory of analyte extraction by selected porous polymer SPME fibres. [J] Analyst. 1999, 124(5):643-649
    [97] 黄健祥,胡玉玲,李攻科.选择性固相微萃取涂层的研究进展.[J] 分析科学学报 2008,24(1):97-102
    [98] 高会云,何娟,刘德仓,等.固相微萃取萃取纤维的研究进展.[J] 分析仪器 2007(2):1-6
    [99] Ouyang G., Pawliszyn J. SPME in environmental analysis. [J] Analytical and Bioanalytical Chemistry. 2006, 386(4): 1059-1073
    [100] Dietz C., Sanz J., Camara C. Recent developments in solid-phase microextraction coatings and related techniques. [J] Journal of Chromatography A. 2006, 1103(2):183-192
    [101] Chong S.L., Wang D.X., Hayes J.D., et al. Sol-gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. [J] Analytical Chemistry. 1997, 69(19):3889-3898
    [102] Hu Y.L., Fu Y.L., Li G.K. Preparation of anilinemethyltriethoxysilane/ polydimethylsiloxane sol-gel coatings for solid-phase microextraction of aromatic compounds. [J] Analytica Chimica Acta. 2006, 567(2):211-217
    [103] Zeng Z.R., Qiu W.L., Yang M., et al. Solid-phase microextraction of monocyclic aromatic amines using novel fibers coated with crown ether. [J] Journal of Chromatography A. 2001, 934(1-2):51-57
    [104] Zeng Z.R., Qiu W.L., Huang Z.F. Solid phase microextraction using fused silica fibers coated with sol-gel-derived hydroxy-crown ether. [J] Analytical Chemistry. 2001, 73(11):2429-2436
    [105] Li X.J., Zeng Z.R., Zhou J.J. High thermal-stable sol-gel-coated calix[4]arene fiber for solid-phase microextraction of chlorophenols. [J] Analytica Chimica Acta. 2004, 509(1):27-37
    [106] Wu J.C., Lord H.L., Pawliszyn J., et al. Polypyrrole-coated capillary in-tube solid phase microextraction coupled with liquid chromatography-electrospray ionization mass spectrometry for the determination of beta-blockers in urine and serum samples. [J] Journal of Microcolumn Separations. 2000, 12(4):255-266
    [107] Wu J.C., Xie W., Pawliszyn J. Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. [J] Analyst. 2000, 125(12):2216-2222
    [108] Wu J.C., Lord H., Pawliszyn J. Determination of stimulants in human urine and hair samples by polypyrrole coated capillary in-tube solid phase microextraction coupled with liquid chromatography-electrospray mass spectrometry. [J] Talanta. 2001, 54(4):655-672
    [109] Wu J.C., Pawliszyn J. Polypyrrole coated capillary coupled to HPLC for in tube solid phase microextraction and analysis of aromatic compounds in aqueous samples. [J] Analytical Chemistry. 2001, 73(1):55-63
    [110] Wu J.C., Pawliszyn J. Preparation and applications of polypyrrole films in solid-phase microextraction. [J] Journal of Chromatography A. 2001,909(1):37-52
    [111] Liljegren G., Pettersson J., Markides K.E., et al. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device. [J] Analyst. 2002, 127(5):591-597
    [112] Wu J.C., Pawliszyn J. Solid-phase microextraction based on polypyrrole films with different counter ions. [J] Analytica Chimica Acta. 2004, 520(1-2):257-264
    [113] Mullett W.M., Pawliszyn J. Direct determination of benzodiazepines in biological fluids by restricted-access solid-phase microextraction. [J] Analytical Chemistry. 2002, 74(5): 1081-1087
    [114] Walles M., Mullett W.M., Pawliszyn J. Monitoring of drugs and metabolites in whole blood by restricted-access solid-phase microextraction coupled to liquid chromatography-mass spectrometry. [J] Journal of Chromatography A. 2004, 1025(1):85-92
    [115] Mangani F., Cenciarini R. Solid phase microextraction using fused silica fibers coated with graphitized carbon black. [J] Chromatographia. 1995, 41(11-12):678-684
    [116] Djozan D., Assadi Y. Modified pencil lead as a new fiber for solid-phase microextraction. [J] Chromatographia. 2004, 60(5-6):313-317
    [117] Djozan D., Abdollahi L. Anodized zinc wire as a solid-phase microextraction fiber. [J] Chromatographia. 2003, 57(11-12):799-804
    [118] Du X.Z., Wang Y.R., Tao X.J., et al. An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction. [J] Analytica Chimica Acta. 2005, 543(1-2):9-16
    [119] Hou J.G., Ma Q., Du X.Z., et al. Inorganic/organic mesoporous silica as a novel fiber coating of solid-phase microextraction. [J] Talanta. 2004, 62(2):241-246
    [120] de Oliveira A.F., da Silveira C.B., de Campos S.D., et al. The use of a thin glass-ceramic rod as a surface for sol-gel coating in the preparation of SPME fibers. [J] Chromatographia. 2005, 61 (5-6):277-283
    [121] Liu Y., Shen Y.F., Lee M.L. Porous layer solid phase microextraction using silica banded phases. [J] Analytical Chemistry. 1997, 69(2): 190-195
    [122] 方瑞斌,张琨玲.碳素基体固相微萃取吸附质的研制.[J] 色谱 1999,17(5):453-455
    [123] 方瑞斌,陈章玉.石墨碳纤维吸附基质的固相微萃取装置的研制及应用.[J] 云南化工 1997(4):22-24
    [124] 贾金平.新型固相微萃取萃取纤维的研制及性能研究.[J] 化学世界 1998,39(4):214-215
    [125] Djozan D., Baheri T., Farshbaf R., et al. Investigation of solid-phase microextraction efficiency using pencil lead fiber for in vitro and in vivo sampling of defensive volatiles from insect's scent gland. [J] Analytica Chimica Acta. 2005, 554(1-2):197-201
    [126] Yu H.X., Dong L., Wu C.Y., et al. Hydroxyfullerene as a novel coating for solid-phase microextraction fiber with sol-gel technology. [J] Journal of Chromatography A. 2002, 978(1-2):37-48
    [127] 尤宏,王炎,王树涛,等.固相微萃取新型活性炭涂层萃取纤维的研究.[J] 分析试验室 2004,23(10):89-92
    [128] Wang S.T., Wang Y., You H., et al. Preparation of a carbon-coated SPME fiber and application to the analysis of BTEX and halocarbons in water. [J] Chromatographia. 2006, 63(7-8):365-371
    [129] Djozan D., Assadi Y. A new porous-layer activated-charcoal-coated fused silica fiber: Application for determination of BTEX compounds in water samples using headspace solid-phase microextraction and capillary gas chromatography. [J] Chromatographia. 1997, 45:183-189
    [130] Wan H.B., Chi H., Wong M.K., et al. Solid-Phase Microextraction Using Pencil Lead as Sorbent for Analysis of Organic Pollutants in Water. [J] Analytica Chimica Acta. 1994, 298(2):219-223
    [131] Gierak A., Eredych M., Bartnicki A. The preparation, properties and application of carbon fibers for SPME. [J] Talanta. 2006, 69(5): 1079-1087
    [132] Mangun C.L., Yue Z.R., Economy J., et al. Adsorption of organic contaminants from water using tailored ACFs. [J] Chemistry of Materials. 2001, 13(7):2356-2360
    [133] Sun T.H., Jia J.P., Fang N.H., et al. Application of novel activated carbon fiber solid-phase, microextraction to the analysis of chlorinated hydrocarbons in water by gas chromatography-mass spectrometry. [J] Analytica Chimica Acta. 2005, 530(1):33-40
    [134] Giardina C., Caniglia D.M., Lettini T., et al. Morphometric discrimination between syndromic (Gorlin) and nonsyndromic keratocysts. [J] Analytical and Quantitative Cytology and Histology. 2001, 23(5):373-380
    [135] Semenov S.N., Koziel J.A., Pawliszyn J. Kinetics of solid-phase extraction and srlid-phase microextraction in thin adsorbent layer with saturation sorption isotherm. [J] Journal of Chromatography A. 2000, 873(1):39-51
    [136] Ghiasvand A.R., Setkova L., Pawliszyn J. Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME-GC-TOF-MS. [J] Flavour and Fragrance Journal. 2007, 22(5):377-391
    [137] Chai X.L., Jia J.P., Sun T.H., et al. Suitability of a novel circulating cooling SPME for analysis of organophosphorous pesticides in tomatoes. [J] Chromatographia. 2008, 67(3-4):309-313
    [138] 赵明桥,李攻科,陈皓,等.超声波振荡协助SPME-GC-MS联用测定海水中2,6-二特丁基对苯醌.[J] 分析试验室 2003,22(6):60-63
    [139] Djozan D., Jouyban A., Norouzi J. Ultrasonic assisted SPME coupled with GC and GC-MS using pencil lead as a fiber for monitoring the organic volatile impurities of ceftazidime. [J] Journal of Chromatographic Science. 2008, 46(8):680-685
    [140] 陈猛,林益明,等.微波辅助-顶空固相微萃取-气相色谱-脉冲火焰光度法测定海水中二甲基硫和藻体中二甲基巯基丙酸.[J] 环境化学2002,21(2):183-188
    [141] 陈代武,王芳,蒙松年,等.微波辅助-固相微萃取联用技术萃取腊肉中多环芳烃的研究.[J] 食品工业科技 2008(6):197-199,202
    [142] Lee S.J., Ahn B. Comparison of volatile components in fermented soybean pastes using simultaneous distillation and extraction (SDE) with sensory characterisation. [J] Food Chemistry. 2009,114(2):600-609
    [143] Zhu M., Li E., He H. Determination of volatile chemical constitutes in tea by simultaneous distillation extraction, vacuum hydrodistillation and thermal desorption. [J] Chromatographia. 2008, 68(7-8):603-610
    [144] Collin S., Nizet S., Muls S., et al. Characterization of odor-active compounds in extracts obtained by simultaneous extraction/distillation from Moroccan black olives. [J] Journal of Agricultural and Food Chemistry. 2008,56(9):3273-3278
    [145] Ceva-Antunes P.M.N., Bizzo H.R., Alves S.M., et al. Analysis of volatile compounds of tapereba (Spondias mombin L.) and caja (Spondias mombin L.) by simultaneous distillation and extraction (SDE) and solid phase microextraction (SPME). [J] Journal of Agricultural and Food Chemistry. 2003, 51(5):1387-1392
    [146] Garcia-Esteban M., Ansorena D., Astiasaran I., et al. Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. [J] Journal of the Science of Food and Agriculture. 2004, 84(ll):1364-1370
    [147] Barra A., Baldovini N., Loiseau A.M., et al. Chemical analysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE). [J] Food Chemistry. 2007, 101(3):1279-1284
    [148] Diozan D., Baheri T., Pournaghi-Azar M.H. Development of electro solid-phase microextraction and application to methamphetamine analysis. [J] Chromatographia. 2007, 65(l-2):45-50
    [149] Chai X.L., He Y., Ying D., et al. Electrosorption-enhanced solid-phase microextraction using activated carbon fiber for determination of aniline in water. [J] Journal of Chromatography A. 2007,1165(l-2):26-31
    [150] Tamer U., Ertas N., Udum Y.A., et al. Electrochemically controlled solid-phase microextraction (EC-SPME) based on overoxidized sulfonated polypyrrole. [J] Talanta. 2005, 67(1):245-251
    [151] Conte E.D., Miller D.W. A solid phase microextraction-electrodeposition device for the determination of putrescine and cadaverine by high resolution gas chromatography. [J] Hrc-Journal of High Resolution Chromatography. 1996, 19(5):294-297
    [152] 姜春明,张宏哲,张海峰,等.功能性多孔炭材料在突发性环境污染事故中的应用.[J] 新型炭材料 2007,22(4):295-301
    [153] 左安友,袁作彬,翁祝林,等.等离子体对材料表面作用机理分析.[J] 湖北民族学院学报:自然科学版 2008,26(2):173-178
    [154] Park S.J., Kim B.J. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. [J] Journal of Colloid and Interface Science. 2004, 275(2):590-595
    [155] Orfanoudaki T., Skodras G., Dolios I., et al. Production of carbon molecular sieves by plasma treated activated carbon fibers. [J] Fuel. 2003, 82(15-17):2045-2049
    [156] Kodama S., Habaki H., Sekiguchi H., et al. Surface modification ofadsorbents by dielectric barrier discharge. [J] Thin Solid Films. 2002, 407(1-2):151-155
    [157] Wang L.J., Hong F.C.N. Surface structure modification on the gas separation performance of carbon molecular sieve membranes. [J] Vacuum. 2005, 78(1):1-12
    [158] Pulikollu R.V., Mukhopadhyay S.M. Nanoscale coatings for control of interfacial bonds and nanotube growth. [J] Applied Surface Science. 2007, 253(17):7342-7352
    [159] Xu T., Yang J.H., Liu J.W., et al. Surface modification of multi-walled carbon nanotubes by O-2 plasma. [J] Applied Surface Science. 2007, 253(22):8945-8951
    [160] Aoki H., Masuzumi T., Watanabe D., et al. Influence of oxygen plasma treatment on boron carbon nitride film composition. [J] Applied Surface Science. 2009, 255(6):3635-3638
    [161] 于小翠,周仕学.表面改性对活性炭吸附性能的影响.[J] 化工文摘 2009(1):24-25
    [162] 黄艳芳,马正飞,姚虎卿.活性炭吸附CO_2与其微孔体积的关系.[J]燃 料化学学报 2008,36(3)-343-348
    [163] 马峥,于惠芳.活性炭对水中有机物去除的研究.[J] 环境保护 1999(5):41-44
    [164] Pandiyaraj K.N., Selvarajan V. Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. [J] Journal of Materials Processing Technology. 2008, 199(1-3):130-139
    [165] Quintana J.B., Rodil R., Lopez-Mahia P., et al. Optimisation of a selective method for the determination of organophosphorous triesters in outdoor particulate samples by pressurised liquid extraction and large-volume injection gas chromatography-positive chemical ionisation-tandem mass spectrometry. [J] Analytical and Bioanalytical Chemistry. 2007, 388(5-6):1283-1293
    [166] Han Y.H., Quan X., Chen S., et al. Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution. [J] Journal of Colloid and Interface Science. 2006, 299(2):766-771
    [167] Bicchi C., Cordero C., Liberto E., et al. Dual-phase twisters: A new approach to headspace sorptive extraction and stir bar sorptive extraction. [J] Journal of Chromatography A. 2005, 1094(1-2):9-16
    [168] Jochmann M.A., Kmiecik M.P., Schmidt T.C. Solid-phase dynamic extraction for the enrichment of polar volatile organic compounds from water. [J] Journal of Chromatography A. 2006, 1115(1-2):208-216
    [169] Kuster M., de Alda M.J.L., Barata C., et al. Analysis of 17 polar to semi-polar pesticides in the Ebro river delta during the main growing season of rice by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. [J] Talanta. 2008, 75(2):390-401
    [170] 徐中其,江涛,等.氯霉素生产所排放硝基废水的吸附处理研究.[J] 工业水处理 2001,21(4):14-16
    [171] 姜军清,陆晓华.活性碳纤维处理含酚废水的研究.[J] 江苏环境科技 2001,14(1):1-3
    [172] Backfolk K., Rosenholm J.B., Husband J., et al, The influence of surface chemical properties of kaolin surfaces on the adsorption of poly(vinyl alcohol). [J] Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2006, 275(1-3):133-141
    [173] L. M., B. L.F. Electro-oxidation of ammonia in waste water [J] Journal of Applied Electrochemistry. 1978, 8(4)
    [174] Mcguire J., Dwiggins C.F., Fedkiw P.S. The Electrosorption of Phenol onto Activated Carbon. [J] Journal of Applied Electrochemistry. 1985,15(l):53-62
    [175] Eisinger R.S., Alkire R.C. Electrosorption of Beta-Naphthol on Graphite. [J] Journal of Electroanalytical Chemistry. 1980,112(2):327-337
    [176] Pailleret A., Arrigan D.W.M. Interfacial behavior of p-hexasulfonato-calix[6] arene at glassy carbon electrodes in alkaline aqueous solution studied by voltammetric methods. [J] Langmuir. 2002, 18(24):9447-9452
    [177] Ho M.K., Wang S.J., Porter M.D. Electrosorption based modification of porous graphitic carbon: Use of electrochemically modulated liquid chromatography to create a chiral stationary phase for enantiomeric separations. [J] Analytical Chemistry. 1998, 70(20):4314-4319
    [178] Meier E.P., Chambers J.Q. Adsorption of Organic Molecules at a Carbon Paste Electrode. [J] Analytical Chemistry. 1969,41(7):914-&
    [179] Alkire R.C., Eisinger R.S. Separation by Electrosorption of Organic- Compounds in a Flow-through Porous-Electrode .1. Mathematical-Model for One-Dimensional Geometry. [J] Journal of the Electrochemical Society. 1983, 130(l):85-93
    [180] Eisinger R.S., Alkire R.C. Separation by Electrosorption of Organic-Compounds in a Flow-through Porous-Electrode .2. Experimental Validation of Model. [J] Journal of the Electrochemical Society. 1983, 130(l):93-101
    [181] Hazourli S., Bonnecaze G., Astruc M. Adsorption and electrosorption of organic compounds on granular activated carbon .1. Influence of applied potential and number of cycles. [J] Environmental Technology. 1996, 17(12):1275-1283
    [182] Hazourli S., Bonnecaze G., PotinGautier M. Adsorption and electrosorption of organic compounds on granular activated carbon .2. Influence of physicochemical parameters. [J] Environmental Technology. 1996, 17(12):1285-1295
    [183] Hazourli S., Bonnecaze G., Castetbon A. Adsorption and electrosorption of organic compounds on granular activated carbon .3. Influence of the chemical nature of the activated carbon and the adsorbates. [J] Environmental Technology. 1996, 17(12):1297-1312
    [184] Plaisance H., Mocho P., Bonnecaze G. Adsorption and electrosorption of benzene on granular activated carbon. [J] Environmental Technology. 1996, 17(12):1313-1325
    [185] Niu J.J., Conway B.E. Adsorption of organics onto an high-area C-cloth electrode from organic solvents and organic solvent/water mixtures. [J] Journal of Electroanalytical Chemistry. 2003, 546:59-72
    [186] Niu J.J., Conway B.E. Molecular structure factors in adsorptive removal of pyridinium cations, 1,4-pyrazine and 1-quinoline at high-area C-cloth electrodes for waste-water remediation. [J] Journal of Electroanalytical Chemistry. 2002, 529(2):84-96
    [187] Niu H.J., Conway B.E. States of orientation of pyridine and 1,4-pyrazine as a function of electrode potential and surface charge at a high-area, porous C electrode. [J] Journal of Electroanalytical Chemistry. 2004, 564(1-2):53-63
    [188] 郭亚萍,(?)全燮,等.水中氯仿的活性炭电增强吸附特性.[J] 环境科学学报 2003,23(1):84-87
    [189] Conway B.E., Ayranci E., Al-Maznai H. Use of quasi-3-dimensional porous electrodes for adsorption and electrocatalytic removal of impurities from waste-waters. [J] Electrochimica Acta. 2001, 47(5):705-718
    [190] 朱涉瑶,赵振国.界面化学基础.[M] 北京:化学工业出版社;1999
    [191] 陈榕,胡熙恩.电吸附技术的应用与研究.[J]化学进展 2006,18(1):80-86
    [192] Genc-Fuhrman H., Tjell J.C., McConchie D. Adsorption of arsenic from water using activated neutralized red mud. [J] Environmental Science & Technology. 2004, 38(8):2428-2434
    [193] 范丽,周艳伟,杨卫身,等.炭材料用作电吸附剂的研究与进展.[J] 新型炭材料 2004,19(2):145-150
    [194] Ayranci E., Conway B.E. Adsorption and electrosorption at high-area carbon-felt electrodes for waste-water purification: Systems evaluation with inorganic, S-containing anions. [J] Journal of Applied Electrochemistry. 2001, 31(3):257-266
    [195] Guo F., Gorecki T., Irish D., et al. Solid-phase microextraction combined with electrochemistry. [J] Analytical Communications. 1996, 33(10):361-364
    [196] Wu J.C., Mullett W.M., Pawliszyn J. Electrochemically controlled solid-phase microextraction based on conductive polypyrrole films. [J] Analytical Chemistry. 2002, 74(18):4855-4859
    [197] Tashima D., Sakamoto A., Taniguchi M., et al. Surface modification of carbon electrodes using an argon plasma. [J] Vacuum. 2008, 83(3):695-698
    [198] Temsamani K.R., Ceylan O., Yates B.J., et al. Electrochemically aided solid phase microextraction: conducting polymer film material applicable for cationic analytes. [J] Journal of Solid State Electrochemistry. 2002, 6(7):494-497
    [199] Tamer U., Yates B., Galal A., et al. Electrochemically aided control of solid phase micro-extraction (EASPME) using conducting polymer-coated solid substrates applicable to neutral analytes. [J] Microchimica Acta. 2003,143(2-3):205-215
    [200] Ugur T., Yucel S., Nusret E., et al. Preparation of sulfonated overoxidized polypyrrole film applicable as an SPME tool for cationic analytes. [J] Journal of Electroanalytical Chemistry. 2004, 570(l):6-12
    [201] Mohammadi A., Yamini Y, Alizadeh N. Dodecylsulfate-doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. [J] Journal of Chromatography A. 2005,1063(1-2): 1-8
    [202] Ahin Y, Ercan B., Sahin M. Solid-phase microextraction and ion chromatographic analysis of anions based on polypyrrole electrode. [J] Journal of Applied Polymer Science. 2008, 108(5):3298-3304
    [203] Luo R, Ma X.J., Tao P., et al. Feasibility study of electric-assisted solid phase microextraction for sampling organic pollutants in water. 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008; 2008. p. 3666-3669
    [204] Luo F., Wu Z.C., Tao P., et al. Measurement of the phenols in water by electro-assisted solid phase microextraction. 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008. Shanghai; 2008. p. 2833-2836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700