联合应用超声心动图、双源CT及3.0T磁共振对冠状动脉狭窄、心肌梗死透壁程度及冠状动脉畸形的诊断价值
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:双源CT、3.0T磁共振对比增强全心冠状动脉成像(增强全心冠脉成像)及经胸多普勒超声心动图冠状动脉血流成像均为新近发展的无创性冠状动脉检测新技术,但迄今尚未见同步对比此三者诊断冠状动脉明显狭窄能力的前瞻性研究。本文探讨双源CT、3.0T磁共振增强全心冠脉成像及经胸多普勒超声心动图对冠状动脉明显狭窄的诊断价值。
     方法: 51例疑诊或确诊冠心病拟行冠状动脉造影检查的连续受检者在行冠状动脉造影检查前一天内行同步双源CT、3.0T磁共振增强全心冠脉成像及经胸多普勒超声心动图冠状动脉检查,以冠状动脉造影为金标准进行诊断试验,采用盲法评价三者诊断冠状动脉明显(≥50%)狭窄的准确性。
     结果:1.双源CT、3.0 T磁共振和超声心动图分别有486段(486/512,96.0%)、479段(479/512,93.6%)及398段(398/512,77.7%)可供评价,双源CT及3.0 T磁共振可评价节段相似,超声心动图可评价节段少于双源CT及3.0 T磁共振。2.以冠状动脉造影结果为对照,以冠状动脉血管为单位的分析结果是:3.0T磁共振对比增强全心冠脉成像与双源CT对诊断冠状动脉明显狭窄诊断准确性相似,虽有稍逊于双源CT的趋势,但差异并无统计学意义,P均>0.05;多普勒超声心动图对冠状动脉明显狭窄诊断的敏感性、特异性、阳性预测值及阴性预测值比双源CT及3.0T磁共振对比增强全心冠状动脉成像都低,差异有统计学意义,P均<0.05,其中双源CT、3.0T磁共振对比增强全心冠状动脉成像和多普勒超声心动图诊断冠脉明显狭窄的敏感性分别为94%、88%及65% ;特异性分别为90%、88%、72%;阳性预测值为82%、78%、52%;阴性预测值分别为97%、95%、81%。3.以冠状动脉节段为单位的分析结果是:3.0T磁共振对比增强全心冠脉成像与双源CT对诊断左主干+左冠状动脉、左旋支及右冠状动脉明显狭窄诊断准确性相似,虽有稍逊于双源CT的趋势,但差异并无统计学意义,P均>0.05;多普勒超声心动图对诊断左主干+左冠状动脉、左旋支及右冠状动脉明显狭窄的敏感性、特异性、阳性预测值及阴性预测值比双源CT、3.0T磁共振对比增强全心冠状动脉成像都低,差异有统计学意义,P均<0.05,其中双源CT、3.0T磁共振对比增强全心冠状动脉成像和多普勒超声心动图对左主干+左前降支明显狭窄诊断的敏感性分别为95%、89%、79% ;特异性分别为90%、90%、78%;阳性预测值为86%、85%、68%,阴性预测值分别为97%、93%、86%;对左回旋支诊断的敏感性分别为95%、85%、46% ,特异性分别为95%、92%、68%,阳性预测值为90%、79%、33%,阴性预测值分别为97%、95%、79%;对右冠状动脉诊断的敏感性分别为94%、88%、65% ;特异性分别为85%、82%、69%;阳性预测值为70%、71%、52%;阴性预测值分别为97%、93%、79%。经胸超声心动图对左主干+左前降支明显狭窄诊断敏感性最高(79%)、右冠状动脉其次(65%),左旋支最低(46%)。4.经胸超声心动图检测左前降支明显狭窄处舒张期峰值血流速度为3.6±1.9M/S,狭窄处与狭窄前峰值血流速度比率为3.3±1.2,左旋支明显狭窄处舒张期峰值血流速度为3.0±0.5M/S,狭窄处与狭窄前峰值血流速度比率为2.8±0.6,右冠状动脉明显狭窄处舒张期峰值血流速度为2.8±0.6M/S,狭窄处与狭窄前峰值血流速度比率为2.7±0.3,左前降支、左回旋支与右冠状动脉明显狭窄处舒张期峰值血流速度以及狭窄处与狭窄前峰值血流速度比率差异无统计学意义。
     结论:双源CT、3.0T磁共振增强全心冠脉成像对冠状动脉明显狭窄均有相似的高度的诊断准确性,虽然双源CT的各项评价指标均略优于3.0T磁共振,但差异均无统计学意义。超声心动图由于较低的成功显示率以及较少的可评价节段,诊断准确性较低。3.0T磁共振增强全心冠脉成像的优势在于无Ⅹ线及碘对比剂的潜在危害,多普勒超声心动图经济便携且能提供丰富的冠状动脉血流动力学信息,可作为对双源CT与3.0T磁共振增强全心冠脉成像的有益补充。
     目的:识别心梗的透壁程度(The transmural extent of infarction ,TME)兼具指导临床再灌注治疗及评判预后的双重意义。目前,无创性的超声心动图二维斑点追踪成像(2D-speckle tracking imaging,2D-STI)技术是否可用于识别陈旧性心梗透壁程度、具体方法及其实际应用价值均尚未明确。本研究拟探讨2D-STI技术识别陈旧性心梗患者左室整体心梗大小与节段水平透壁程度的可行性及其有效方法。
     方法:对43位临床确诊的陈旧性心肌梗死的连续性患者进行2D-STI、磁共振延迟强化成像(delayed-enhanced magnetic resonance imaging,DE-MRI)及生化检查的随机盲法同步临床试验。2D-STI左室整体水平指标包括整体纵向应变(Global longitudinal strain,GLS)、旋转及扭转指标;左室节段水平指标包括各节段舒张期室壁厚度及各节段应变指标,后者包括短轴上各节段径向应变(radial strain,SR),圆周应变(circumferencial strain,SC),旋转角(rot);以及长轴上各节段纵向应变(longitudinal strain,SL)。整体水平心肌梗死大小包括心肌梗死容积率及梗死质量;节段水平透壁心肌梗死指DE-MRI延迟强化区≥50%节段总容积。<50%为非透壁心肌梗死。左室心尖各节段依TME分成透壁组及非透壁组,生化检查指标包括血液超敏C反应蛋白、NT Pro BNP及同型半胱氨酸测定。
     结果:①在左室整体水平, GLS与左室整体心梗容积率显著相关(P=0.008),相关系数等于0.620;GLS和心尖最大旋转率是左室整体心梗容积率的显著预测因子(P分别等于0.005及0.014),标准回归系数(Beta)分别为0.720及0.592;GLS是左室整体心梗质量的预测因子(P=0.024),标准回归系数(Beta)为0.545,各生化指标不是左室整体心梗容积率及质量的预测因子;②在左室节段水平:与左室心尖段心肌梗死非透壁组相比,左室前壁心尖段透壁组舒张末期室壁厚度、SR(ES),SC(ES),SR Peak G,SL(ES),SC Peak,SL Peak G,SL Peak及SC Peak G(依ROC曲线下面积降序排列,下同)差异有统计学意义(P均<0.05);左室侧壁心尖段SC(ES),SC Peak G,SC Peak及SL(ES)差异有统计学意义(P均<0.05);前间隔心尖段SL Peak ,SL Peak G, SC Peak ,SL(ES),SC(ES)及SR(ES)差异有统计学意义(P均<0.05);左室后壁心尖段SR Peak G,SR(ES)及SL(ES)差异有统计学意义(P均<0.01);左室下壁心尖段SC Peak G,SC Peak及SC(ES)差异有统计学意义(P均<0.01);后间隔只有舒张末期室壁厚度差异有统计学意义(P=0.007) ;而各节段旋转角指标差异均无统计学意义,③ROC曲线分析显示舒张末期室壁厚度为判断左室前壁及后间隔心尖段透壁心梗的最佳指标,前者临界值5.5MM时诊断透壁心肌梗死的敏感度为83.3%、特异度为85.7%,后者临界值5.5MM时敏感度为100%、特异度为61.5%;SC(ES)为左室侧壁心尖段最佳指标,临界值-3.0800时,敏感度为100%、特异度为94.4%;SL Peak S为左室前间隔心尖段最佳指标,临界值-5.4650时敏感度为71.4%、特异度为100%;SR Peak G为左室后壁心尖段最佳指标,临界值12.265时敏感度为100%、特异度为80.0%;SC Peak G及SC Peak S均为左室下壁心尖段最佳指标,临界值-5.3200时,敏感度为100%、特异度为88.8%。
     结论:①在左室整体水平, 2D-STI技术的左室整体纵向应变可准确评价陈旧性心肌梗死整体心梗大小;左室心尖旋转率是较左室整体扭转角或扭转率更好的评价指标。②在左室节段水平,发现纵向应变、径向应变、圆周应变以及/或室壁厚度指标分别可检出左室心尖不同节段的透壁心梗,但不同应变指标的识别能力表现各异,这可能是左室各节段心肌方向、透壁应变不同的复杂性的真实反映。
     目的:术前准确识别冠状动脉解剖变异类型是大动脉转位(transposition of great arteries, TGA)根治术即动脉调转术(arterial switch operation, ASO)成功的关键因素之一。本文探讨术前经胸超声心动图与双源CT检查对识别冠状动脉解剖变异类型的诊断价值及提高超声心动图诊断准确性的方法。
     方法:将164例准备行ASO患儿术前超声心动图检查与术中所见进行对比,其中大动脉转位室间隔完整(TGA with intact ventricular septum ,TGA/IVS)患者49例,大动脉转位伴室间隔缺损(TGA with ventricular septum defect ,TGA/VSD) 77例,右室双出口伴TGA(Double outlet right vetricle with TGA,DORV/TGA) 38例。164例中的53例连续TGA受检者在行ASO手术前三天内同时行双源CT检查。全部病例采用盲法以手术所见为金标准进行诊断试验。
     结果: 164例患者中,冠状动脉发育正常124例(75.61%),冠状动脉畸形40例(24.39%),其中TGA/VSD及DORV/TGA中冠状动脉畸形32例(80.00%),TGA/IVS冠状动脉畸形8例(20.00%),两者差异有统计学意义(P<0.05)。共发现10种异常类型,其中冠状动脉起源于单个冠状动脉窦17例(42.50%),为所有畸形中比率最高者,其中第一位为1LCx1R,占25%,第二位为2LCx2R,占17.50%,与其他类型的发病率比较差异有统计学意义(P<0.05)。与术中所见对比,164例患者以患者为单位的经胸超声心动图诊断敏感性、特异性、阳性预测值及阴性预测值分别达90.0% , 95.2%, 85.7%及96.7%。以手术结果为对照,53例术前双源CT及经胸超声心动图对冠状动脉畸形诊断以患者为单位的诊断准确性相似,差异无统计学意义(P值均>0.05),其中双源CT与经胸超声心动图敏感性为94.7%对94.7%、特异性为94.1%对91.7%、阳性预测值为90.0%对85.7%,阴性预测值为96.7%对96.9%。
     结论:1超声心动图能够在ASO术前准确诊断绝大部分TGA患者的冠状动脉解剖类型,与双源CT具有相似的诊断准确性,可替代双源CT作术前检测。2本研究共发现10种异常冠状动脉类型,有助进一步认识TGA冠状动脉畸形的发生规律。
OBJECTIVE Dual-source computed tomography(DSCT),3.0T contrast enhanced whole-heart coronary magnetic resonance angiography(whole-heart CE-CMRA)and transthoracic doppler echocardiography ( TTE) are emerging non-invasive modalities to detect coronary stenosis.Yet,to our knowledge,there has been no prospective ,simultaneous comparison of these three imaging approaches for detecting significant coronary stenosis..Therefore , we conducted a study to determine the diagnostic accuracy of DSCT,3.0T whole-heart CE-CMRA and TTE for the detection significant coronary stenosis.
     METHODS A prospective,simultaneous and blind study was performed in 51 consecutive patients with suspected or known coronary artery diseases who underwent DSCT、3.0T whole-heart CE-CMRA and TTE within one day before invasive coronary angiography. The diagnostic accuracy of the 3 modalities for detecting significant coronary stenosis (≥50% luminal diameter stenosis) was compared blindly with quantitative invasive coronary angiography as the reference standard.
     RESULTS 1. DSCT had similar interpretable segments (486/512,96.0%) as 3.0T whole-heart CE-CMRA(479/512,93.6%),higher than TTE did(398/512,77.7%) 2.According to the quantitative coronary angiography,on a per-vessel basis,DSCT and 3.0T whole-heart CE-CMRA had similar sensitivity (94% vs. 88%, p>0.05), specificity (90% vs. 88%, p>0.05), PPV (82%, vs. 78%, p>0.05) and NPV (97%, vs. 95%, p>0.05) for detection of≥50% coronary stenosis, although 3.0T whole-heart CE-CMRA showed a slight trend of inferiority. TTE had significantly lower sensitivity(65%, p<0.05) ,specificity ( 72% ,p<0.05) ,PPV(52%,p<0.05) and NPV(81%,p<0.05) for the detection of≥50% coronary stenosis as compared with DSCT and 3.0T whole-heart CE-CMRA. 3. On a per-segment basis, DSCT and 3.0T whole-heart CE-CMRA had similar sensitivity (95% vs. 89%, p>0.05), specificity (90% vs. 90%, p>0.05), PPV (86%, vs. 85%, p>0.05) and NPV (97%, vs. 93%, p>0.05) for detection of≥50% LM +LAD stenosis, DSCT and 3.0T whole-heart CE-CMRA had similar sensitivity (95% vs. 85%, p>0.05),specificity (95% vs. 92%, p>0.05), PPV (90%, vs. 79%, p>0.05) and NPV (97%, vs. 95%, p>0.05) for detection of≥50% Cx stenosis . DSCT and 3.0T whole-heart CE-CMRA had similar sensitivity (94% vs. 88%, p>0.05),specificity (85% vs. 82%, p>0.05), PPV (70%, vs. 71%, p>0.05) and NPV (97%, vs. 93%, p>0.05) for detection of≥50% RCA stenosis. As compared with DSCT and 3.0T whole-heart CE-CMRA,TTE had significantly lower sensitivity(79%, p<0.05) ,specificity(78% ,p<0.05) , PPV(68%,p<0.05) and NPV(86%,p<0.05) for the detection of≥50% LM +LAD stenosis; significantly lower sensitivity(46%, p<0.05) ,specificity ( 68% ,p<0.05) , PPV(33%,p<0.05) and NPV(79%,p<0.05) for the detection of≥50% Cx stenosis; and significantly lower sensitivity(65%, p<0.05) ,specificity ( 69% ,p<0.05) ,PPV (52%,p<0.05) and NPV(79%,p<0.05) for the detection of≥50% RCA stenosis. TTE had higher sensitivity(79%)for the detection of≥50% LM +LAD stenosis than that of RCA(65%)and Cx(46%) . 4. By echocardiography,stenotic max diastolic velocity (MDV) for LAD was 3.6±1.9M/S,prestenotic to stenotic MDV ratio was 3.3±1.2;MDV for Cx was 3.0±0.5M/S,prestenotic to stenotic MDV ratio was 2.8±0.6;MDV for Cx was 2.8±0.6M/S,prestenotic to stenotic MDV ratio was 2.7±0.3. There were no significant differences in the MDV, and no significant differences in the prestenotic to stenotic MDV among LAD,Cx and RCA .
     CONCLUSIONS Visual assessment of coronary diameter stenosis severity by DSCT or 3.0T whole-heart CE-CMRA allows identification of significant(≥50%)coronary stenosis with a similar high diagnostic accuracy.Although DSCT showed slightly superior to 3.0T whole-heart CE-CMRA ,there was no significant difference. Because of the lower success rate and less number of interpretable segments, TTE performed worse than DSCT or 3.0T whole-heart. 3.0T whole-heart CE-CMRA permits reliable noninvasive detection of significant coronary stenosis without the use of radiation and potentially hazard iodine contrast agent. TTE can evaluate resting coronary flow dynamics by detection of stenotic coronary artery velocity ,while it is portable and not expensive. TTE can be a helpful supplement to DSCT and 3.0T whole-heart CE-CMRA.
    
     OBJECTIVE To identify the transmural extent of myocardial infarction (TME) is critical for making decision of revascularization and evaluating prognosis. However,it is not clear whether 2D-speckle tracking imaging(2D-STI) should be preferred in chronic myocardial infarction to estimate infarct size. In addition, the application method and value of 2D-STI is unclear.The objective of the present study was to investigate the feasibility of 2D-STI to evaluate the transmural myocardial infarction .
     METHODS A randomized,simultaneous and blind study was performed in 43 consecutive chronic myocardial infarction patients who underwent 2D-STI、delayed-enhanced magnetic resonance imaging ( DE-MRI ) and biochemical examination. On the global level of left ventricle,global longitudinal strain(GLS),rotation and torsion were separately measured. On the segmental level of left ventricle,segmental longitudinal,circumferencial and radial strain, rotation angle as well as diastolic wall thickness were separately analyzed.Global infart size was calculated as infarct volume( a percentage of total myocardial volume )and infart masses, Segmental transmurality was calculated in a 18-segment LV model as infarct volume divided by myocardial volume per segment. Segments with≥50% contrast enhancement were judged transmurally infracted, <50% contrast enhancement were judged non-transmurally infracted. Segments were divided into transmural myocardial infarction(TMI)group and non-transmural myocardial infarction(NTMI) group.Biochemical indices were detected meanwhile including high sensitive c-reactive protein、NT Pro BNP and homocysteine.
     RESULTS①On the global level, GLS significantly correlated with infarct volume (P=0.008),while the correlation coefficient was 0.620. GLS and maximal apical rotation rate were significant predictors of infarct volume (P=0.005,0.014), while the Beta was 0.720 and 0.592 respectively; GLS was significant predictors of infarct masses (P=0.024), while the Beta was 0.545.The biochemical indices mentioned above were not significant predictors for infarct volume and masses;②On the segmental level,compared with non-transmural infarct group,diastolic wall thickness ,SR(ES), SC(ES), SR Peak G, SL(ES), SC Peak, SL Peak G, SL Peak and SC Peak G (ranked in descending order according to the area under ROC curve, the same below) decreased significantly in apical anterior segments(P<0.05);SC(ES),SC Peak G,SC Peak and SL(ES) decreased significantly in apical lateral segments(P<0.05);SL Peak ,SL Peak G, SC Peak ,SL(ES),SC(ES) and SR(ES) decreased significantly in apical anteroseptal segments(P<0.05);SR Peak G,SR(ES)及SL(ES) decreased significantly in apical posterior segments(P<0.01);SC Peak G,SC Peak及SC(ES) decreased significantly in apical inferior segments(P<0.01);diastolic wall thickness decreased significantly in apical septal segments(P=0.007) ;there was no significant different in rotation angle between two groups.③ROC analysis showed diastolic wall thickness had the best ability to identify transmural infarction both in apical anterior and septal segments,using a cut-off of 5.5MM,diastolic wall thickness had a sensitivity of 83.3% and specificity of 85.7% for apical anterior segments;while a sensitivity of 100% and specificity of 61.5% for apical septal segments. SC(ES)had the best ability to identify transmural infarction in apical lateral segments,using a cut-off of -5.4650,SC(ES)had a sensitivity of 83.3% and specificity of 85.7%. SR Peak G had the best ability to identify transmural infarction in apical posterior segments,using a cut-off of 12.265,SR Peak G had a sensitivity of 100% and specificity of 80.0%,Both SC Peak G and SC Peak S had the best ability to identify transmural infarction in apical inferior segments,using a cut-off of -5.3200,SC Peak G and SC Peak S had a sensitivity of 100% and specificity of 88.8%.
     CONCLUSIONS①On the global level,GLS correlated significantly with global infarct size.Apical rotation rate is better than torsion angle and torsion rate in predicting infarct size.②On the segmental level , longitudinal strain ,circumferencial strain and radial strain discriminated between non-transmural and transmural infarction in different apical segment respectively.The discriminating ability was different for different strain indices,which may reflect the complexity of heterogeneity in myocardial fibers direction and transmural strain of different apical segments.
    
     OBJECTIVE Arterial switch operation (ASO) is the anatomical correction procedure of transposition of great arteries (d-TGA).Accurate preoperative identification of anomalous coronary artery anatomy pattern is critical for the success of ASO. We conducted the study to evaluate the diagnostic value on defining coronary artery anatomy by transthoracic echocardiography(TTE) and dual- source CT(DSCT),and to conclude how to improve the preoperative diagnostic accuracy of coronary artery anatomy by TTE.
     METHODS 164 patients underwent TTE before ASO. Diagnostic accuracy of TTE was evaluated using surgical diagnosis as a reference. 49 patients had TGA with intact ventricular septum (TGA/IVS),77 patients had TGA with ventricular septum defect(TGA/VSD),38 patients had double outlet right vetricle with TGA(DORV/TGA).Among 164 patients,there were 53 consecutive patients underwent both TTE and DSCT within 3 days before ASO. A blind study was performed using surgical diagnosis as a reference.
     RESULTS According to surgical diagnosis ,among 164 patents,there were 124 case(s75.61%) with normal coronary artery,and 40 case(s24.39%) with anomalous coronary arteries,The incidences of anomalous coronary artery were significantly higher in TGA/VSD combined with DORV/TGA than that in TGA/IVS ( 80.00%, 32 cases versus 20.00%,8 cases,P<0.05). There were 10 different anomalous coronary patterns found in this study.The incidence of the anatomical pattern with all coronary arteries originated from one coronary sinus was the highest(17 cases,42.5%).Among them, 1LCx1R ranked the first(25%), 2LCx2R ranked the second(17.5%).The incidence was significant different as compared with other anomalous patterns(P<0.05). According to surgical diagnosis, in the patient-based analysis, TTE diagnostic sensitivity, specificity, PPV, NPV in 164 patients were 90.0% , 95.2%, 85.7%及96.7% respectively. On a patient basis, DSCT and TTE had similar sensitivity ( 94.7% versus 94.7%, P>0.05) , specificity (94.1% versus 91.7%, P>0.05) , PPV ( 90.0% versus 85.7%, P>0.05) and NPV(96.7% versus 96.9% , P>0.05) for detection of coronary anatomical pattern in 53 cases.
     CONCLUSIONS 1. Coronary anatomical pattern in TGA could be accurately by TTE for most of cases. TTE and DSCT had similar diagnostic accuracy.TTE could be used as a preoperative diagnostive modality in stead of DSCT.There were 10 different types of anomalous coronary patterns found in this study ,which could benefit understanding the pathogenesis of anomalous coronary pattern in TGA
引文
1 . Austen WG, Edwards JE, Frye RL,et al. A reporting system on patients evaluated for coronary artery disease. Reportof the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation ,1975,51:5–40..
    2. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary Angiography by 64-row CT. N Engl J Med, 2008,359:2324–36.
    3.毕涛徐磊张兆琪等双源CT前瞻性心电门控序列扫描冠状动脉成像准确性的多中心研究,中华放射学杂志, 2009,43(7):708- 13
    4. Kim WY, Danias PG, St uber M , et al . Coronary magnetic resonance angiography for the detection of coronary stenoses . N Engl J Med ,2001 ,345 (26) :1863-9.
    5.Van Geuns RJ , Wieloposki PA , de Bruin HG, et al . Coronary angiography with breath-hold targeted volumes : preliminary clinical results. Radiology ,2000 ,217 (1) :270-7.
    6..Stuber M , Botnar RM , Danias PG, et al . Three-dimensional coronary MR angiography with real-time navigator correction :comparision of navigator location. Radiology ,1999 ,212 (2) :579- 87.
    7.Spuentrup E , Bornert P , Botnar RM , et al . Navigator-gated free-breathing three-dimensionnal Balanced fast field echo ( true FISP) coronary magnetic resonance angiography . Invest Radial ,2002 ,37 (11) :637- 42
    8. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn ResonMed, 2003, 50 (6) : 1223-8
    9.Sakuma H , Ichikawa Y , Suzawa N , et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology,2005, 237 (1) : 316-21
    10.Watanabe Y, Nagayama M, Amoh Y, et al. High-resolution selective three- dimensional magnetic resonance coronary angiography with navigator-echo technique: segment-by-segment evaluation of coronary artery stenosis. J Magn Reson Imaging,2002, 16 (3) : 238-46
    11.Bi X.Li D.Coronary arteries at 3.0 T:Contrast—enhanced magnetization- prepared three-dimensional breathhold MR angiography.J Magn Reson Imaging, 2005,21(2):133—9.
    12. Stuber M.Botnar RM,Fischer SE,et al. Preliminary report on in vivo coronary MRA at 3 Tesla in humans.Magn Rescn Med,2002,48:425-9.
    13.Nezafat R,stuber M,Ouwerkerk R,et al. Bl-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T . Magn Reson Med,2006,55(4):858-64.
    14. Deshpande VS,Shea SM,Li D.Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency.Magn Reson Med,2003,49(5):803-9.
    15.Bi X,Carr JC,Li D.Whole—heart coronary magnetic resonance angiography at 3 Tesh in 5 minutes with slow infusion of Gd-BOPTA,a high—relaxivity clinical cotrast agent.Magn Reson Med,2007,58(1):l-7.
    16. Sakuma H, Ichikawa Y, Chino S , et al .Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol ,2006,48(10):1946–50.
    17. Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol,2009,54:69–76.
    18. Dewey M, Teige F, Schnapauff D,et al. Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med,2006,145:407–15.
    19. Pouleur AC, le Polain de Waroux JB,Keefer J , et al . Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector rowcomputed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging,2008,1:114–21.
    20. Jahnke C, Paetsch I, Nehrke K, et al. Rapid and complete coronary arterial treevisualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J ,2005, 26:2313–9.
    21. Sakuma H, Ichikawa Y, Chino S , et al .Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol ,2006,48:1946–50
    22. Stuber M, Botnar RM, Fischer SE, et al. Preliminary report on in vivo coronary MRA at 3 Tesla in humans.Magn Reson Med ,2002,48:425–9.
    23. Gerber BL, Coche E, Pasquet A, et al. Coronary artery stenosis: direct comparison of four-section multi-detector row CT and 3D navigator MR imaging for detection—initial results. Radiology ,2005,234:98–108.
    24. Kefer J, Coche E, Pasquet A, et al. Head to head comparison of multislice coronary CT and 3D navigator MRI for the detection of coronary artery stenosis. J Am Coll Cardiol ,2005,46:92–100.
    25. Nehrke K, B?rnert P, Mazurkewitz P , et al .Freebreathing whole-heart coronary MR angiography on a clinical scanner in four minutes. J Magn Reson Imaging ,2006,23:752– 6.
    26. Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med, 2006,56:167–76.
    27.Hamdan A,Asbach P,Wellnhofer E,et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis.JACC Cardiovasc Imaging ,2011 ,4(1):50-61
    28 . Saraste M, Koskenvuo JW, Mikkola J , et al . Technical achievement: transthoracic Doppler echocardiography can be used to detect LAD restenosis after coronary angioplasty. Clin Physiol, 2000,6:428-33.
    29.Hozumi T, Akasaka T, Yoshida K , et al . Noninvasive estimation of coronary flow reserve by transthoracic Doppler echocardiography with high-frequency transducer. J Cardiol ,2001,37:43-50.
    30. Saraste M, Koskenvuo JW, Knuuti J , et al. Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable withpositron emission tomography. Clin Physiol,2001,1:114-22.
    31. Kenny A, Shapiro LM. Transthoracic high-frequency twodimensional echocardiography, Doppler and color flow mapping to determine anatomy and blood flow patterns in the distal left anterior descending coronary artery. Am J Cardiol ,1992,69:1265-8.
    32 .Saraste M, Koskenvuo JW, Mikkola J , et al . Technical achievement: transthoracic Doppler echocardiography can be used to detect LAD restenosis after coronary angioplasty. Clin Physiol, 2000,6:428-33.
    33. Hozumi T, Yoshida K, Akasaka T , et al. Value of acceleration flow and the pre-stenotic to stenotic coronary flow velocity ratio by transthoracic color Doppler echocardiography in noninvasive diagnosis of restenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol, 2000,35:164-8.
    34. Krzanowski M, Bodzon W, Brzostek T , et al .Value of transthoracic echocardiography for the detection of high-grade coronary artery stenosis: prospective evaluation in 50 consecutive patients scheduled for coronary angiography. J Am Soc Echocardiogr, 2000,13: 1091-9.
    35. Watanabe N, Akasaka T, Yamaura Y. Noninvasive detection of total occlusion of the left anterior descending coronary artery with transthoracic Doppler echocardiography. J Am Coll Cardiol, 2001,38:1328–32.
    36. Otsuka R, Watanabe H, Hirata K , et al .A novel technique to detect total occlusion in the right coronary artery using retrograde flow by transthoracic Doppler echocardiography. J Am Soc Echocardiogr, 2005,18:704–9.
    37 Boshchenko AA,Vrublevsky AV,Karpov, RS Transthoracic echocardiography in the detection of chronic total coronary artery occlusion Eur J Echocardio,2009,10(1):62-8
    38.Vegsundv?g J,Holte E, Wiseth R,Transthoracic echocardiography for imaging of the different coronary artery segments: a feasibility study Cardio Ultrasound,2009,7:58
    39. Saraste M, Vesalainen RK, Ylitalo A , et al . Transthoracic Doppler echocardiography as a noninvasive tool to assess coronary artery stenoses– acomparison with quantitative coronary angiography. J Am Soc Echocardiogr ,2005,18:679–85.
    40. Okoyama H, Sumimoto T, Hiasa G , et al .Usefulness of an echo-contrast agent for assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery with transthoracic Doppler scan echocardiography. Am Heart J ,2002,143:668-75.
    41. Caiati C,Zedda N,Cadeddu M,etal, Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast-enhanced transthoracic harmonic echo Doppler .Eur Heart J ,2009, 30(14): 1797–1806
    42. Voci P, Pizzuto F, Mariano E , et al . Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol, 2002,90:988–91.
    43. Matsumara Y, Hozumi T, Watanabe H , et al .Cut-off value of coronary flow velocity reserve by transthoracic Doppler echocardiography for diagnosis of significant left anterior descending artery stenosis in patients with coronary risk factors. Am J Cardiol,2003,92(12):1389-93.
    44. Ueno Y, Nakamura Y, Kinoshita M , et al .Noninvasive assessment of significant right coronary artery stenosis based on coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography. Echocardiography ,2003,20:495–501.
    45. Watanabe H, Hozumi T, Hirata K , et al .Noninvasive coronary flow velocity reserve measurement in the posterior descending coronary artery for detecting coronary stenosis in the right coronary artery using contrast-enhanced transthoracic Doppler echocardiography. Echocardiography ,2004,21:225–33.
    46. Takeuchi M, Ogawa K, Wake R , et al .Measurement of coronary flow velocity reserve in the posterior descending coronary artery by contrast-enhanced transthoracic Doppler echocardiography. J Am Soc Echocardiogr, 2004;17:21–7.
    1.Torrent-Guasp F , Kocica M,Como A,et a1.Towards new understanding of the heart structure and function.Eur J Cardiot hrac Surg,2005,1:191—201.
    2. Mirsky I,Krayenbuehl HP. The role of wall stress in the assessment of ventricular function.Herz,1981, 6(5):288-99
    3.Kim RJ,Fieno DS,Parrish TB,et a1.Relationship of MRI delayedcontrast enhancement to irreversible mjury,infarct age,and contractile function.Circulation,1999,100:1992—2002
    4.Flacke SJ,Fischer SE,Lorenz CH,et a1.Measllrement of the gadopentetate dimeglumine partition coefficient in human myocardiuin in vivo:normal distribution and elevation in acute and chronic infarction.Radiology,2001,218:703—710
    5.Fco TK,Wolff SD,Gupta SN,et a1.Enhanced viability imaging: Improved contrast in myocardial delayed enhancement using dual inversion time subtraction.Magn Reson Med, 2005,53:1484—1489
    6. Lloyd SG.Gupta H.Assessment of myocardiM viability by cardiovascular magnetic resonance.Echecardiography,2005,22: 179一193
    7. Kim RJ,Wu E,Rafael A,et al.The use of contrast—enhanced magnetic resonance imaging to identify reversible myocardial dysfunction .N Engl J Med,2000,343(20):1445—1453.
    8. Gutberlet M,Frohlich M,Mehl S,et al.Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization,Eur Radiol,2005,15(5):872-80.
    9. Burns RJ, Gibbons RJ, Yi Q,et al.The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol,2002,39:30–36
    10.Gibbons RJ, Valeti US, Araoz PA,et al.The quantification of infarct size. J Am Coll Cardiol,2004,44:1533–1542.
    11. Wu KC, Zerhouni EA, Judd RM,et al.Prognostic significance of microvascularobstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation.,1998,97:765–772.
    12. Kastrati A, Mehilli J, Dirschinger J,et al.Myocardial salvage after coronary stenting plus abciximab versus fibrinolysis plus abciximab in patients with acute myocardial infarction: a randomised trial. Lancet, 2002,359:920–925
    13. White HD, Van de Werf FJ. Thrombolysis for acute myocardial infarction. Circulation,1998,97:1632–1646.
    14. Sj?li B, ?rn S, Grenne B,et al.Diagnostic Capability and Reproducibility of Strain by Doppler and by Speckle Tracking in Patients With Acute Myocardial Infarction J A C C : C ardiovasc Imaging,2(1):24-33
    15. Zhang Y,Chan AK,Yu CM,et al.Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol ,2005 ,46(5):864-71
    16. Gjesdal O ,Hopp E,VARTDAL T,et al.Global longitudinal strain measured by twodimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease . Clinic Sci ,2007, 113:287–296
    17. Gjesdal O,Helle-Valle T, Hopp E,et al.Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a comprehensive tissue Doppler and speckle-tracking echocardiography study.Circ Cardiovasc imaging, 2008 ,1(3):189-96
    18. Munk K,Andersen NH,Nielsen SS,et al. Global longitudinal strain by speckle tracking for infarct size estimation.Eur J Echocardiogr,2011, 12(2):156-65
    19. Stanton T, Leano R, Marwick T. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging, 2009,2:356–364.
    20. Bertini M, Nucifora G, Marsan NA,et al.Left ventricular rotational mechanics in acute myocardial infarction and in chronic (ischemic and nonischemic) heart failure patients.Am J Cardiol ,2009,103:1506-12.
    21. Opdahl A,Helle-Valle T,Remme EW,et al.Apical rotation by speckle tracking echocardiography: a simplified bedside index of left ventricular twist. J Am SocEchocardiogr ,2008,21(10):1121-8
    22.Takeuchi M, Nishikage T, Nakai H,et al.The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr, 2007,20:36-44.
    23. Chan J,Hanekom L,Wong C,et al..Differentiation of Subendocardial and Transmural Infarction Using Two-Dimensional Strain Rate Imaging to Assess Short-Axis and Long-Axis Myocardial Function .JACC,2006,48(10):2026-33
    24. Roes SD, Mollema SA, Lamb HJ,et al.Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast enhanced magnetic resonance imaging. Am J Cardiol ,2009,104:312-7.
    25. Becker M, Hoffmann R, Kuhl HP,et al. Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmura lity in chronic myocardial infarction. Eur Heart J, 2006,27:2560-6.
    26. Becker M,Lenzen A,Ocklenburg C,et al,Myocardial deformation imaging based on ultrasonic pixel tracking to identify reversible myocardial dysfunction.JACC, 2008,51(15):1473-81
    27.Greenbaum RA, Ho SY, Gibson DG, ,et al,Left ventricular fibre architecture in man. Br Heart J, 1981,45:248–63.
    28. Torrent-Guasp F, Buckberg GD, Clemente C ,et al,The structure and function of the helical heart and itsbuttress wrapping. I. The normal macroscopic structure of the heart.Semin Thorac Cardiovasc Surg, 2001,13:301–19.
    29. Waldman LK, Fung YC, Covell JW. Transmural myocardial deformationin the canine left ventricle. Normal in vivo three-dimensionalfinite strains. Circ Res ,1985,57:152– 63.
    30. Rademakers FE, Rogers WJ, Guier WH, et al. Relation of regionalcross-fiber shortening to wall thickening in the intact heart. Threedimensionalstrain analysis by NMR tagging. Circulation ,1994,89:1174–82
    31.MacGowan GA, Shapiro EP, Azhari H, et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricleand in idiopathic dilated cardiomyopathy. Circulation,1997,96:535– 41.
    32. Waldman LK, Nosan D, Villarreal F ,et al.Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 1988,63:550–62...
    33. Hashimoto I, Li X, Hejmadi BA,et al.Myocardial strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue Doppler imaging. J Am Coll Cardiol ,2003,42:1574–83.
    34. Moore CC, Lugo-Olivieri CH, McVeigh ER,et al.Threedimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology ,2000,214:453–66.
    35. Derumeaux G, Loufoua J, Pontier G, ,et al.Tissue Doppler imaging differentiates transmural from nontransmural acute myocardial infarction after reperfusion therapy. Circulation ,2001,103:589–96.
    36. Garot J, Bluemke DA, Osman NF, et al. Transmural contractilereserve after reperfused myocardial infarction in dogs. J Am Coll Cardiol, 2000,36:2339–46
    37. Gallagher KP, Osakada G, Matsuzaki M,et al.Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol,1985,249:H241–8
    38. Nelson C, McCrohon J, Khafagi F,et al.Impact of scar thickness on the assessment of viability using dobutamine echocardiography and thallium single-photon emission computed tomography: a comparison with contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol ,2004,43:1248–56.
    39. Leitman M,Lysiansky M,Lysyansky P,et al. Circumferential and Longitudinal Strain in 3 Myocardial Layers in Normal Subjects and in Patients with Regional Left Ventricular Dysfunction. J Am Soc Echo, 2010,23:64-70.
    40. Hanekom L, Cho GY, Leano R,et al.Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J ,2007,28:1765–72.
    41. Roberts CS, Maclean D, Maroko P, et al. Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol, 1984,54:407–10.
    42. Cwajg JM, Cwajg E, Nagueh SF, et al. End-diastolic wall thickness as a predictorof recovery of function in myocardial hibernation: relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol ,2000,35:1152– 61
    43.Baer FM, Voth E, Schneider CA, et al. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation, 1995,91:1006–15.
    44. La Canna G, Rahimtoola SH, Visioli O, et al. Sensitivity, specificity, and predictive accuracies of non-invasive tests, singly and in combination, for diagnosis of hibernating myocardium. Eur Heart J ,2000,21: 1358–67.
    45. Cwajg JM, Cwajg E, Nagueh SF, et al. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation. J Am Coll Cardiol ,2000,5:1152– 61.
    46. Schinkel AFL, Bax JJ, Boersma E, et al. Assessment of residual myocardial viability in regions with chronic electrocardiographic Q-wave infarction. Am Heart J ,2002,144:865–9.
    1.Jatene AD,Fontes VF,Paulista PP,et al. Anatomic correction of transposition of the great vessels.Thorac Cardiovasc Surg,1976,72(3):364一370.
    2. Brian W , Nancy C , Roger B , et al.Selective timing for the arterial switchoperation.The Annals of Thoracic Surgery,2004,77(5):1691一1696.
    3. Pasquini L, Sanders SP, Parness IA , et al. Coronary echocardiography in 406 patients with d-loop transposition of the great arteries.J Am Coll Cardiol ,1994,24:763-8
    4.范祥明闰军刘迎龙等,冠状动脉变异对动脉调转手术的影响.中华医学杂志,2010,90(29):2062-2064
    5. Pretre R, Tamisier D, Bonhoeffer P , et al. Results of the arterial switch operation in neonates with transposed great arteries. Lancet, 2001,357:1826-30.
    6. Li J, Tulloh RM, Cook A,et al.Coronary arterial origins in transposition of the great arteries: factors that affect outcome; a morphological and clinical study. Heart ,2000,83:320-5.
    7. Pasquali SK, Hasselblad V, Li JS,et al.Coronary artery pattern and outcome of arterial switch operation for transposition of the great arteries: a meta-analysis. Circulation ,2002,106:2575-80.
    8. Legendre A, Losay J, Touchot-Kone A , et al. Coronary events after arterial switch operation for transposition of the great arteries. Circulation, 2003,108:II186-90.
    9. Gittenberger一de Groot AC,SauerU,Quaegebeur J. Aortic intramural coronary Artery in three hearts with transposition of the great arteries. J Thorac Cardiovas Surg,1986,91(4):566一571.
    10. Gremmels DB,Tacy TA,Brook MM,et al Accuracy of coronaryartery anatomy using two-dimensional echocardiography in d—transposition of great arteries using a two-reviewer method.J Am Soc Echocardiogr,2004,17:454—460.
    11.Ben Saad M,Rohnean A,Sigal-Cinqualbre A,et al. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol, 2009, 39:668–676
    12.Paul JF,Rohnean A,Elfassy E,et al.Radiation dose for thoracic and coronarystep-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol,2011,41(2):244-9
    13黄美蓉,陈树宝,陆欧伦.完全型大动脉转位冠状动脉解剖类型55例分析.中华心血管病杂志,2000,28(5):363-366.
    14刘迎龙闫军,吴信等,动脉调转术195例冠状动脉分型及疗效分析.解剖与临床,2009,14 (2):75-78.
    15徐志伟,苏肇杭,丁文祥.107例大动脉转换术的冠状动脉解剖类型和治疗结果.中华胸心血管外科杂志,2005,21(6):331-333.
    16 Jonas RA. Transposition of the great arteries. IN: Jonas RA. Comprehensive surgical management of congenital heart disease. London: Arnold, 2004:256-278.
    17 .Legendre A,Losay J,Touchot-Kone A,et a1.Coronary events after arterial switch operation for transposition of the great arteries.Circulation,2003,108 Suppl 1:II 186—90.
    18.胡盛寿王小启刘迎龙102例动脉调转术病儿的冠状动脉分型中华胸心外科杂志, 2007,23(4):220-223
    19 ..Bilal MS, Bakir I, Aydemir NA, et al. Two challenging translocation procedure for intramural cornary arteries in the setting of transposition of graet arteries. Congenit Heart Dis, 2008,3(5):352-4.
    20.Suzuki T. Modification of the arterial switch operation for transposition of the great arteries with complex coronary artery patterns. Gen Thorac Cardiovasc Surg, 2009,57(6):281-292.
    21.Pasquili SK, Hasselblad V, Li JS, et al. Coronary artery pattern and outcome of arterial switch operation for transposition of the great arteries: a meta-analysis. Circulation, 2002,106(20):2575-2580.
    1. Burns RJ, Gibbons RJ, Yi Q, et a1.The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol.,2002,39:30–36
    2..Gibbons RJ, Valeti US, Araoz PA, et a1. The quantification of infarct size. J Am Coll Cardiol, 2004,44:1533–1542
    3. Kastrati A, Mehilli J, Dirschinger J, et a1.Myocardial salvage after coronary stenting plus abciximab versus fibrinolysis plus abciximab in patients with acute myocardial infarction: a randomised trial. Lancet, 2002,359:920–925
    4. Kim RJ, Wu E, Rafael A, et a1. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med ,2000,343:1445–1453.
    5. Selvanayagam JB, Kardos A, Francis JM, et a1.Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation, 2004,110:1535–1541.
    6.Wellnhofer E, Olariu A, Klein C, et a1.Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation, 2004,109:2172–2174
    7.Wagner A, Mahrholdt H, Holly TA,et a1.Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet, 2003,361:374–379
    8.Shan KCG, Sivananthan M, Flamm SD. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation, 2004,109:1328–34..
    9.Flacke SJ,Fischer SE,Lorenz CH, et a1.Measllrement of the gadopentetate dimeglumine partition coefficient in human myocardiuin in vivo:normal distribution and elevation in acute and chronic infarction.Radiology,2001,218:703—710
    10. Fco TK,Wolff SD,Gupta SN,et a1.Enhanced viability imaging: Improved contrast in myocardial delayed enhancement using dual inversion time subtraction.Magn Reson Med,2005,53:1484—1489
    11. Lee VS, Resnick D, Tiu SS, et a1. MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with (99m)Tc sestamibi. Radiology ,2004,230:191–197..
    12.Migrino RQ,Zhu X,Pajewski N,et a1.Assessment of segmental myocardial viability using regiunal 2-dimensional strain echocerdingmphy . J Am Soc Echocardiogr,2007,20(4):342-351.
    13.Moller JE, Hillis GS, Oh JK, et a1. Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am Heart J,2006,151:419–425
    14. Sj?li B, ?rn S, Grenne B,et al.Diagnostic Capability and Reproducibility of Strain by Doppler and by Speckle Tracking in Patients with acute myocardial infarction J A C C : Cardiovasc Imaging,2(1):24-33
    15. Zhang Y,Chan AK,Yu CM,etal.Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol, 2005, 46(5):864-71
    16. Gjesdal O ,Hopp E,Vartdal T,et al.Global longitudinal strain measured by two dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease . Clinic Sci, 2007, 113, 287–296
    17. Gjesdal O,Helle-Valle T, Hopp E,et al.Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a comprehensive tissue Doppler and speckle-tracking echocardiography study.Circ Cardiovasc imaging ,2008 ,1(3),189-96
    18. Munk K,Andersen NH,Nielsen SS,et al. Global longitudinal strain by speckle tracking for infarct size estimation.Eur J Echocardiogr,2011 ,12(2):156-65
    19. Stanton T, Leano R, Marwick T. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging,2009,2:356–364.
    20. Bertini M, Nucifora G, Marsan NA , et al. Left ventricular rotational mechanics in acute myocardial infarction and in chronic (ischemic and nonischemic) heart failure patients.Am J Cardiol ,2009,103:1506-12.
    21. Opdahl A,Helle-Valle T,Remme EW,et al.Apical rotation by speckle tracking echocardiography: a simplified bedside index of left ventricular twist. J Am Soc Echocardiogr,2008,21(10):1121-8
    22.Takeuchi M, Nishikage T, Nakai H, et a1. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr, 2007,20:36-44.
    23. Chan J,Hanekom L,Wong C,et al.Differentiation of Subendocardial and Transmural Infarction Using Two-Dimensional Strain Rate Imaging to Assess Short-Axis and Long-Axis Myocardial Function.JACC,2006,48(10):2026-33
    24. Roes SD, Mollema SA, Lamb HJ, et a1. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast enhanced magnetic resonance imaging. Am J Cardiol, 2009,104:312-7.
    25. Becker M, Hoffmann R, Kuhl HP , et al.Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction. Eur Heart J ,2006,27:2560-6.
    26. Becker M,Lenzen A,Ocklenburg C,et al,Myocardial Deformation Imaging Based on Ultrasonic Pixel Tracking to Identify Reversible Myocardial Dysfunction JACC.,2008,51(15):1473-81
    27.Greenbaum RA, Ho SY, Gibson DG,et al. Left ventricular fibre architecture in man. Br Heart J, 1981,45:248–63.
    28. Torrent-Guasp F, Buckberg GD, Clemente C,et al.The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg, 2001,13:301–19.
    29. Waldman LK, Fung YC, Covell JW. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res ,1985;57:152– 63.
    30. Rademakers FE, Rogers WJ, Guier WH, et al. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Threedimensional strain analysis by NMR tagging. Circulation ,1994,89: 1174–82
    31.MacGowan GA, Shapiro EP, Azhari H, et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation,1997,96:535– 41.
    32. Waldman LK, Nosan D, Villarreal F , et al.Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res ,1988,63:550–62...
    33. Hashimoto I, Li X, Hejmadi BA,et al.Myocardial strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue Doppler imaging. J Am Coll Cardiol, 2003,42:1574–83.
    34. Moore CC, Lugo-Olivieri CH, McVeigh ER,et al.Three dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology ,2000,214:453–66.
    35. Derumeaux G, Loufoua J, Pontier G,et al.Tissue Doppler imaging differentiates transmural from nontransmural acute myocardial infarction after reperfusion therapy. Circulation ,2001,103:589–96.
    36. Garot J, Bluemke DA, Osman NF, et al. Transmural contractile reserve after reperfused myocardial infarction in dogs. J Am Coll Cardiol, 2000,36:2339–46
    37. Gallagher KP, Osakada G, Matsuzaki M,et al.Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol, 1985,249:H241–8
    38. Nelson C, McCrohon J, Khafagi F,et al.Impact of scar thickness on the assessment of viability using dobutamine echocardiography and thallium single-photon emission computed tomography: a comparison with contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol ,2004,43:1248–56.
    39. Leitman M,Lysiansky M,Lysyansky P. ,et al.Circumferential and Longitudinal Strain in 3 Myocardial Layers in Normal Subjects and in Patients with Regional Left Ventricular Dysfunction. J Am Soc Echo ,2010,23:64-70.
    40.Costa, KD., Takayama, Y., McCulloch, AD. ,et al.Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol., 1999,276 (2 Pt 2):H595–H607
    41.LeGrice, I.J., Takayama, Y. and Covell, JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. ,1995 ,77: 182–193
    42. Lima JAC, Jeremy R, Guier W,et al.Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol, 1993,21:1741–1751
    43.Song ZZ. Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction. Eur Heart J, 2007 ,28(9):1173-4; author reply 1174.
    44.Song ZZ. ,Global longitudinal strain by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease..Clin Sci,2007, 113(9):393:author reply 394-5
    45. Helle-Valle T,Remme EW,Lyseggen E,et al.Clinical assessment of left ventricular rotation and strain: a novel approach for quantification of function in infarcted myocardium and its border zones. Am J Physiol Heart Circ Physiol , 2009,297: H257–H267,
    46. Tsai WC,Liu YW,Huang YY,et al.Diagnostic value of segmental longitudinal strain by automated function Imaging in coronary artery disease without left ventricular dysfunction. J Am Soc Echocardiogr ,2010,23:1183-9.
    47.Iwakura K,Okamura A,Koyama Y,et al.Automated Assessment of Myocardial Viability After Acute Myocardial Infarction by Global Longitudinal Peak Strain on Low-Dose Dobutamine Stress Echocardiography.Cir J,2010,74:2158-2165 :
    48. Chen X , Xie H , Erkamp R , et a1 . 3-D correlation-based speckle tracklng.Ultrasonic Imaging,2005,27:2l一36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700