炼油过程生产调度建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼油行业是连续过程工业的典型代表,是国民经济的支柱行业,具有举足轻重的作用。生产调度作为炼油企业综合自动化系统的中间环节,是企业生产经营的指挥中心,提高生产调度的质量和效率对于提高企业的经济效益和社会效益具有重要的作用。因而,对炼油过程生产调度的研究具有重要意义。
     炼油过程具有生产规模大,工艺复杂,物流连续运作,缓冲余地小,生产连续、平稳,装置多且衔接紧密等突出特点。生产调度模型的建立是炼油过程调度优化问题的研究重点,也是当前优化领域的研究热点之一。由于炼油过程上述特点的存在,其生产调度问题在数学上呈现高度耦合,求解困难,某些因素难以用传统的数学模型表达。鉴于已有调度建模方法存在的种种不足,目前的炼油过程生产调度对炼油生产的特有性质和生产中的逻辑规则往往难以进行全面、有效地描述,建立的调度模型较复杂,超结构性强,直观性、实用性较差,难以满足实际调度需求。这一现状使得我国炼油行业目前大多采用基于经验规则的人工调度,不但费时费力,而且难以保证调度优化性。因此,如何在现有调度理论和研究成果的基础上,针对炼油生产的特有性质,寻找适合于炼油过程的生产调度建模优化方法,辅助企业调度人员实现优化排产,是目前调度优化研究中的一个热点也是一个难点问题,也是本课题的研究目的所在。
     本文在介绍了炼油过程生产调度问题及其研究现状之后,针对炼油过程特点及其生产调度需求,提出了几种调度建模新方法和调度优化模型以解决炼油过程的静态调度和动态调度优化问题。在此基础上设计开发了炼油过程动态调度优化软件。该软件已在中石化齐鲁分公司胜利炼油厂的生产实际中试用,获得了较好的效果。具体研究内容和成果概括如下:
     (1)针对基于逻辑的建模方法在模型表达的灵活性和求解优化性等方面的不足,为有效表达生产中的启发式逻辑规则,提出了一种集成启发式规则的混合整数规划调度优化模型。在分析启发式规则逻辑关系的基础上,用布尔逻辑表达启发式规则,给出了启发式规则的基本逻辑表达式及其等价代数表达。将启发式规则的代数表达与混合整数规划相结合,实现了启发式规则的集成。集成启发式规则的混合整数规划调度模型在数学优化的基础上能够方便、灵活地表达启发式逻辑规则,利用启发式规则有效地描述调度问题,简化调度模型,提高求解效率,保证调度优化性。
     (2)针对炼油过程生产特性,研究了其静态调度优化问题,建立了集成启发式规则的混合整数规划调度优化模型。提出了平稳性、连续性和长期性等生产特性定义及其性能指标。基于炼油生产中的逻辑规则,对生产特性进行了模型化描述,并对生产特性性能进行了定量化表达和评价,以实现生产利润和生产特性性能的综合利益最大化,满足生产调度实际需求。以某炼厂生产调度为例,对比有无生产特性表达的优化调度仿真结果表明:考虑炼油过程生产特性的调度优化模型能够满足生产特性要求,提高生产特性性能,得到的调度方案更为可行、实用。
     (3)炼油过程以生产的连续运行为主,同时也具有装置启停、方案切换、设备故障等离散生产事件,其本质上是一个混杂生产系统。系统中的生产事件体现了炼油生产过程的运行演变。调度专家通过对生产事件的合理安排和处理实现生产调度。据此,针对炼油过程的静态调度问题,提出了一种基于预知事件的调度优化建模方法。首先定义和描述了炼油生产调度中的预知事件,进而定义了一种嵌套混合自动机,在此基础上建立了基于预知事件的调度优化模型。为实现模型的有效求解,将基于预知事件的调度模型转换为等价的混合整数规划模型,从而能够方便地应用成熟的优化算法,保证调度优化性。基于预知事件的调度优化模型具有直观、模块化、超结构性弱的特点,为炼油过程静态调度问题提供了一种新的模型描述方法。
     (4)针对集成启发式规则的混合整数规划调度模型表达较复杂、直观性差、具有较强超结构性的不足,利用基于预知事件的调度优化建模方法,对考虑炼油过程生产特性的调度优化问题进行了重新表达,建立了基于预知事件的调度优化模型。模型表达更直观、模块化性强,易于建立。针对同一仿真实例,获得了与集成启发式规则的混合整数规划调度模型相同生产特性性能的调度方案,满足调度实际需求。
     (5)针对炼油过程动态调度的实时性和优化性需求难以满足的问题,基于反应式局部重调度策略,提出了一种基于突发事件的调度优化建模方法。定义和描述了炼油生产中的突发事件及其事件逻辑,通过事件逻辑可以体现并灵活选择调度专家处理突发事件的经验规则,体现突发事件和专家经验对于生产过程的影响。在此基础上,给出了一种分层受控混合自动机,建立了基于突发事件的炼油过程动态调度优化模型。通过两阶段事件触发机制响应突发事件,利用生产流程仿真模拟确定动态调度的流程范围,生成动态调度子模型;通过对子模型的求解最终得到响应突发事件的动态调度优化方案。基于突发事件的炼油过程动态调度有效结合了仿真方法、启发式方法和严格的数学优化,在满足动态调度实时性的同时保证了调度优化性。在上述研究基础上开发了炼油过程动态调度优化软件。该软件已在中石化齐鲁分公司胜利炼油厂试用并获得好评。通过软件的实际应用案例验证了基于突发事件的动态调度优化模型的有效性和实用性。
As representative of continuous process industry, refinery production enterprises are the mainstay of national economy and act very important role. Production scheduling is the intermediate link of Computer Integrated Processing System and is the core of business operations. Improving quality and efficiency of production scheduling is very important to increase economic and social benefit of refinery companies. So, research on refinery production scheduling has significant meanings.
     Refinery process not only has large production scale, but also has complex production technology and little cushion, whose logistics operates continuously. There are many salient features of refinery process, such as continuity, stability, and close connection between refining units, etc. Establishing scheduling model is the emphasis of refinery scheduling research, which is also one of the hot topics of combinatorial optimization research. Due to the above features, refinery production scheduling problem presents highly coupling in mathematics, which is hard to describe and solve by traditional mathematic models. By existing scheduling modeling methods, it is difficult to represent the unique natures and heuristic rules of refinery process comprehensively and efficiently. The scheduling models are usually very complex and have strong super structure, poor intuition and weak practical applicability. Due to the current situation of refinery scheduling research, refineries in our nation usually adopt artificial scheduling base on expert experience, which is not only time-consuming and taxing but also hard to guarantee scheduling optimization. So, there have profound academic and realistic meanings to find suitable scheduling modeling methods in view of the unique natures of refinery process based on current scheduling theory and research results. The research and development of such methods is a difficult and hot point in scheduling research area and also is the purpose of our research topic.
     This paper proposes several new modeling methods and detail models for static and dynamic scheduling of refinery process in view of its features and production scheduling requirements. Based on the proposed methods, a refinery dynamic scheduling system had been developed and utilized in Sinopec Shengli refinery, which had obtained well effects. Detailed research contents and outputs are summarized as follows:
     (1) In view of the shortcomings of logic-based modeling method on flexible expressing and solving optimality, a heuristic rule-integrated mixed integer programming model is proposed for scheduling optimization problem. Heuristic rules are expressed by logic variables, and their basic logic expressions and corresponding equivalent algebra expressions are presented, by which heuristic rules can be formulated. Combining the algebra expressions with mixed integer programming, integration of heuristic rules is realized. The proposed model can desceibe heuristic rules easily and flexibly to facilitate formulating and simplifying scheduling problem based on mathematical optimization, which can improve solution efficiency and guarantee optimization performance.
     (2) The refinery static scheduling problem in view of production characteristics is then studied. A heuristic rule-integrated mixed integer programming model is set up based on given definitions of stability, continuity and chronicity as well as their performance criterions which evaluate production characteristics quantitatively. The model describes production characteristics by logic rules of refinery process, and optimizes the trade-off between production profit and characteristic performances. The proposed formulation was used to address scheduling of a certain refinery. Numerical results obtained from the scheduling considering production characteristics whether or not show that schedule of the production characteristic-based scheduling model can improve the performance of production characteristics and is more feasible and practical.
     (3) Although refinery process mainly runs continuously, but it also has discrete production events such as unit start and stop, scheme switch and equipment failure, so it is a hybrid system in nature. Production events of the system reflect operations of refinery process, which are arranged and handled by scheduling experts to realize production scheduling. Based on the cognition, a prescient event-based modeling method for refinery static scheduling problem is proposed. By defining and describing prescient events of production scheduling, a coupled hybrid automaton is defined, based on which a prescient event-based scheduling model is set up. To realize optimal scheduling, the proposed model is converted to mixed integer programming model equivalently, by which mature optimization algorithms can be utilized conveniently and scheduling optimality is guaranteed. The prescient event-based scheduling model has advantages of intuition, modularization and weak super structure, which provides a new modeling method for refinery static scheduling problem.
     (4) Based on the prescient event-based modeling method, the scheduling problem considering refinery production characteristics is reformulated, and a prescient event-based scheduling model is set up. The model is easy to build and is more concise in contrast to the heuristic rule-integrated mixed integer programming model. Same schedule was obtained by dealing with refinery scheduling example of the heuristic rule-integrated mixed integer programming scheduling model, which satisfies practical scheduling requirements.
     (5) To deal with difficulties in satisfying refinery dynamic scheduling requirements of real-time and optimality, an emergency event-based scheduling modeling method is proposed on the grounds of reactive local rescheduling strategy. Emergency event and its event logics are defined, by which expert experience can be chosen flexibly to affect production process. A hierarchical controlled hybrid automaton is given, based on which an emergency event-based refinery dynamic scheduling model is built up. The final dynamic scheduling sub model responding to emergency event can be obtained by a proposed two stage event trigger mechanism, by which dynamic scheduling region can be determined through process simulation. Solving the sub model, dynamic scheme is got. The emergency event-based dynamic scheduling utilizes simulation method, heuristic method and rigorous mathematical optimization effectively, which satisfies scheduling requirements of real-time and optimality. A refinery dynamic scheduling system developed based on the above research had been utilized in Sinopec Shengli refinery and received high praise. Finally, the effectiveness and practicality of the proposed dynamic scheduling model was validated by a realistic scheduling case.
引文
[1]李歧强.生产过程的智能决策与调度[D].浙江杭州:浙江大学控制系,1998.
    [2]Shah N. Single and Multisite Planning and Scheduling:Current Status and Future Challenges[A]. Pekney J, Blau G. Foundations of Computer Aided Process Operations[C]. American Institute of Chemical Engineers Symposium Series 320.1998,94:75-90.
    [3]Pinto J M, Joly M, Moro L F L. Planning and Scheduling Models for Refinery Operations[J]. Computers and Chemical Engineering,2000,24:2259-2276.
    [4]吴清烈.运筹学[M].东南大学出版社,2004.
    [5]Conway R N, Maxwell W L, Miller L W. Theory of Scheduling[D]. Reading, MA:Addison Wesley,1967.
    [6]Mendez C A, Cerda J, Grossmann I E, et al. State-of-the-art review of optimization methods for short-term scheduling of batch processes[J]. Computers and Chemical Engineering,2006,30:913-946.
    [7]Lee K, Park H I, Lee I. A novel nonuniform discrete time formulation for short-term scheduling of batch and continuous processes[J]. Industrial and Engineering Chemistry Research,2001,40:4902-4911.
    [8]Maravelias C T, Grossmann I E. New General Continuous-Time State-Task Network Formulation for Short-Term Scheduling of Multipurpose Batch Plants[J]. Industrial and Engineering Chemistry Research,2003,42(13):3056-3074.
    [9]Carlos A. Mendez, Jaime Cerda, Ignacio E. Grossmann, ect. State-of-the-art review of optimization methods for short-term scheduling of batch processes[J]. Computers and Chemical Engineering,2006,30: 913-946.
    [10]Mendez C A, Henning G P, Cerda J. Optimal scheduling of batch plants satisfying multiple product orders with different due-dates[J]. Computers and Chemical Engineering,2000,24:2223-2245.
    [11]Lim M, Karimi I A. Resource-constrainted scheduling of parallel production lines using asynchronous slots[J]. Industrial and Engineering Chemistry Research, 2003,42:6832-6842.
    [12]Sundaramoorthy A, Karimi I A. A simpler better slot-based continuous-time formulation for short-term scheduling in multiproduct batch plants[J]. Chemical Engineering Science,2005,60:2679-2702.
    [13]Mockus L, Reklaitis G V. Mathematical programming formulation for scheduling of batch operations based on nonuniform time discretization[J]. Computers and Chemical Engineering,1997,21(10):1147-1156.
    [14]Mockus L, Reklaitis G V. A bayesian approach to batch process scheduling [J]. International Transactions in Operational Research,1997,4(1):55-65.
    [15]Shaik M A, Floudas C A. Unit-specific event-based continuous-time approach for short-term scheduling of batch plants using RTN framework[J]. Computers and Chemical Engineering,2008,32(1-2):260-274.
    [16]Mockus L, Reklaitis G V. Continuous Time Representation Approach to Batch and Continuous Processes Scheduling.1.MINLP Formulation[J]. Industrial and Engineering Chemistry Research,1999,38:197.
    [17]Lee K, Park H I, Lee I. A novel nonuniform discrete time formulation for short-term scheduling of batch and continuous processes [J]. Industrial and Engineering Chemistry Research,2001,40:4902-4911.
    [18]Shaik M A, Floudas C A. Improved Unit-Specific Event-Based Continuous-Time Model for Short-Term Scheduling of Continuous Processes:Rigorous Treatment of Storage Requirements [J]. Industrial and Engineering Chemistry Research, 2007,46(6):1764-1779.
    [19]Shaik M A, Floudas C A, Josef K, Pitz H J. Production scheduling of a large-scale industrial continuous plant:Short-term and medium-term scheduling [J]. Computers and Chemical Engineering,2009,33(3):670-686.
    [20]Lin X X, Janak S L, Floudas C A. A new robust optimization approach for scheduling under uncertainty:I. Bounded uncertainty [J]. Computers and Chemical Engineering 2004,28(7):1069-1085.
    [21]徐震浩,顾幸生.不确定条件下的中间存储时间有限的FlowShop提前/拖期调度问题[J].控制理论与应用,2006,23(3):480-486.
    [22]丁然.不确定条件下鲁棒性生产调度的研究[D].山东济南:山东大学控制学院,2006.
    [23]方剑,席裕庚.基于遗传算法的滚动调度策略[J].控制理论与应用,1997,14(4):1-8.
    [24]王冰,席裕庚,谷寒雨.一类单机动态调度问题的改进滚动时域方法[J].控制与决策,2005,20(3):257-265.
    [25]Filip F Q, Donciulescu A D, Neagu G. Decision support for blend monitoring in process industries. Computers in Industry 1998,36(1-2):13-19.
    [26]Vaidyanathan B S, Miller D M, Park Y H. Application of discrete event simulation in production scheduling[C]. Simulation Conference Proceedings, 1998,11:965-971.
    [27]王伟达,王伟,刘文剑.基于仿真的生产计划与调度系统集成[J].计算机工程与设计,2007,28:55-72.
    [28]Reklaitis G V. Scheduling approaches for the batch process industries. ISA Transactions,1995,34 (4):349-358.
    [29]Pfeiffer A, Kadar B, Monostori L. Stability-oriented evaluation of rescheduling strategies by using simulation[J]. Computers in Industry,2007,58:630-643.
    [30]李建祥,唐立新,吴会江,庞哈利.基于规则的热轧钢管调度[J].钢铁,2004,39(9):39-42.
    [31]Tang, Lixin, Wang, Xianpeng. A two-phase heuristic for the production scheduling of heavy plates in steel industry[J]. IEEE Transactions on Control Systems Technology,2010,18(1):104-117.
    [32]Jorge M S, Valente. Dispatching heuristics for the single machine early/tardy scheduling problem with job-independent penalties. Computers & Industrial Engineering,2007,52:434-447.
    [33]Chen C L, Chen C L. Bottleneck-based heuristics to minimize tardy jobs in a flexible flow line with unrelated parallel machines[J]. International Journal of Production Research,2008,46(22):6415-6430.
    [34]Pan M, Qian Y, Li X. A novel precedence-based and heuristic approach for short-term scheduling of multipurpose batch plants [J]. Chemical Engineering Science,2008,67(13):4306-4332.
    [35]常春光,汪定伟,胡琨元,郑秉霖,李慧莹.基于两级CBR的钢铁企业动态调度系统研究[J].控制与决策,2004,19(10):1109-1116.
    [36]武志军,宁汝新,万春辉,王国新.基于人机协同的动态车间生产调试问题的研究与实现[J].计算机系统应用,2006,(4):21-24.
    [37]Kim M, Lee I. Rule-based reactive rescheduling system for Multi-purpose batch processes[J]. Computers and Chemical Engineering,1997,21(1):197-202.
    [38]李琳,江志斌.虚拟生产系统的自适应动态调度机理及算法[J].计算机集成制造系统,2006,12(9):1444-1452.
    [39]Huercio A, Espuna A, Puigjaner L. Incorporating on-line scheduling strategies in integrated batch production control [J]. Computers and Chemical Engineering, 1995,19(1):609-615.
    [40]Sanmarti E, Huercio A, Espuna A, Puigjaner L. A combined scheduling-reactive scheduling strategy to minimize the effect of process operations uncertainty in batch plants [J]. Computers and Chemical Engineering,1996,20(1):1263-1268.
    [41]黄辉,柴天佑,郑秉霖等.面向铁钢对应的两级案例推理铁水动态调度系统[J].化工学报,2010,61(8):2021-2029.
    [42]黄辉,柴天佑,郑秉霖等.面向铁钢对应的铁水调度系统研究及应用[J].东北大学学报,2010,31(11):1525-1529.
    [43]Duncan T. Schedule it:Experience with a constraint based approach to building an intelligent vehicle scheduling system[R].Constraint Handling Techniques Seminar, OR Society, London, June,1994.
    [44]Gomes C P, Willem-Jan V H, Selman B. Constraint programming for distributed planning and scheduling [J]. AAAI Spring Symposium-Technical Report,2006, SS-06-04:157-158.
    [45]Mesghouni K, Pesin P, Trentesaux D, et al. Hybrid approach to decision-making for job-shop scheduling [J]. Production Planning and Control,1999,10(7): 690-706.
    [46]Harjunkoski I, Jain V, Grossmann I E. Hybrid mixed-integer/constraint logic programming strategies for solving scheduling and combinatorial optimization problems[J] Computers and Chemical Engineering,2000,24(2):337-343.
    [47]Maravelias C T, Grossmann I E. A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants [J]. Computers and Chemical Engineering,2004,28:1921-1949.
    [48]Hooker J N. A Hybrid Method for Planning and Scheduling [J]. Constraints,2006, 11:139-157.
    [49]Darby-Dowman K, Little J, Mitra G, Zaffalon M. Constraint logic programming and integer programming approaches and their collaboration in solving an assignment scheduling problem[C]. The third international conference on Applied Mathematical Programming and Modelling, Brunel University,1995:233-240.
    [50]Hooker J N. Logic, optimization and constraint programming. INFORMS Journal on Computing,2002,14(4):295-321.
    [51]Hooker J N, Osorio M A. Mixed logical/linear programming [J]. Discrete Applied Mathematics,1999, (96-97):395-442.
    [52]Hooker J N, Kim H J, Ottosson G. A declarative modeling framework that combines solution methods [J]. Annals of Operations Research,2001,104: 141-161.
    [53]Balas E. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems [J]. SIAM Journal on Algebraic and Discrete Methods, 1985,6:466-486.
    [54]Raman R, Grossmann I E. Modelling and computational techniques for logic based integer programming [J]. Computers and Chemical Engineering,1994, 18(7),563-578.
    [55]Grossmann I E. Review of nonlinear mixed-Integer and disjunctive programming techniques [J]. Optimization and Engineering,2002,3:227-252.
    [56]Grossmann I E, Lee S. Generalized convex disjunctive programming:nonlinear convex hull relaxation [J]. Computational Optimization and Applications,2003, 26:83-100.
    [57]Lee S, Grossmann I E. Logic-based modeling and solution of nonlinear discrete/continuous optimization problems [J]. Annals of Operations Research, 2005,139:267-288.
    [58]Vecchietti A, Grossmann I E. LOGMIP:a disjunctive 0-1 non-linear optimizer for process system models [J]. Computers and Chemical Engineering,1999, 23:555-565.
    [59]Vecchietti A, Grossmann I E. Modeling issues and implementation of language for disjunctive programming [J]. Computers and Chemical Engineering,2000, 24:2143-2155.
    [60]Grossmann I E, Caballero J A, Yeomans H. Mathematical programming approaches to the synthesis of chemical process systems [J]. Korean Journal of Chemical Engineering,1999,16(4):407-426.
    [61]Heever V D, Susara A, Grossmann I E. Disjunctive multiperiod optimization methods for design and planning of chemical process systems [J]. Computers and Chemical Engineering,1999,23(8):1075-1095.
    [62]Pinto J M, Grossman I E. A logic-based approach to scheduling problems with resource constraints. Computers and Chemical Engineering [J],1997,21(8), 801-818.
    [63]Grossman I E, Susara A. Heever V D, Harjunkoski I. Discrete Optimization Methods and their Role in the Integration of Planning and Scheduling. http://citeseerx.ist.psu.edu/viewdoc/,2001.
    [64]Huiran L, Jiang Z, Lee Y F, et al. Real time scheduler for wafer foundry fib with Object-oriented Petri Nets[C]. IEEE International Symposium on Semiconductor Manufacturing,2003,319-322.
    [65]Dahms M, Schmidt M. Modeling of dispatching-rules for job shop scheduling in manufacturing systems-a Petri net approach[C].2005 IEEE International Conference on Systems, Man and lybernetics,2005:2025-2030.
    [66]Gradisar D, Music G. Production-process modelling based on production-management data:A Petri-net approach[J]. International Journal of Computer Integrated Manufacturing,2007,20(8):794-810.
    [67]杨勇,王剑飞,俞欢军,胡上序.ZW多产品间歇过程调度及在线调整[J].化工自动化及仪表,2002,29(4):31-34.
    [68]Gu T L, Bahri P A. Timed Petri-net representation for short term scheduling of multiproduct batch plants [C]. Proceedings of the American Control Conference, 1999,6:4092-4096.
    [69]李霄峰,徐立云,邵惠鹤,任德祥.炼钢连铸系统的动态调度模型和启发式调度算法[J].上海交通大学学报,2001,35(11):1658-1662.
    [70]方宇炜.炼钢连铸过程的Petri网实时调度模型[J],清华大学学报,1999,39(1):79-82.
    [71]M D Lemmon, K X He, I Markovsky. Supervisory hybrid systems[J]. IEEE Control Systems,1999, (8):42-55.
    [72]李惠峰,陈浩勋,孙国基.从混杂自动机到混杂Petri网[J].信息与控制,1999,28(7):567-573.
    [73]张伟,孙优贤.连续系统的受控连续Petri网模型[J].浙江大学学报(工学版),2001,35(3):312-317.
    [74]Alur R, Courcoubetis C, Henzinger T A, et al. Hybrid automa-ta:An algorithmic approach to the specification and verification of hybrid systems [A]. In Grossman R L, et al (Eds.). Hybrid Sys-tems [M]. New York, USA:Springer_Verlag,1993, 209-22.
    [75]Alur R, David L D. The theory of timed automata [J]. Theoretical and Computer Science,1994,126(2):183-235.
    [76]Henzinger T A and Rusu V. Reachability verification for hybrid automata [A]. InHenzinger TA, Sastry S (Eds.). Hybrid Systems:Computation and Control (HSCC'98) [M]. Berlin, Germany:Springer_Verlag,1998,190-204.
    [77]Nerode A and Kohn W. Models for hybrid systems:automata, toplogies, controllability, observability [A]. In Grossman RL, et al (Eds.). Hybrid Systems [M]. New York, USA:Springer_Verlag,1993,317-356.
    [78]Asarin E, Maler O. Optimal control for timed automata[C]. In H. F. Chen, D. Z. Cheng and J. F. Zhang (eds),14th World Congress of the International Federation of Automatic Control, Vol.6, Elsevier Science, Beijing, China,1999,1-6.
    [79]Yang J C-Y, Giovanni D M, Maurizio D. Scheduling with environmental constraints based on automata representations [C]. European Design and Test Conference, Paris, France,1994,495-501.
    [80]Rasmussen J I, Larsen K G, Subramani K. Resource-Optimal Scheduling using priced timed automata [J]. Lecture Notes in Computer Science,2004,2988: 220-235.
    [81]Yasmina A, Abdelkarim K, Oded M. Task Graph Scheduling Using Timed Automata [C]. IPDPS'03 Proceedings of the 17th International Symposium on Parallel and Distributed Processing, Washington, DC, USA,2003,237-244.
    [82]Rasmussen J I, Larsen K G, Subramani K. On using priced timed automata to achieve optimal scheduling [J]. Form Method System Decision,2006,29:97-114.
    [83]吴锋,刘文煌,郑应平.间歇生产过程的自动机模型[J].控制理论与应用,1998,15(1):48-52.
    [84]程曙,张浩,樊留群.基于生产线优化配置的混杂系统建模与仿真[J].计算机集成制造系统,2006,12(10):1577-1580,1585.
    [85]Agarwal A, Grossmann I E. Linear coupled component automata for MILP modeling of hybrid systems [J]. Computers and Chemical Engineering,2009,33: 162-175.
    [86]Abdeddaim Y, Maler O. Job-shop scheduling using timed automata [C]. in G. Berry, H. Comon and A. Finkel (eds), Proceedings of the 13th International Conference on Computer Aided Verification,2001,478-492.
    [87]Abdeddaim Y, Asarinb E, Maler O. Scheduling with timed automata [J]. Theoretical Computer Science,2006,354:272-300.
    [88]Panek S, Engell S, Subbiah S et al. Scheduling of multi-product batch plants based upon timed automata models [J]. Computers and Chemical Engineering, 2008,32:275-291.
    [89]郑忠,何腊梅,高小强.炼钢生产物流系统仿真的细胞自动机模型[J].钢铁,2004,39(11):75-78.
    [90]郑忠,徐乐,高小强.基于元胞自动机的车间天车调度仿真模型[J].系统工程理论与实践,2008,2:137-142.
    [91]梁峰,江志斌.基于细胞自动机模型的自适应生产调度问题[J].上海交通大学学报,2007,41(9):1497-1500.
    [92]Witkowski T, Soliman E, Antczak A, et al. Evolving cellular automata-Based flexible job shop scheduling[C].5th International Conference on Natural Computation, Tianjian, China,2009,8-13.
    [93]Masoud A, Hassan R. Solving job shop scheduling problem using cellular learning automata[C]. EMS 2009-UKSim 3rd European Modelling Symposium on Computer Modelling and Simulation, Athens, Greece,2009,49-54.
    [94]Xiong G, Nyberg T R. Push/pull production plan and schedule used in modern refinery CIMS[J]. Robotics and Computer Integrated Manufacturing,2000,16 (6): 397-410.
    [95]Shan N. Mathematical programming techniques for crude oil scheduling [J]. Computers and Chemical Engineering,1996,20:1227-1232.
    [96]Lee H, Pinto J M, Grossmamn I E, Park S.Mixed-Integer programming model for refinery short term scheduling of crude oil unloading with inventory management[J]. Industrial and Engineering Chemistry Research,1996,35: 1630-1641.
    [97]Moro, Lincoln F L, Pinto, J M. Mixed-Integer Programming Approach for Short-Term Crude Oil Scheduling [J]. Industrial and Engineering Chemistry Research,2004,43(1):85-94.
    [98]Mendez C A, Grossmann I E, Harjunkoski I, Kabore P, A simultaneous optimization approach for off-line blending and schedul ing of oil-refinery operations[J]. Computers and Chemical Engineering,2006,30:614-634.
    [99]Jia Z, Ierapetritou, M. Mixed-integer linear programming for gasoline blending and distribution scheduling [J]. Industrial Engineering and Chemistry Research, 2003,42(4):825-835.
    [100]Lundgren M G, Lundgren J T, Persson J A. An optimization model for refinery production scheduling [J]. Int. J. Production Economics,2002,78:255-270.
    [101]Zhang N, Zhu X X. A novel modelling and decomposition strategy for overall refinery optimization[J]. Computers and Chemical Engineering,2000,24: 1543-1548.
    [102]Shobrys D E, White D C. Planning, scheduling and control system:Why cannot they work together [J]. Computers and Chemical Engineering,2002,26: 149-160.
    [103]Jia Z, Ierapetritou M G. Efficient Short-Term Scheduling of Refinery Operations Based on a Continuous Time Formulation[J]. Computers and Chemical Engineering,2004,28:1001-1019.
    [104]罗春鹏.炼油企业生产调度研究[D].浙江杭州:浙江大学信息科学与工程学院,2008.
    [105]Slaback, Dale D. A surrogate model approach to refinery-wide optimization [D]. Texas Tech University,2004.
    [106]Jia Z, Ierapetritou M G. Short-term scheduling under uncertainty using MILP sensitivity analysis[J]. Industrial and Engineering Chemistry Research,2004,43: 3782-3795.
    [107]Jehoon S, Park M H, Park S W, Grossmann, I E. A rolling horizon approach with aggregation for supply chain optimization of refinery industry [C]. AIChE Spring National Meeting, Atlanta, United States,2005,1311-1321.
    [108]郑丽钰,荣冈,吴婕.调度事件驱动的石化物流仿真模型的建模方法[J].化工自动化及仪表,2008,35(4):11-15.
    [109]Paolucci M, Sacile R, Boccalatte A. Allocating crude oil supply to port and refinery tanks:a simulation-based decision support system[J]. Decision Support System,2002,33(1):39-54.
    [110]Chryssolouris G, Papakostas N, Mourtzis D. Refinery short-term scheduling with tank farm, inventory and distillation management:An integrated simulation-based approach. European Journal of Operational Research,2005, 166:812-827.
    [111]王军.炼油企业Aspen Orion系统开发与应用[J].石油化工自动化,2004,5:69-73.
    [112]苏志同,蒲红斌,王恩波.炼油厂生产调度计划模型的研究[J].北方工业大学学报,1999,11(1):1-4.
    [113]龙伟灿,许明春,炼油厂原油罐调度系统的研究开发[J].石油炼制与化工,2000,31(11):38-41.
    [114]Pan M, Li X, Qian Y. New approach for scheduling crude oil operations [J]. Chemical Engineering Science,2009,64:965-983.
    [115]张玉坤,李初福,邹来禧,何小荣.基于事件树的原油调度建模方法的研究[J].石油炼制与化工,2009,40(3):47-51.
    [116]邹来禧,李初福,张明,何小荣.基于事件树的可视化实时动态原油混输调度系统[J].计算机与应用化学,2010,27(5):597-600.
    [117]邹来禧,李初福,张明,何小荣.基于事件树的方法在长周期原油混输调度中的应用[J].中国科学:化学,2010,40(10):1574-1578.
    [118]Adhitya A, Srinivasan R, Karini I A. Heuristic rescheduling of crude oil operationsto manage abnormal supply chain events[J]. AICHE Journal,2007, 53:397-422.
    [119]李雷.炼油厂原油系统调度模型的研究[D].广东广州:华南理工大学化学与化工学院,2004.
    [120]高鸷,郭锦标,杨明诗.约束规划在原油调度中应用的探索[J].计算机与应用化学,2006,23(12):1239-1244.
    [121]Rejowski J R, Pinto J M. Scheduling of a multiproduct pipeline system [J]. Computers and Chemical Engineering,2003,27:1229-1242.
    [122]王波兴,姚建初,肖人彬.炼油生产调度的混合Petri网建模[J].计算机工程与应用,2003,39(32):204-205.
    [123]Chen R, Wang J, Jin Y. A continuous process model for real-time scheduling based on hybrid Petri net[C]. IEEE international conference on intelligent processing systems,1997,10:28-31.
    [124]张劲松.基于受控混杂Petri网的连续过程生产调度建模及优化方法[D].山东济南:山东大学控制科学与工程学院,2008.
    [125]Ierapetritou M G, Floudas C A. Effective Continuous-Time Formulation for Short-Term Scheduling.2. Continuous and Semicontinuous Processes [J]. Industrial and Engineering Chemistry Research,1998,37(11):4360-4374.
    [126]Alle A, Papageorgiou L G, Pinto J M. A mathematical programming approach for cyclic production and cleaning scheduling of multistage continuous plants[J]. Computers and Chemical Engineering,2004,28(1):3-15.
    [127]Bhattacharya S, Bose S K. Mathematical model for scheduling operations in cascaded continuous processing units [J]. European Journal of Operational Research,2007,182(1):1-14.
    [128]Shaik M A, Floudas C A, Josef K, Pitz H J. Production scheduling of a large-scale industrial continuous plant:Short-term and medium-term scheduling[J]. Computers and Chemical Engineering,2009,33(3):670-686.
    [129]赵小强,荣冈.流程工业生产调度问题综述.化工自动化及仪表,2004,31(6):8-13.
    [130]李莉,乔非,吴启迪.半导体生产线批加工设备调度规则.系统仿真学报,2006,18(9):2419-2425.
    [131]Monch L. Heuristics to minimize total weighted tardiness of jobs on unrelated parallel machines [C].4th IEEE Conference on Automation Science and Engineering, Washington DC, USA,2008,572-577.
    [132]伍乃骐,白丽平.炼油生产计划和调度优化的研究.计算机集成制造系统,2005,11(1):90-96.
    [133]Josef K. Planning and scheduling in the process industry. OR Spectrum,2002, 24:219-250.
    [134]Williams H P. Logic applied to integer programming and integer programming applied to logic[J]. European Journal of Operations Research,1995,81:605-616.
    [135]Williams H P, Yan H. The modeling of constraint logic programming predicates by integer programming[C]. Annual Conference of the Operational Research Society, Edinburgh,1999.
    [136]Laundy R S. Logically Constrained Mathematical Programming Problems[D]. University of Southampton,1986.
    [137]Beaumont N. An algorithm for disjunctive programs[J]. European Journal of Operational Research,1990,48:362-371.
    [138]Wilson J M. A note on logic cuts and valid inequalities for certain standard (0-1) integer programs[J]. JORBEL,1996,36:27-41.
    [139]Hooker J N. Logic-based methods for optimization:combining optimization and constraint satisfaction[M]. New York,2000.
    [140]Hammer P L, Rosenberg I, Rudeanu S. On the determination of the minima of pseudo-Boolean functions [J]. Studii si Cercetari Matematice, 1963,14:359-364.
    [141]Crama Y, Hansen, Jaumard B. The basic algorithm for pseudo-Boolean programming revisited[J]. Discrete Applied Mathematics,1990,29: 171-185.
    [142]Balas E, Mazzola J B. Nonlinear 0-1 programming:linearization techniques[J]. Mathematical Programming,1980,30:1-20.
    [143]闫林.数理逻辑基础与粒计算.北京:科学出版社,2007.4-11.
    [144]Raman R, Grossmann I E. Relation between MILP modeling and logical inference for chemical process synthesis. Computers and Chemical Engineering, 1991,15(2):73-84.
    [145]Sawaya N W, Grossmann I E. Computational implementation of non-linear convex hull reformulation. Computers and Chemical Engineering,2007,31: 856-866.
    [146]Kelly J D. Next-generation refinery seheduling teehnology. http://www.dash optimization.com/home/downloads/pdf/npra2003.pdf.
    [147]Kondili, E., C. C. Pantelides and R. W. H. Sargent. A general algorithm for scheduling batch operations. In:Proc. of 3rd Intl. Symp. on Process Systems Engineering.1988, Sydney,62-75.
    [148]Kondili E, Pantelides C C, Sargent R W H. A General Algorithm for Short-term Scheduling for Batch Operations-Ⅰ.MILP Formulation[J]. Computers and Chemical Engineering,1993,17:211-227.
    [149]Pantelides C C. Unified Frameworks for Optimal Process Planning and Scheduling [A]. Foundations of Comp Aided Proc Op—Proc 2nd conf[C]. CACHE Corp,1994,253-274.
    [150]Schilling Q, Pantelides C C. Optimal periodic scheduling of multipurpose plants [J]. Computers and Chemical Engineering,1999,23(4-5):635-655.
    [151]Voudouris V T, Grossmann I E. MILP Model for Scheduling and Design of a Special Class of Multipurpose Batch Plants[J]. Computers and Chemical Engineering,1996,20:1335-1360.
    [152]Ierapetritou M G, Floudas C A. Effective Continuous-Time Formulation for Short-Term Scheduling.1. Multipurpose Batch Processes [J]. Industrial and Engineering Chemistry Research,1998,37:4341-4359.
    [153]Liu X, Floudas C A. Design, synthesi and scheduling of multipurpose batch Plants via an effective continuous-time formulation [J]. Computers and Chemical Engineering,2001,25:665-674.
    [154]Schilling Q, Pantelides C C. Optimal periodic scheduling of multipurpose plants in the continuous time domain [J]. Computers and Chemical Engineering,1997, 21(S):1191-1196.
    [155]Schilling G, Pantelides C C. A simple continuous-time process scheduling formulation and a novel solution algorithm [J]. Computers and Chemical Engineering,1996,20(S):1221-1226.
    [156]Shaika M A, Floudas C A. Unit-specific event-based continuous-time approach for short-term scheduling of batch plants using RTN framework[J]. Computers and Chemical Engineering,2008,32(1-2):260-274.
    [157]Mockus L,Reklaitis G V. Continuous Time Representation Approach to Batch and Continuous Processes Scheduling.1.MINLP Formulation[J]. Industrial and Engineering Chemistry Research,1999,38:197.
    [158]Bhattacharya S, Bose S K. A state task network model for scheduling operations in cascaded continuous processing units [J]. Computers and Chemical Engineering,2009,33:287-295.
    [159]Ierapetritou M G, Floudas C A. Effective Continuous-Time Formulation for Short-Term Scheduling.2. Continuous and Semicontinuous Processes[J]. Industrial Engineering and Chemical Research,1998,37:4360-4374.
    [160]王军,金以慧.连续过程生产调度的研究策略[J].系统工程理论与实践,1998,5:40-46.
    [161]Luo C, Rong G. Hierarchical approach for short-term scheduling in refineries[J]. Industrial Engineering and Chemical Research,2007,46:3656-3668.
    [162]Guo Q Q, Li Q Q, Ding R, Zhang J S, Wang X H. Dynamic Scheduling of Oil Refinery based on Model-optimization and Process-configuration[C]. ICAL 2007, Jinan, China,1117-1121.
    [163]赵小强.炼厂生产调度问题研究[D].浙江杭州:浙江大学信息科学与工程学院,2005.
    [164]Karuppiah R, Furman K C, Grossmann I E. Global optimization for scheduling refinery crude oil operations [J]. Computers and Chemical Engineering,2008, 32:2745-2766.
    [165]Jia Z, Ierapetritou M G. Mixed-Integer Linear Programming Model for Gasoline Blending and Distribution Scheduling[J]. Industrial Engineering and Chemical Research,2003,42(4):825-835.
    [166]Zhang B J, Hua B, Lu M L. Multiperiod integration optimization for production planning and utility system in refinery industries [J]. ACTA Petrolei Sinica, 2006,22(2):56-68.
    [167]Luo C, Rong G. Hierarchical approach for short-term scheduling in refineries [J]. Industrial Engineering and Chemical Research,2007,46:3656-3668.
    [168]翟桥柱,管晓宏.具有混合动态运行状态的生产制造系统优化调度[C]//中国自动化大会暨两化融合高峰会议T8会场论文集,杭州,2009.
    [169]王珂.生产环境不确定条件下的生产调度优化[D].山东济南:山东大学控制科学与工程学院,2005.
    [170]Abdeddam Y, Maler O. Preemptive job-Shop scheduling using stopwatch automata [J]. Lecture Notes in Computer Science,2002,2280:39-53.
    [171]Subbiah S, Tometzki T, Panek S, Engell S. Multi-product batch scheduling with intermediate due dates using priced timed automata models[J]. Computers and Chemical Engineering,2009,33:1661-1676.
    [172]Panek S, Stursberg O, Engell S. Optimization of timed automata models using mixed-integer programming [J]. Lecture Notes in Computer Science,2004, 2791:73-87.
    [173]Kobetski A, Fabian M. Time-optimal coordination of flexible manufacturing systems using deterministic finite automata and mixed integer linear programming [J]. Discrete Event Dynamic System,2009,19:287-315.
    [174]Lygeros J, Pappas G J, Sastry S. An introduction to hybrid system modeling, analysis, and control [EB/OL]. Preprints of the First Nonlinear Control Network Pedagogical School, Athens, Greece 1999[2011-2-25]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.4232&rep=rep1& type=pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700