新型电磁出钢系统的研发及其效果分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢包出钢系统作为衔接炼钢和轧钢之间的一项特殊作业方式,在钢材生产过程中起着至关重要的作用。为了满足高效、节能、环保的要求,并生产出高洁净、高品质的钢材,本文提出了用与钢液成分相同或相近的Fe-C合金代替传统引流砂,通过电磁感应加热,使钢包底部上水口的Fe-C合金全部或部分迅速熔化,从而实现自动出钢的电磁出钢系统。电磁出钢系统与传统出钢方法相比具有以下优点:(1)可以显著提高钢水的洁净度;(2)可以有效提高钢包的自动开浇率,使其达到100%;(3)可以减少浸入式水口的絮流,增加连浇炉数;(4)避免因使用引流砂而形成有毒的6价Cr对环境造成污染;(5)降低企业用于外购引流砂的成本。
     电磁出钢系统能否在工业生产中得以成功应用,不仅取决于替代传统引流砂的Fe-C合金的烧结层能否快速实现全部或部分熔化,同时还取决于在感应加热的过程中,钢包的结构安全是否能够满足要求。本研究其目的是考察电磁出钢系统应用于钢包出钢的可行性,开发可以替代传统引流砂的Fe-C合金材料,找到最优的线圈结构参数和电流参数,并在此基础上提出一种适用于实际工业生产的电磁出钢系统。
     为了验证电磁出钢系统是否可以满足出钢工艺效果的要求,先采用Fe/C混合物作为传统引流砂的替代材料,利用ANSYS通用有限元分析软件对钢包上水口处进行了稳态及瞬态分析,初步考察了感应加热的冶金效果。发现在钢包上水口处会形成稳定的温度梯度,在感应加热的过程中,感应热可以熔化Fe/C混合物中的Fe粒,说明电磁出钢系统应用于钢包出钢是可能并且可行的。在此基础上,通过实验的方法验证了Fe-C合金是可以作为钢包上水口处的填充材料。
     根据电磁出钢的原理,本文自行设计和制造了模拟钢包底部的实验装置。首先,为了找出电流强度、电源频率和线圈直径等参数对出钢效果的影响规律,利用有限元数值模拟方法对自行设计的模拟钢包底部的实验装置进行了数值模拟研究,通过对试验装置底部圆形阻挡片外缘任一点温度变化的研究,发现了不同工艺参数对出钢时间的影响规律,讨论了因提高加热效率能否最大化缩短出钢时间的可行性。其次,根据数值模拟结果选择了相应的出钢用感应加热电源和线圈直径,并与模拟钢包底部的实验装置相结合,组成了高温热态实验装置。在此基础上,发现出钢时间随着功率的上升而不断缩短;达到工艺要求后,继续提高功率时,出钢时间还可以进一步缩短。再次,通过电磁出钢热态实验,研究了热态实验装置中钢包上水口处Fe-C合金的液固界面位置及其形貌。发现在钢包出钢前,将会在上水口中形成液态Fe-C合金、凝固的液态Fe-C合金、液态烧结的Fe-C合金、固态烧结的Fe-C合金及原始松散的Fe-C合金等5层。由凝固层、液态烧结层和固态烧结层所组成的钢液隔离层将有利于阻止钢液流入上水口侵蚀滑板。不仅如此,液固界面还会随着Fe-C合金熔点的降低而降低,也就是说,稳定状态时液固界面位置可以通过调节Fe-C合金熔点来调节。在此基础上,通过对不同成分的Fe-C合金对出钢效果的影响规律的研究,得出Fe-C合金熔点越低,出钢时间越短的结论。最后,找到了可以通过监测上水口外一点温度在出钢过程中的变化来在线控制滑板拉开时间的一种监测方法。
     为了进一步探讨不同工艺参数对出钢效果的影响规律,利用ANSYS通用有限元分析软件对可以在工业中应用的电磁出钢系统进行建模,模拟了在电磁出钢装置中用Fe-C合金替代传统引流砂时,上水口处的温度场分布,找出了最佳的工艺参数,发现钢液与线圈距离H为214mn,线圈长度L为132mm,线圈直径D为140mm为,安匝数为36kA·N,电源频率为10kHz为最优的工艺参数。并在此工艺参数下进行了实现凝钢在短时间内熔化的可行性分析,研究表明在此工艺参数下可以实现顺利出钢。在此基础上,校验了钢包外壳在电磁出钢过程中的安全性。从而,为电磁出钢方法在工业中的应用提供了理论支持,为以后的实验方案提供可靠的参考数据。
     在前文研究的基础上,本文对工业应用的电磁出钢系统进行了初步设计。提出了两种钢包底部的结构改造方案,并对不同方案的优缺点进行了探讨。讨论了感应加热电源和感应线圈选择的原则和方法,进而研究了工业实验中的功率和电流频率,为进一步的工业实验提供了钢包改造模型及可行性方案,提出了钢包底部电磁功能集成的理念,分析了工业实验中应注意的问题。
As a connection of the converter process and continuous-casting process, ladle teeming system of the molten steel from the ladle to the tundish is extremely important in steelmaking. In order to improve the productivity, energy efficiency and environmental protection and to produce cleaner and high-quality steel, a new ladle teeming method (electromagnetic steel-teeming method) using electromagnetic induction heating in slide-gate was proposed. The basic idea of this new process is to melt part of or the whole of the new ladle well-packing materials (i.e. Fe-C alloy with similar composition of the molten steel), which substitute the traditional nozzle sand, and achieve smoothly molten steel-teeming.
     Electromagnetic steel-teeming method is regarded as an efficient way to reduce the inclusions in the molten steel and achieve100%automatic steel teeming. This new technology is one of the electromagnetic metallurgy methods and it shows great promise. The application of electromagnetic steel-teeming system can (1) significantly improve the clean degree of the molten steel;(2) significantly improve the ladle automatically open casting rate;(3) reduce blocking of the immersion nozzle, increase the continuous casting numbers;(4) avoid the environment pollution for using the nozzle sand and (5) avoid outsourcing nozzle sand and decrease costs.
     Whether the electromagnetic steel-teeming system can be successfully applied in industrial production depends not only on the melting of part of or the whole of the Fe-C alloy, but also on the safety of the ladle shell under the induction heating condition. The purpose of this research is to investigate the feasibility of the electromagnetic steel-teeming system, to find better coil structural parameters and electrical parameters and to develop a suitable electromagentic steel-teeming system, which could be used in the inductrial steelmaking process.
     In order to verify whether the electromagnetic steel-teeming system can meet the requirements of the ladle steel-teeming, the mixture of Fe particles and graphite powder was used to replace the traditional nozzle sand in the upper nozzle. Using ANSYS finite element analysis software, the temperature distribution of the upper nozzle in the bottom of the ladle is analyzed in steady and transient state, to examine the effects of the induction heating. It was found that a steady gradient temperature was formed in the upper nozzle. The Fe particles could be melted under the induction heating condition, which indicates that the electromagnetic steel-teeming is feasible. Furthermore, experimental method was employed to verify that the Fe-C alloy was suitable to be the substitutable material of the traditional nozzle sand.
     Electromagnetic steel-teeming hot-condition experimental facility was designed and produced. Base on the facility, the numerical simulation method was employed to investigate the effects of the induction parameters such as current intensity, frequency and diameter of the coil on teeming time, which was tested by calculating the surface temperature of the blocker which located in the bottom of the upper nozzle in the hot-condition experiment. The results showed that the teeming time was decreased with the increases of current intensity and frequency, and with the decrease of coil diameter. The suggested parameters were found under the conditions of this research. The sintering mechanism and sintering conditions were discussed with the Fe-C alloy replaced the traditional nozzle sand in the upper nozzle. It was confirmed that the Fe-C alloy in the upper nozzle could form five layers as following:liquid layer, solidified layer, liquid-sintering layer, solid-sintering layer and original layer. The solidified, liquid-sintering and solid-sintering layers could prevent the molten steel stream from corroding the sliding plate. The position of the liquid/solid interface and its morphology were investigated by means of the hot-condition experiment. It was shown that the position of the interface was decreased with the decrease of Fe-C alloy melting point, that is, the position of the liquid/solid interface could be adjusted by changing the melting point of the Fe-C alloy. Furthermore, the effects of Fe-C alloy with different composition on teeming time were investigated. The opening time of the sliding plate in the electromagnetic steel-teeming process was found according to online detecting the temperature on the external surface of the upper nozzle.
     The model of the electromagnetic steel-teeming system used in the industry was established by ANSYS finite element analysis software. Numerical simulation method based on the integration of both electromagnetic and thermal analysis modules of ANSYS was employed to investigate the surface temperature of the sintered Fe-C alloy which was used to prevent the molten steel from destroying the sliding plate. In addition, the effects of the coil structure parameters (such as distance of the molten steel and the coil, length and diameter of the coil) and electric current parameters (such as ampere turns, frequency) on teeming time were investigated. The optimal parameters were found according to the simulation, and the smoothly steel-teeming using induction heating was achieved in the optimal parameters'condition. How the ladle refractory met the technological requirements in the electromagnetic steel teeming process was also discussed. Additionally, the effects of molten steel temperature and melting point of Fe-C alloy on teeming time were studied. The safety of the steel shell under the action of electromagnetic induction heating with the optimal parameters was checked via the distribution of temperature field on the shell.
     On the basis of above mentioned investigation, the electromagnetic steel-teeming system which could be used in the industry was preliminarily designed. We proposed two kinds of restructuring proposals to meet the requirements of the use of electromagnetic steel-teeming system in the ladle bottom. The advantages and disadvantages of the two proposals were discussed. The selected principle and methods of power and structure of the coil in the electromagnetic steel-teeming system were discussed as well. Additionally, the concept of electromagnetic-function integration was proposed. On the basis of the above analysis, we discussed the particular problems that should be took into account in the industrial experiments.
引文
[1]张寿荣.钢铁工业的发展趋势与21世纪钢铁企业的竞争力[J],中国废钢铁,2007,(1):8-12
    [2]殷瑞钰.在中国废钢铁应用协会理事会上的发言[J],中国废钢铁,2007,(6):1-3
    [3]李拥军.对中国钢铁产业国际竞争力的剖析[J],中国钢铁业,2007,(8):21-24
    [4]陈荣.中国钢铁产业国际竞争力的实证分析[J],商业研究,2009,(15):74-75
    [5]Zanini E, Bonifacio E, Cuttica G C. Heavy metals in soils near a steel-making industry:A case study in a complex valley situation in Italy[J], Journal of Environmental Science and Health A,1992,27(8):2019-2036
    [6]Adamo P, Arienzo M, Bianco M R, Terribile F, Violante P. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy)[J], Science of the Total Environment,2002,295(1-3):17-34
    [7]Vestergaard N K, Stephansen U, Rasmussen L, Pilegaard K. Airborne heavy metal pollution in the environment of a Danish steel plant[J], Water, Air and Soil Pollution,1986,27(3-4):363-377
    [8]Pilegaard K. Heavy metals in bulk precipitation and transplanted hypogymnia physodes and dicranoweisia cirrata in the vicinity of a Danish steelworks[J], Water. Air and Soil Pollution,1979,11(1):77-91
    [9]Teixeira E C, Ortiz L S, Alves M F C C, Sanchez J C D. Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacui, RS, Brazil [J], Environmental Geology,2001,41(1-2):145-154
    [10]Ndiokwere C L, Ezihe C A. The occurrence of heavy metals in the vicinty of industrial complexes in Nigeria[J], Environment International,1990,16(3): 291-295
    [11]Nriagu J O, Wong H K T, Snodgrass W J. Historical records of metal pollution in sediments of Toronto and Hamilton Harbours[J], Journal of Great Lakes Research,1983,9(3):365-373
    [12]Poikolainen J. Sulphur and heavy metal concentrations in Scots pine bark in northern Finland and the Kola Peninsula[J], Water, Air and Soil Pollution, 1997,93(1-4):395-408
    [13]Chang S H, Wang K S, Chang H F, Ni W W, Wu B J, Wong R H, Lee H S. Comparison of source identification of metals in road-dust and soil[J], Soil and Sediment Contamination,2009,18(5):669-683
    [14]Kansanen P H, Venetvaara J. Comparison of biological collectors of airborne heavy metals near ferrochrome and steel works [J], Water, Air, and Soil Pollution,1991,60(3-4):337-359
    [15]Ma G J, Garbers-Craig A M. Stabilisation of Cr(VI) in stainless steel plant dust through sintering using silica-rich clay[J], Journal of Hazardous Materials, 2009,169(1-3):210-216
    [16]Gonzalez-Miqueo L, Elustondo D, Lasheras E, Santamaria J M. Use of native mosses as biomonitors of heavy metals and nitrogen deposition in the surroundings of two steel works[J], Chemosphere,2010,78(8):965-971
    [17]Dungan R S, Dees N H. Use of spinach, radish, and perennial ryegrass to assess the availability of metals in waste foundry sands[J], Water, Air, and Soil Pollution,2007,183(1-4):213-223
    [18]Singh A K, Gupta P L. Uptake of chromium, its toxicity and effect on the iron content in spinach (spinacea oleracea L.) grown on soil applied chromium[J], Modelling, Measurement and Control C,2004,64(5-6):37-47
    [19]谭西顺.铬化物对人体的危害及预防[J],职业与健康,1993,(1):49-50
    [20]刘翔,刘世杰.铬化合物的DNA损伤作用及其机制[J],癌变畸变突变,1999,(1):60-63
    [21]Dawson S, Mountford N D G, Sommerville I D, McLean A. Evaluation of metal cleanliness in the steel industry[J], Iron and Steelmaker,1988,15(7): 42-43
    [22]Oh K S, Park J K, Kwon O D, Huh W W, Lee J Y, Kim J I. Quality improvement of continuously cast blooms for high grade tire cord steel[J], Iron and Steelmaker,1996,23(3):65-68
    [23]Wu C W, Yang B Q, Chen G N, Zhang K, Xiao J H. On the tensile behaviors of a hard chromium coating plated on a steel substrate with periodic subsurface inclusions[J] Surface and Coatings Technology,2007,201(18):7699-7705
    [24]Tanaka H, Nishihara R, Kitagawa I, Tsujino R. Quantitative Analysis of Contamination of Molten Steel in Tundish[J], ISIJ International,1993; 33(12): 1238-1243
    [25]Gamier M. Metallurgical applications of MHD[J], Journal of the Iron and Steel Institute,1985,71(16):1846-1857
    [26]Muizhnieks A R, Yakovich A T. Numerical study of closed axisymmetric MHD-rotation in an axial magnetic field with mechanical interaction of azimuthal and meridional motions[J], Magnetohydrodynamics,1988,24(1): 50-55
    [27]Takatani K, Asai S. Progress and future aspect of new materials and new processes-MHD application in electromagnetic metallurgy[J], Journal of the Iron and Steel Institute of Japan,1995,81(4):492-497
    [28]Gelfgat Y M, Priede J. MHD flows in a rotating magnetic field (a review)[J], Magnetohydrodynamics,1995,31(1-2):188-200
    [29]Moreau R. The fundamentals of MHD related to crystal growth[J], Progress in Crystal Growth and Characterization of Materials,1999,38(1-4):161-194
    [30]Asai S. Recent activities on electromagnetic processing of materials[C], Proceedings of the Julian-Szekely Memorial Symposium on Materials Processing, Nagoya, Japan,1996,301-311
    [31]Makino H, Kuwabara M, Asai S. Process analysis of non-contact continuous casting of materials using cold crucible[J], ISIJ International,1996,36(4): 380-387
    [32]Lei H, Geng D Q, He J C. A Continuum model of solidification and inclusion collision-growth in the slab continuous casting caster[J], ISIJ International, 2009,49(10):1575-1582
    [33]Wang Q, Li D G, Wang K, Wang Z Y, He J C. Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface[J], Scripta Materialia,2007,56(6):485-488
    [34]Qian Z D, Li B W, Jia G L, He J C. Numerical computation of electromagnetic fields in metals using a modified finite-difference time domain method[J], ISIJ International,2001,41(7):683-688
    [35]Tian X Y, Li B W, He J C. Numerical analysis of influences of casting speeds on fluid flow in funnel shape mould with new type EMBr[J], International Journal of Cast Metals Research,2010,23(2):73-80
    [36]Huang J T, WAng E G, He J C. Numerical simulation of linear electromagnetic stirring in secondary cooling region of slab caster [J], Journal of Iron and Steel Research International,2003,10(3):16-21
    [37]Qian Z D, Wu Y L, Li B W, He J C. Numerical analysis of the influences of operational parameters on the fluid flow in mold with hybrid magnetic fields [J], ISIJ International,2002,42(11):1259-1265
    [38]Lei Z S, Ren Z M, Yan Y G, Deng K. Mold flux channel dynamic pressure in electromagnetic continuous casting[J], Acta Metallurgica Sinica,2004,40(5): 546-550
    [39]Qian Z D, Wu Y L, Li B W, He J C. Numerical analysis of the influences of operational parameters on the fluid flow in mold with hybrid magnetic fields [J], ISIJ International,2002,42(11):1259-1265
    [40]Pesteanu O, Schwerdtfeger K. Electromagnetic stirring with adjustable force density[J], ISIJ International,2001,41(1):98-99
    [41]Chung S I, Yoon J K. Numerical analysis of effect of electromagnetic stirring on solidification phenomena in continuous casting[J], Ironmaking and Steelmaking,1996,23(5):425-432
    [42]Javurek M, Barna M, Gittler P, Rockenschaub K, Lechner M. Flow modelling in continuous casting of round bloom strands with electromagnetic stirring[J], Steel Research International,2008,79(8):617-626
    [43]Li T J, Zhao Y H, Wen B, Jin J Z. Experimental and computational study of nozzle electromagnetic stirring and its effects on solidification structure[J], Ironmaking and Steelmaking,2002,29(5):337-340
    [44]Du W D, Wang K, Song C J, Li H G, Jiang M W. Zhai Q J, Zhao P. Effect of special combined electromagnetic stirring mode on macrosegregation of high strength spring steel blooms[J], Ironmaking and Steelmaking,2008,35(2): 153-156
    [45]Yu H Q, Zhu M Y. Numerical simulation of the effects of electromagnetic brake and argon gas injection on the three-dimensional multiphase flow and heat transfer in slab continuous casting mold[J], ISIJ International,2008,48(5): 584-591
    [46]Lei H, Zhang H W, He J C. Flow, solidification, and solute transport in a continuous casting mold with electromagnetic brake [J], Chemical Engineering and Technology,2009,32(6):991-1002
    [47]Li B K, Tsukihashi F. Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold[J], ISIJ International,2006,46(12):1833-1838
    [48]Yu Z, Lei Z S, Li Q S, Deng K, Ren Z M. Physical simulation of nozzle electromagnetic brake in twin-roll strip casting[J], Steel Research International, 2008,79(11):839-842
    [49]Jin B G, Wang Q, Gao A, Yu Y Q, He J C. Electromagnetic field distribution in two-section slitless mold for soft-contact electromagnetic continuous casting[J], ISIJ International,2009,49(1):44-50
    [50]Deng A Y, He J C. Solidification in soft-contact continuous casting mold with alternating electromagnetic field[J], Journal of Iron and Steel Research International,2003,10(1):15-19
    [51]Deng A Y, Wang E G, He J C. Behavior in electromagnetic soft-contact continuous casting round billet mold[J], Journal of Iron and Steel Research International,2006,13(4):13-16
    [52]Na X Z, Wang X G, Zhang X Z, Gan Y. Deformation of initial solidificated shell in soft contact continuous casting mold under high frequency electromagnetic field[J], Journal of Iron and Steel Research,2004,16(6): 21-26
    [53]Na X Z, Xue M, Zhang X Z, Gan Y Numerical simulation of heat transfer and deformation of initial shell in soft contact continuous casting mold under high frequency electromagnetic field[J], Journal of Iron and Steel Research International,2007,14(6):14-21
    [54]Na X Z, Zhang X Z, Gan Y. Mathematical analysis and numerical simulation of high frequency electromagnetic field in soft contact continuous casting mold[J], ISIJ International,2002,42(9):974-981
    [55]Lei Z S, Ren Z M, Deng K, Li W X, Zhong Y B. Amplitude-modulated magnetic field coupled with mold oscillation in electromagnetic continuous casting[J], ISIJ International,2006,46(5):680-686
    [56]Lei Z S, Ren Z M, Yan Y G, Deng K. Mold flux channel dynamic pressure in electromagnetic continuous casting[J], Acta Metallurgica Sinica,2004,40(5): 546-550
    [57]Hegewaldt F. Recent achievements in the field of induction heating and induction melting between operations [J], Przeglad Elektrotechniczny,1990, 66(9):183-186
    [58]Kutsumi O, Kato Y, Matsui Y, Kitagawa A, Muramatsu M, Uchida T, Yoshida Y, Sato F, Iida T. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source[J], Review of Scientific Instruments,2010,81(2):02A322-02A326
    [59]Takaki S, Abiko K. Ultra-purification of electrolytic iron by cold-crucible induction melting and induction-heating floating-zone melting in ultra-high vacuum[J], Materials Transactions, JIM,2000,41(1):2-6
    [60]Ducharme R, Scarfe F, Kapadia P, Dowden J. The induction melting of glass[J], Journal of Physics D (Applied Physics),1991,24(5):658-663
    [61]Merzhanov A G, Raduchev V A, Rumanov E N, Shteinberg A S. Critical conditions for melt retention during induction melting in a cold crucible [J], Journal of Applied Mechanics and Technical Physics,1990,31(1):73-78
    [62]Wittenbecher H, Dappen S. Inductive billet and bar heating in the forging industry[J], Industrial Heating,2005,72(8):57-59
    [63]Shchukin V G, Marusin V V. High-power induction treatment of steel parts[J], Journal of Machinery Manufacture and Reliability,2007,36(1):57-63
    [64]Rudnev V, Loveless D, Cook R, Black M. Induction hardening of gears:a review[J], Heat Treatment of Metals,2003,30(4):97-103
    [65]Wu X W, Chandel R S, Li H, Seow H P, Wu S C. Induction brazing of Inconel 718 to Inconel X-750 using Ni-Cr-Si-B amorphous foil[J], Journal of Materials Processing Technology,2000,104(1):34-43
    [66]金晓昌.感应加热技术中的趋肤效应[J],武汉化工学院学报,1995,17(4):65-68
    [67]刘白,汪大鹏,廖珍.双频感应加热淬火技术的计算与应用[J],贵州工业大学学报(自然科学版),2001,30(4):56-61
    [68]干肇智.感应加热的数值计算[J],电炉,1985,(5):1-12
    [69]王璋奇,范孝良,张文建.管道感应加热过程的计算机模拟[J],华北电力大学报,1999,26(4):67-70
    [70]杭国平.感应加热问题的有限元分析[D],上海:上海大学,1991
    [71]姜建华.厚壁筒形工件连续感应加热处理有限元模拟[J],材料热处理学报,2002,23(2):43-48
    [72]戴挺,吴炳尧.半固态坯料感应二次加热的数值模拟[C],中国压铸、挤压铸造、半固态加工学术年会论文集,烟台,中国,2001
    [73]李海江,阎洪等.半固态触变成形坯料感应加热的数值模拟[J],精密成型工程,2003,21(1):30-32
    [74]徐霖,张恒华,邵光杰.半固态铝合金感应加热工艺参数的模拟研究[J],上海金属,2002,24(6):1-6
    [75]张恒华,许洛萍,邵光杰.铝合金半固态感应加热的计算机模拟[J],中国有色金属学报,2001,11(s2):221-225
    [76]Fireteanu V, Tudorache T. Electromagntic forces in transverse flux induction heating[J], IEEE Transactions on Magnetics,2000,34(4):1792-1795
    [77]Tjermberg A. Comparision of methods for determining residual stresses in induction-hardened transmission sharfts[J], IEEE Transactions on Magnetics, 1997,25(1):282-290
    [78]Fuhrmann J, Homberg D. Numerical simulation of induction hardening of steel[J], International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1999,18(3):482-493
    [79]Fuhrmann J, Homberg D. Numerical simulation of the surface hardening of steel [J], International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1999,9(5-6):705-724
    [80]Deghiero F, Battistetti M. Optimization procedures in the design of continuous induction hardening and tempering installations for magnetic steel bars[J], IEEE Transactions on Magnetics,1998,34(5):2865-2868
    [81]Kawase Y, Miyatake T. Thermal analysis of steel blade quenching by induction heating [J], IEEE Transactions on Magnetics,2000,36(4):1788-1791
    [82]Pokrovskii A M, Leshkovtsev V G Computational determination of the structure and hardness of rolls after induction hardening[J], Metal Science and heat treatment,1997,39(9-10):396-400
    [83]Krahenbuhl L, Fabregue O, Wanser S. BIEM and FEM coupled with ID non linear solutions to solve 3D high frequency eddy current problems[J], IEEE Transactions on Magnetics,1997,33(2):1167-1172
    [84]Xu D H, Kuang Z B. A study on the distribution of residual stress due to surface induction hardening[J], Journal of Engineering Materials and Technology,1996,18(4):571-575
    [85]Di B P, Dughiero F, Trevisan F. Optimal design of windings for the continuous induction hardening process of steel bars[J], International Journal of Applied Electronmagnetics and Mechanics,1998,9(1):53-63
    [86]Wang K F, Chandrasekar S, Yang H T Y. Finite-element simulation of induction heat-treatment[J], Journal of Materials Engineering and Performance, 1996,118(4):571-575
    [87]Bokota A, Iskierka S. Numerical analysis of phase transformations and residual stresses in steel cone-shaped elements hardened by induction and flame methods[J], International Journal of Mechanical Sciences,1998, (40):617-629
    [88]Wang K F, Chandrasekar S, Yang H T Y. Finite-element simulation of moving induction heat treatment[J], Journal of Materials Engineering and Performance, 1995,4(4):460-473
    [89]Houseman D H. Ladles and ladles control systems[J], Steel Times,1976, 204(5):371-374
    [90]Mittra S K, Ghosh B N, Swaminathan K S. Slide gate stopper arrangement for the teeming of steel:a review[J], TISCO (Tata Iron and Steel Co),1973,20(4): 119-124
    [91]Kortel A A, Zhukovskaya A E, Zeliger G Ya, Yudovina V B, Sherman E A, Suvorov S A, Karas G E, Anzheurov N M, Marakulin Yu A. Analysis of the service of high-alumina plates of ladle slide gates[J], Refractories,1990, 30(7-8):515-518
    [92]Kappmeyer K K, Shapland J T. Development of sliding-gate systems for controlling steel teeming[J], Journal of the Iron and Steel Institute,1972, 210(10):751-756
    [93]Keitch J A, Stanford R L. Slide gate refractory applications[J], Journal of Metals,1973,25(7):38-42
    [94]Kennedy C A. Flo-con ladle slide-gate system at Fairfield works[J], Open Hearth Proceedings,1973,56(1):134-144
    [95]Over R E. Experience with interstop slide gate nozzles[J], Electric Furnace Conference Proceedings,1972,30:144-153
    [96]Pol D, Richard D. Slide-valve output regulating throttleThrottling:U.S. Patent, 4260081 [P].1981-04-07
    [97]Ohnishi M, Nishio T, Terashima T. Utilization of sliding gate nozzle in Japan [J], Transactions of the Iron and Steel Institute of Japan,1976,16(3): 164-167
    [98]李晓媛.钢包用滑动水口装置[J],国外耐火材料,1997,22(8):47-49
    [99]刘爱云.滑动水口[J],国外耐火材料,1997,22(8):50-51
    [100]Kolpakov S V, Pozhivanov A M, Karpov N D, Savvateev Yu G. Operation of ladles with slide-gate nozzles[J], Steel USSR,1978,8(11):619-621
    [101]Sugita K, Ikeda M, Tamura S. Microstructural improvements in slide gate plates for steel pouring[J], American Ceramic Society Bulletin,1984,63(7): 886-889
    [102]Voronin I G, Bezgodov V A, Filatov S K, Pyatinin Y I, Savchits V A, Kuznetsov D I. Teeming quality steel with a slide gate[J], Metallurgist,1983, 27(5-6):170-171
    [103]Machikin V I, Shestopalov V N, Eronko S P, Semenenko P P, Karetnikov V V, Rychkov A A. Teeming steel by means of slide gate[J], Metallurgist,1985, 29(5-6):173-174
    [104]Pan H C, Ko Y C. Microstructural and morphological changes of silica and chromite packing sands for sliding gate system for steel ladles after heating at temperature[J], Ironmaking and Steelmaking,1992,19(5):390-393
    [105]Smith C. Evaluation of ladle free-open performance[C], Seventy Ninth Conference of the Steelmaking Division of the Iron and Steel Society, Pittsburgh, USA,1996,105-111
    [106]Balajee S R, Bradley J E Rebeil A. Ladle free-opening performance at inland's steelmaking shops[C], Steelmaking Conference, Chicago, USA,1994,199-208
    [107]Eronko S P, Pilyushenko V L, Shestopalov V N. Improving the efficiency of slide-gate use in the teeming of steel[J], Metallurgist,1990,33(11-12): 223-224
    [108]Anon. Improving continuous casting at sumitomo metal industries [J], Steel Times,1990,218(5):256-258
    [109]Kortel A A, Zhukovskaya A E, Zeliger G Y, Yudovina V B, Sherman E A, Suvorov S A, Karas G E, Anzheurov N M, Marakulin Y A. Analysis of the service of high-alumina plates of ladle slide gates[J], Refractories,1990, 30(7-8):515-518
    [110]George J A. Sliding gate valve[J], Process and Control Engineering,1993, 46(1):28
    [111]Garlick C, Lucas J. Effect of sand properties at high temperature on ladle free opening performance[J], Iron and Steelmaker,1991,18(2):12-13
    [112]Cathcart C R, Hole P J, Minion R L. Ladle free open and choke free improvement at Stelco Hilton works[J], Iron and Steelmaker,2001,28(7): 55-61
    [113]Otsuka A, Harada K, Ohba H, Tsuneoka A. Slide gate system for flow control[C], AISTech 2004-Iron and Steel Technology Conference Proceedings, Nashville Tennessee, USA,2004,985-991
    [114]Balajee S R, Bradley J E, Rebeil A. Ladle free-opening performance at inland's steelmaking shops [C], Steelmaking Conference Proceedings, Warrendale, PA, 1994,199-208
    [115]Tanaka H, Nishihara R, Miura R, Tsujino R, Kimura T, Nishi T, Imoto T. Technology for cleaning of molten steel in tundish[J], ISIJ International,1994, 34(11):868-875
    [116]Choudhary S K, Khan A J. Nozzle clogging during continuous slab casting at Tata Steel[J], Steel Times International,2000,24(3):21-28
    [117]Nadif M, Lehmann J, Burty M, Domgin J F. Control of steel reoxidation and CC nozzle clogging: An overview[J], Revue de Metallurgie. Cahiers DInformations Techniques,2007,104(10):493-500
    [118]Toulouse C, Pack A, Ender A, Petry S. Stable oxygen isotopes for tracing the origin of clogging in continuous casting submerged entry nozzles [J], Steel Research International,2008,79(2):149-155
    [119]Girase N U, Basu S, Choudhary S K. Development of indices for quantification of nozzle clogging during continuous slab casting[J], Iron and Steelmaker,2007,34(6):506-512
    [120]Lukavaya M S, Mikhailov G G. Factors affecting the clogging of submerged nozzles during continuous casting of steel[J], Russian Metallurgy (Metally), 2008,2008(8):698-699
    [121]Zheng H G, Chen W Q, Liu Q, Duan P F, Zhao L R, Wang H L. Investigation on clogging of submerged entry nozzle during continuous casting Ti-bearing stainless steel[J], Journal of Iron and Steel Research,2005,17(1):14-18
    [122]Trueba J L, Peaslee K D, Smith J D. Simulation of nozzle clogging during the continuous casting of aluminum-killed steel[J], Iron and Steel Technology, 2006,3(2):123-133
    [123]Trueba J L, Peaslee K D, Smith J D, Karakus M. Effect of nozzle base material on the rate of clogging during the continuous casting of aluminum-killed steels[J], Steel Research International,2006,77(1):37-48
    [124]Wunnenberg K. IISI study on clean steel[J], Revue de Metallurgie,2005, 102(10):687-692
    [125]Zhang J M, Li S X, Yang Z G, Li G Y, Hui W J, Weng Y Q. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime[J], International Journal of Fatigue,2007,29(4):765-771
    [126]Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultra-clean steels[J], ISIJ International,1996,36(5):528-536
    [127]Tomita Y. Effect of morphology of non-metallic inclusions on Charpy impact properties of quenched and tempered 0.4C-Cu-Mo-Ni steels[J], Materials Science and Technology,1995,11(5):508-513
    [128]Brooksbank D, Andrews K W. Stress fields around inclusions and their relation to mechanical properties [J], Journal of the Iron and Steel Institute,1972, 210(4):246-255
    [129]Pleschiutschnigg F P, Parschat L, Rahmfeld W, Schrewe H F. Secondary cooing systems for slab casters:from air mist to dry casting[J], Iron and Steel Engineer,1987,64(1):51-55
    [130]刘建辉,樊捷,苏树红,聂作禄,王建伟,郭大军,刘启江,靳伟,周凤鸣,潘桂春.钢包用碱性引流砂及其制备方法[P],中国,CN1509827A,2004-07-07
    [131]李瑞华.钢包用“引流砂”[P],中国,CN1165798A,1997-11-26
    [132]朱湧选.铬质钢包引流砂[P],中国,CN1524648A,2004-09-01
    [133]刘欢.炼钢用引流砂[P],中国,CN1424160A,2003-06-18
    [134]祝洪喜,邓承继,白晨,张卫钢.钢包用引流材料的特性与控制参数[J],炼钢,2008,24(5):49-53
    [135]赵凯,黄军同,刘睿,刘艳改,黄朝晖.西峡镁橄榄石矿的显微结构特征和高温体积稳定性[J],耐火材料,2006,40(4):314-314
    [136]胡生华,胡生祥.引流砂[P],中国,CN1267652A,2000-09-27
    [137]刘开琪,李林.钢包用铬质引流砂的研制[J],耐火材料,2001,35(4):219-220
    [138]马征明.精炼钢包水口引流砂的研制与应用[J],耐火材料,2002,36(1):51-51
    [139]Tomba A G, Camerucci M A, Cavalieri A L, Martorello L, Galliano P G. Ladle filler sand evaluation[C], UNITECR 05-Proceedings of the Unified International Technical Conference on Refractories:9th Biennial Worldwide Congress on Refractories, Orlando, USA,167-171
    [140]Kortel A A, Zhukovskaya A E, Zeliger G Y, Yudovina V B, Sherman E A, Suvorov S A, Karas G E, Anzheurov N M, Marakulin Y A. Analysis of the service of high-alumina plates of ladle slide gates[J], Refractories,1990, 30(7-8):515-518
    [141]Lacey C W, Bell E J. Fine tuning of slide gate valve refractories[J], Metallurgia, 2003,70(3):15-16
    [142]杨卫国,陈家军,陈大扬,黄云锋.铬渣的危害与解毒技术[J],中国环保产业,2008,(1):48-50
    [143]陆一方,张敖明,张志富.引流砂控制器:中国,CN2120648U[P].1992-11-04
    [144]阮小江,张国伟,冷永磊.排放连铸大包开浇引流砂装置:中国,CN2805981Y[P].2006-08-16
    [145]Arai K, Watanabe Y, Kasai N, Yoshiyama J I, Akahane Y. Advanced technology for the unsteady stage slab quality at Kashima Steelmaking plant[C]. Steelmaking Conference proceedings, Chicago, USA,1997,279-284
    [146]Gamo H. A General formulation of Faraday's law of induction[J], Proceedings of the IEEE,1979,67(4):676-677
    [147]Kashyap J N S. Faraday's electromagnetic induction in Einstein's unified field theory[J], Journal of Mathematical and Physical Sciences,1978,12(6): 569-579
    [148]Houben J W M A, Blom J H, Rietjens L H T. End effects in Faraday type MHD generators with nonequilibrium plasmas[J], AIAA Journal,1972,10(11): 1513-1516
    [149]Belevitch V. Theory of the proximity effect in multiwire cables[J], Philips Research Reports,1977,32(2):96-117
    [150]Segal A M. Analysis of the interaction between busbars, line conductors and screens, allowing for the proximity effect[J], Electrical Technology,1993,1: 69-73
    [151]Barka A, Bernard J J, Benyoucef B. Thermal behavior of a conductor submitted to skin effect[J], Applied Thermal Engineering,2003,23(10): 1261-1274
    [152]唱鹤鸣,杨晓平,张德惠.感应炉熔炼与特种铸造技术[M],北京:冶金工业出版社,2003,1-6
    [153]郭茂先.工业电炉[M],北京:冶金工业出版社,2002,24-131.
    [154]Raffner B M. Induction heating and melting[J], Certificated Engineer,1974, 47(5):91-101
    [155]Ratnikov D G. Design of nonsymmetric induction systems for high-frequency electrothermy[J], Soviet Electrical Engineering,1988,59(5):95-98
    [156]Park J S, Taniguchi S, Park Y J. Maximum Joule heat by tubular susceptor with critical thickness on induction heating[J], Journal of Physics D,2009,42(4): 45509-45515
    [157]Ireson R C J. Induction heating with transverse flux in strip-metal process lines[J], Power Engineering Journal,1989,3(2):83-91
    [158]Lan C W. Heat transfer, fluid flow, and interface shapes in zone melting processing with induction heating[J], Journal of the Electrochemical Society, 1998,145(11):3926-3935
    [159]Liu H, Chen L L, Zhou J X. Numerical simulation of induction heating process of continuous casting slab[J], Materials Science Forum,2008,575-578(1): 37-42
    [160]孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社,1986
    [161]杨世铭,陶文铨.传热学[M],北京:高等教育出版社,1998
    [162]Stocker H. Handbook of physics[M], Beijing:Peking University Press,2004
    [163]蒋国璋,孔建益,李公法,白晨,陈世杰.钢包温度分布模型及其测试实验研究[J],中国冶金,2006,11(16):30-36.
    [164]赫冀成,丸川雄净,王强.一种带有加热出钢装置的钢包及其出钢方法[P],中国,CN100371109C,2008-02-27
    [165]李春胜.钢铁材料手册[M],南昌:江西科学技术出版社,2004
    [166]Pan Y H, Grip C E, Bjorkman B. Numerical studies on the parameters influencing steel ladle heat loss rate, thermal stratification during holding and steel stream temperature during teeming[J]. Scandinavian Journal of Metallurgy,2003,32(2):71-85
    [167]Sadeghipour K, Dopkin J A, Li K. A computer aided finite element/experimental analysis of induction heating process of steel[J], Computers in Industry,1996,28(3):195-205
    [168]Jang J Y, Chiu Y W. Numerical and experimental thermal analysis for a metallic hollow cylinder subjected to step-wise electro-magnetic induction heating[J], Applied Thermal Engineering,2007,27(11-12):1883-1894
    [169]Housner H H. Translated by Beijing Institute of Powder Metallurgy:.Handbook of Powder Mettallurgy[M], Beijing:Metallurgy Industry Press,1982
    [170]中南矿冶学院粉末冶金教研室.粉末冶金基础[M],北京:冶金工业出版社,1974
    [171]陈家祥.连续铸钢手册[M],北京:冶金工业出版社,1991
    [172]史宸兴,余志祥,叶枫.实用连铸冶金技术[M],北京:冶金工业出版社,1998
    [173]李恩琪,殷经星,张武城.铸造用感应电炉[M],北京:机械工业出版社,1997
    [174]Trotter D J, Duncan G, Camplin J M. Development of a ladle/tundish slag detector[J], Iron and Steelmaker,1991,18(10):57-60
    [175]Gokey T J. Methodology to improve ladle slag detection[C], Proceedings of the 77th Steelmaking Conference, Chicago, USA,1994,261-264
    [176]Bolger D, Guthrie R I L, Kings D H M, Sommers R A, Usher J D. Ladle shroud slag detector[C], Proceeding of the 79th Steelmaking Conference, Pittsburgh, USA,1996,481-484
    [177]马竹梧,万雅竞,马少仿.炼钢过程下渣检测技术的试验研究[J],自动化博览,2009,26(1):77-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700