中等强度耐力训练对心肌肥大中相关信号通路分子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中等强度耐力训练诱导的运动性心肌肥大虽然体现了人体对系统训练的生理适应,但仍存在一些病理性的改变,具有潜在的疾病和猝死的风险。那么中等强度耐力训练诱导的运动性心肌肥大其性质究竟如何;此时心脏生理性肥大的典型信号通路(PI3K/Akt/mTOR信号通路)、心脏病理性肥大的典型信号通路(以心脏血管紧张素Ⅱ及其1型受体为代表的Gq信号通路)以及其它相关信号通路中各信号分子的表达究竟是如何变化的,各相关信号通路在此时致肥大信号网络中的具体作用如何,目前仍未见系统、明确的研究报道。
     目的:通过8周中等强度耐力训练,根据大鼠心脏损伤标志物(心肌肌钙蛋白T、心肌肌钙蛋白Ⅰ和脑钠肽)的表达变化,结合组织学表型,判断中等强度耐力训练诱导的耐力型运动心脏性质;通过心脏局部血管紧张素Ⅱ及其1型受体mRNA表达的变化情况,结合我们前期的研究成果,明确这条心脏病理性肥大的代表性信号通路此时的变化机制,阐明心脏局部血管紧张素Ⅱ及其1型受体的变化对此种心肌肥大的具体作用;通过心脏PI3K/Akt/mTOR信号通路中各信号分子表达的变化情况,明确这条心脏生理性肥大的代表性信号通路此时的具体变化情况,从整体上阐明该信号通路的变化机制。进而明确中等强度耐力训练诱导的心肌肥大时肥大信号网络中各信号通路分子所扮演的角色,为运动心脏的信号通路和内分泌研究提供更新的形态和生理生化理论依据。对科学制订运动训练计划,加强运动员心脏的保护和监制,制订心血管疾病的运动处方,提高体育人口心脏健康,积极防治心血管疾病也具有一定的参考价值。
     方法:(1)60只雄性SD大鼠(3月龄)随机分为对照组(C组,n=30)和中等强度耐力训练组(E组,n=30),每组包括形态学检测亚组(C1/E1组,n=10)、ELISA检测亚组(C2/E2组,n=10)和实时荧光定量PCR检测亚组(C3/E3组,n=10)。E组大鼠通过8周中等强度的跑台耐力训练,建立大鼠耐力型运动心脏模型。训练计划按照Fenning的训练方案,结合Wisloff对最大摄氧量的控制方法,相对运动强度大约维持在60%-65%VO2max。(2)通过实时荧光定量PCR技术检测C3和E3组大鼠心脏PI3K/Akt/mTOR信号通路中各信号分子PI3K、PDK1、Akt、mTOR、p70S6K、eIF4E和AMPK以及Gq信号通路(以局部血管紧张素Ⅱ及其1型受体为代表)的mRNA表达。(3)C2和E2组大鼠心尖部取血离心后,通过ELISA法检测大鼠血清心肌肌钙蛋白T、心肌肌钙蛋白Ⅰ和脑钠肽表达的变化;取出大鼠心脏匀浆后,通过ELISA法检测大鼠心脏Akt和mTOR蛋白的表达。(4)使用HE染色观察C1和El组大鼠心脏组织形态的一般特征。(5)通过免疫组织化学法结合计算机图像处理技术测定C1和E1组大鼠心脏Akt、mTOR、p70S6K和eIF4E的免疫反应阳性面积和光密度。
     结果:8周中等强度耐力训练后,(1)E1和E2组大鼠较C1组和C2组大鼠,体重发生显著性下降,心脏质量下降,但心肌细胞发生肥大,心系数显著增加。(2)E3组大鼠心脏局部血管紧张素Ⅱ的mRNA表达显著增加,而其1型受体的mRNA表达显著下调;PI3K、PDK1、Akt和AMPK的mRNA表达未见显著增加,mTOR、p70S6K和eIF4E的mRNA表达显著增加。(3)E2组大鼠血清心肌肌钙蛋白T、血清心肌肌钙蛋白Ⅰ、血清BNP和心脏Akt蛋白的含量未发生显著性变化,心脏mTOR的蛋白表达显著增加。(4)E1组大鼠心脏组织HE染色未见病理性改变。(5)心脏Akt蛋白免疫反应阳性面积和光密度未见显著增加;心脏mTOR蛋白、心脏p70S6K蛋白和心脏eIF4E蛋白免疫阳性面积和光密度显著增加。
     结论:(1)8周中等强度跑台耐力训练可以建立耐力型运动心脏动物模型,为研究耐力训练所致的心肌肥大提供实验基础。耐力型运动心脏重塑后的形态机能特征主要表现在:心肌细胞肥大,心系数增加,心脏泵血功能提高。(2)8周中等强度跑台耐力训练后心肌肌钙蛋白含量未见显著性增高,表明心肌细胞未发生不可逆的坏死, BNP表达未发生显著性变化表明心功未发生恶化,未出现向病理性心肌肥大乃至慢性心衰的发展。(3)8周中等强度跑台耐力训练后,心肌细胞的AT1R的mRNA表达下调,使心脏局部AngⅡ的促细胞增长作用减弱,启动心肌细胞的保护性调节作用,避免心肌过度肥大而产生病理性改变。使心脏局部AngⅡ收缩冠状血管的作用减弱,增加冠状血管血流量,从而保证心脏在运动中的能量代谢需求。说明受体数量及(或)亲和力的变化才是生理性心肌肥大向病理性心肌肥大发展的关键因素,AngⅡ本身数量的变化并不能反映心肌肥大的性质。表明在中等强度耐力训练所致的生理性心肌肥大信号通路网中,AngⅡ/AT1R信号通路不起主要作用。(4)Akt与mTOR之间并不只是一种简单的上下游关系,在心肌细胞处于正常的生理状况下,Akt应是mTOR的上游正性调节因子,而在耐力训练这种特殊的刺激存在时,这种关系受到抑制,运动刺激可直接激活或通过其它途径激活mTOR及其下游因子。(5)8周中等强度的耐力训练后,大鼠心脏PI3K/PDK1/Akt信号通路未被激活或处于一种不完全激活状态。中等强度耐力训练导致的耐力型运动心脏的肥大效应主要是由mTOR/p70S6K/eIF4E信号通路完成的。与正常生理发育导致的心肌肥大不同,PI3K/PDK1/Akt信号通路中的各信号分子并未被激活,表明中等强度耐力训练所致的心脏“生理性肥大”与正常生理发育所致的心脏“生理性肥大”在信号通路的特征上存在差异。
In recent years, using the physical activity to prevent and heal the cardiovascular disease becomes a research hotspot. It is reported although there are many positive factors of the cardiac hypertrophy induced by the moderate-intensity endurance exercise; the athlete will still be arrhythmia, cardiac conduction disorders and so on. So the cardiac hypertrophy induced by the moderate-intensity endurance exercise should be physiological cardiac hypertrophy or pathological cardiac hypertrophy; the expression of the representative signaling pathway of physiological cardiac hypertrophy:PI3K/Akt/mTOR signaling pathway, AngⅡand AT1R signaling pathway and other related signaling molecules also has not been reported systematically and clearly.
     Objective:Using the 8 weeks of moderate-intensity treadmill endurance training, to build a cardiac hypertrophy model of rats. On this basis:According to the expression change of cardiac injury markers (cardiac troponin T, cardiac troponin I and BNP), combined with the histological phenotype, to determine the character of the cardiac hypertrophy induced by moderate-intensity endurance exercise. By the mRNA expression changes of the heart local AngⅡand AT1R, combined with our previous study, to determine whether this representative signaling pathway of pathological cardiac hypertrophy be activated, and the effect of this signaling pathway in cardiac hypertrophy at this time. We want to discuss the effect of moderate-intensity endurance exercise on the expression of cardiac PI3K/Akt/mTOR signaling pathway, clarify the mechanism of the signaling pathway specific changes. So we can determine the character of the cardiac hypertrophy induced by moderate-intensity endurance and provide the morphology and biochemistry theory for the athlete's heart endocrine and signaling pathway research. Also, we can provide the newer theory and experiment foundation for optimal sports program, effective prevention of cardiac injury, heart health promotion, and exercise prescription for cardiovascular disease.
     Methods:(1) Using the 8 weeks of moderate-intensity treadmill endurance training, to build a cardiac hypertrophy model of rats. Endurance training programs is accordant with Fenning, combined with the maximum oxygen uptake control method of Wisl?ff, and the relative intensity remain at about 60%-65% VO 2max.(2) Using the real-time quantitative PCR method to test the mRNA expression of PI3K, PDK1, Akt, mTOR, p70S6K, eIF4E, AMPK, AngⅡand AT1R.(3) After anesthetized, removed the blood and heart, testing the levels of serum cardiac troponin T, cardiac troponin I, BNP, cardiac Akt and mTOR by ELISA method. (4) Using the immunohistochemistry combined with computer image processing technology measured the immune response positive area and optical density of Akt, mTOR, p70S6K and eIF4E. (5) Using the HE stain to observe the cardiac morphology.
     Results:After the cardiac hypertrophy induced by the moderate-intensity endurance exercise, heart function was significantly improved, the levels of serum cardiac troponin T, cardiac troponin I and BNP had not changed significantly; After the moderate-intensity endurance exercise, the mRNA expression of heart local AngⅡwas significantly increased, while AT1R was significantly reduced; After the moderate-intensity endurance exercise, the mRNA expression of PI3K, PDK1, Akt and AMPK were not significantly increased, by using immunohistochemistry combined with computer image processing technology, Akt immune-positive area and optical density were not significantly enhanced, and the immune response did not occur in the cell membrane, the Akt protein content was not significantly increased by ELISA testing. After the moderate-intensity endurance exercise, the mRNA expression of mTOR, p70S6K and eIF4E was increased significantly; by using immunohistochemistry combined with computer image processing technology, the mTOR, p70S6K and eIF4E immune-positive area and optical density were significantly enhanced; the mTOR protein content was significantly increased by ELISA testing.
     Conclusion:The 8 weeks moderate-intensity treadmill endurance exercise can build an animal cardiac hypertrophy model to provide an experimental basis for studying the athlete's heart; After the moderate-intensity treadmill endurance training, the serum cardiac troponin slightly elevated, but this could not show the myocardial cell necrosis, and the reason of the routine increase release after exercise may be:after cardiac hypertrophy, cardiac troponin synthesis increased, and cardiac function demand increased. BNP level did not change prompted that the cardiac function did not deteriorating, did not trend to pathological cardiac hypertrophy even the chronic heart failure and other cardiac disease; After the 8 weeks of moderate-intensity treadmill endurance training, the expression of AT1R decreased, so weakened the effect of promoting cell growth by local AngⅡ, then it started the regulation mechanism to prevent cardiac hypertrophy trend to pathological changes. This results suggested that the receptor level and (or) affinity changes was the key factor in the tendency of physiological cardiac hypertrophy to pathological cardiac hypertrophy. The AngⅡlevel and (or) affinity changes did not reflect the character of cardiac hypertrophy. It also shows that the AngⅡ/AT1R signaling pathway is not the key role in the physiological cardiac hypertrophy signaling network, which is induced by endurance training, the key signaling pathway is mTOR signaling pathway. Different With pure physiological cardiac hypertrophy, the PI3K/Akt signaling pathway was not activated, suggested that there are differences between exercise-induced "physiological hypertrophy" and simple "physiological hypertrophy".
引文
[1] Kaul S, Bolger AF, Herrington D, et al. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College of Cardiology Foundation [J].Circulation. 2010,121(16):1868-77.
    [2] McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure [JJ.CIin Exp Pharmacol Physiol, 2007, 34(4):255-62.
    [3] Kociol RD, Pang PS, Gheorghiade M, et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications [J]. J Am Coll Cardiol. 2010, 56(14): 1071-8.
    [4] Palazzuoli A, Gallotta M, Quatrini I, et al. Natriuretic peptides (BNP and NT-proBNP): measurement and relevance in heart failure [J]. Vase Health Risk Manag. 2010; 6:411-8.
    [5] Rajani R, Rimington H, Chambers JB. Treadmill exercise in apparently asymptomatic patients with moderate or severe aortic stenosis: relationship between cardiac index and revealed symptoms [J]. Heart. 2010,96(9):689-95.
    [6] Scott JM, Esch BT, Haykowsky MJ, et al. Effects of high intensity exercise on biventricular function assessed by cardiac magnetic resonance imaging in endurance trained and normally active individuals [J]. Am J Cardiol. 2010,106(2):278-83.
    [5] 孔灵芝,胡盛寿.中国心血管病报告2006[R].北京:中国大百科全书出版社,2008.10-41.
    [8] Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration [J]. Cell 2003; 114:763-776.
    [9] Meerson FZ. The failing heart, adaptation and de-adaptation [M]. New York: Raven, 1983.
    [10] Dorn GW 2nd. The fuzzy logic of physiological cardiac hypertrophy [J]. Hypertension. 2007,49(5):962-70
    [11] Richey PA, Brown SP. Pathological versus physiological left ventricular hypertrophy: a review [J]. J Sports Sci. 1998,16(2): 129-41.
    [12] Pluim BM, Zwinderman AH, van der Laarse A, et al. The athlete's heart. A meta-analysis of cardiac structure and function [J]. Circulation. 2000, 101(3):336-44.
    [13] Lauschke J, Maisch B. Athlete's heart or hypertrophic cardiomyopathy? [JJ.CIin Res Cardiol 2009, 98(2):80-8.
    [14] Foster FM, Traer CJ, Abraham SM, et al. The phosphoinositide (PI) 3-kinase family [J]. J Cell Sci. 2003, 116(Pt 15):3037-40.
    [15] Hawkins PT, Anderson KE, Davidson K, et al. Signaling through Class I PI3Ks in mammalian cells [J]. Biochem Soc Trans. 2006,34(Pt 5):647-62.
    [16] Benistant C, Chapuis H, Roche S. A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-pll0alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha-pll0beta) in de novo DNA synthesis of human colon carcinoma cells [J]. Oncogene. 2000, 19(44):5083-90.
    [17] Zvelebil MJ, MacDougall L, Leevers S, et al. Structural and functional diversity of phosphoinositide 3-kinases [J]. Philos Trans R Soc Lond B Biol Sci. 1996, 351(1336):217-23.
    [18] Djordjevic S and Driscoll PC. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases [J]. Trends Biochem Sci. 2002,27(8):426-32.
    [19] Wymann MP and Pirola L. Structure and function of phosphoinositide 3-kinases [J]. Biochim Biophys Acta. 1998, 1436(1-2): 127-50.
    [20] Fry MJ. Phosphoinositide 3-kinase signaling in breast cancer: how big a role might it play? [J]. Breast Cancer Res. 2001; 3(5):304-12.
    [21] Roggo L, Bernard V, Kovacs AL, et al. Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane [J]. EMBO J. 2002,21(7): 1673-83.
    [22] Hirsch E, Costa C, Ciraolo E. Phosphoinositide 3-kinases as a common platform for multi-hormone signaling [J]. J Endocrinol. 2007, 194(2):243-56.
    [23] Macrez N, Mironneau C, Carricaburu V, et al. Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca(2+) channels [J]. Circ Res. 2001, 89(8):692-9.
    [24] Maffucci T, Brancaccio A, Piccolo E, et al. Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation [J]. EMBO J. 2003, 22(16).4178-89.
    [25] Kanamori Y, Uegaki K, Kigawa J, et al. PTEN expression in endometrial cancer and the prognosis [J]. Nippon Rinsho. 2004, Suppl 10:406-9.
    [26] Li DC, Li W, Zhou QX, et al. Molecular cloning and characterization of a putative protein kinase gene from the thermophilic fungus Thermomyces lanuginosus [J]. DNA Seq. 2007,18(6):423-33.
    [27] Jackson SG, Zhang Y, Haslam RJ et al. Structural analysis of the carboxy terminal PH domain of pleckstrin bound to D-myo-inositol 1, 2, 3, 5, 6-pentakisphosphate [J]. BMC Struct Biol. 2007,22(7):80.
    [28] Hurley JH. Membrane binding domains [J]. Biochim Biophys Acta. 2006, 1761(8):805-l 1.
    [29] Li DC, Li W, Zhou QX, et al. Molecular cloning and characterization of a putative protein kinase gene from the thermophilic fungus Thermomyces lanuginosus [J]. DNA Seq. 2007, 18(6):423-33.
    [30] Mora A, Komander D, van Aalten DM, et al. PDKl, the master regulator of AGC kinase signal transduction [J]. Semin Cell Dev Biol. 2004, 15(2): 161-70.
    [31] Scheid MP, Parsons M, Woodgett JR., et al. Phosphoinositide-dependent phosphorylation of PDKl regulates nuclear translocation [J]. Mol Cell Biol. 2005,25(6):2347-63.
    [32] Kewei Ma, Samuel M. Cheung, Aaron J. et al. PI(3,4,5)P3 and P1(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; P1(3,4)P2 levels determine PKB activity[J]. Cellular Signalling.2008, 20(4): 684-694.
    [33] Haga S, Ozaki M, Inoue H. The survival pathways phosphatidylinositol-3 kinase (P13-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation [J]. Hepatology. 2009,49(l):204-14.
    [34] Milburn CC, Deak M, Kelly SM, et al. Binding of phosphatidylinositol 3,4,5-trisphosphate to the Pleckstrin Homology domain of protein kinase B induces a conformational change[J]. BiochemJ. 2003, 375:531-8.
    [35] Biondi RM, Kieloch A, Currie RA et al. The PIF-binding pocket in PDKl is essential for activation of S6K and SGK, but not PKB [J]. EMBO J. 2001,20(16):4380-90.
    [36] Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival [J].J Cell Mol Med. 2005, 9(1):59-71.
    [37] Scheid MP and Woodgett JR. Unraveling the activation mechanisms of protein kinase B/Akt [J]. FEBS Lett. 2003,546(1): 108-12.
    [38] Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT-a major therapeutic target [J]. Biochim Biophys Acta. 2004, 1697(l-2):3-16.
    [39] Balendran A, Casamayor A, Deak M, et al. PDKl acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J].Curr Biol. 1999,9(8):393-404.
    [40] Hill MM, Feng J, Hemmings BA. Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDKl [J]. Curr Biol. 2002,12(14):1251-5.
    [41] Conus NM, Hannan KM, Cristiano BE, et al. Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase [J]. J Biol Chem. 2002, 277(41):38021-8.
    [42] Foster FM, Traer CJ, Abraham SM, et al. The phosphoinositide (PI) 3-kinase family [J]. J Cell Sci. 2003, 116(Pt 15):3037-40.
    [43] Zhou BP, Liao Y, Xia W, et al. Cytoplasmic localization of p21Cipl/WAFl by Akt-induced phosphorylation in HER-2/neu-overexpressing cells [J]. Nat Cell Biol. 2001, 3(3):245-52.
    [44] Andreu EJ, Lled6 E, Poch E, et al.BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kipl degradation and proliferation of chronic myelogenous leukemia cells [J]. Cancer Res. 2005, 65(8):3264-72.
    [45] Yin H, Lowery M, Glass J. In prostate cancer C/EBPalpha promotes cell growth by the loss of interactions with CDK2, CDK4, and E2F and by activation of AFCT [J]. Prostate. 2009, 69(9): 1001-16.
    [46] Kennedy SG, Wagner AJ, Conzen SD, et al. The PI3-kinase/Akt signaling pathway delivers an anti-apoptotic signal [J]. Genes Dev. 1997,11(6):701-13.
    [47] Burgering BM, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty [J]. J Leukoc Biol. 2003,73(6):689-701.
    [48] Cho H, Mu J, Kim JK, Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta) [J].Science. 2001,292(5522): 1728-31.
    [49] Hajduch E, Litherland GJ, Hundal HS. Protein kinase B (PKB/Akt)~a key regulator of glucose transport? [J].FEBS Lett. 2001,492(3): 199-203.
    [50] Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony [J]. J Biol Chem. 2010,285(19):14071-7.
    [51] Hay N, Sonenberg N. Upstream and downstream of mTOR [J].Genes Dev. 2004, 18(16): 1926-45.
    [52] Schmelzle T, Hall MN. TOR, a central controller of cell growth [J].Cell. 2000, 103(2):253-62.
    [53] Takahashi T, Hara K, Inoue H, et al. Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro [J].Genes Cells. 2000, (9):765-75.
    [54] Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes [J].Biochem Soc Trans. 2009, 37(Pt 1):217-22.
    [55] Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR [J].Mol Ceil. 2003, 11(4):895-904.
    [56] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism [J]. Cell. 2006,124(3):471-84.
    [57] Kimball SR, Jefferson LS. Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin [J].Curr Opin Clin Nutr Metab Care. 2004, 7(l):39-44.
    [58] Xu G, Kwon G, Cruz WS, et al. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells [J]. Diabetes. 2001,50(2):353-60.
    [59] Gleason CE, Lu D, Witters LA, et al. The role of AMPK and mTOR in nutrient sensing in pancreatic beta-cells [J].J Biol Chem. 2007,282(14): 10341-51.
    [60] Brunn GJ, Williams J, Sabers C, et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002 [J].EMBO J. 1996,15(19):5256-67.
    [61] Kroczynska B, Kaur S, Platanias LC. Growth suppressive cytokines and the AKT/mTOR pathway [J].Cytokine. 2009,48(l-2):138-43.
    [62] Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling [JJ.Nat Cell Biol. 2002,4(9):648-57.
    [63] Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes [J].Biochem Soc Trans. 2009,37(Pt 1):217-22.
    [64] Niedzwiecka A, Marcotrigiano J, Stepinski J, et al. Biophysical studies of elF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins [J].J Mol Biol. 2002 , 319(3):6l5-35.
    [65] Long X, Spycher C, Han ZS, et al. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation [J].Curr Biol. 2002, 12(17): 1448-61.
    [66] Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin [J].Mol Cell Biol. 2004, 24(7):2986-97.
    [67] Proud, CG. p70S6 kinase: an enigma with variations [J].Trends Biochem Sci. 1996,
    [68] Flotow, H. and Thomas, G. Substrate recognition determinantsof the mitogen-activated 70K S6 kinase from rat liver [J].J. Biol. Chem. 1992,267:3074-3078.
    [69] Ruvinsky I. and Meyuhas O.Ribosomal protein S6 phosphorylation: from protein synthesis to cell size [J]. Trends Biochem Sci. 2006,31(6):342-8.
    [70] Shah OJ, Kimball SR, Jefferson LS. Among translational effectors, p70S6k is uniquely sensitive to inhibition by glucocorticoids [J]. Biochem J, 2000,347(Pt 2):389-97.
    [71] Wang X, Li W, Williams M, et al. Regulation of elongation factor 2 kinase by p90 (RSK1) and p70 S6 kinase [J]. EMBO J. 2001, 20(16):4370-9.
    [72] Shah OJ, Ghosh S, Hunter T, et al. Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2 [J]. J Biol Chem. 2003, 278(18):16433-42.
    [73] Tsygankova OM, Feshchenko E, Klein PS, et al. Thyroid-stimulating hormone/cAMP and glycogen synthase kinase 3 beta elicit opposing effects on Rap 1 GAP stability. [J]. J Biol Chem. 2004, 279(7):5501-7.
    [74] Berven LA, Crouch MF. Cellular function of p70S6K: a role in regulating cell motility [JJ.Immunol Cell Biol. 2000,78(4):447-51.
    [75] Brunn GJ, Williams J, Sabers C, et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002[J].EMBOJ. 1996, 15(19):5256-67.
    [76] Mahalingam M, Templeton DJ. Constitutive activation of S6 kinase by deletion of amino-terminal autoinhibitory and rapamycin sensitivity domains [J].Mol Cell Biol. 1996, (l):405-13.
    [77] Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains [JJ.Science. 1988, 241(4861):42-52.
    [78] Xia Y, Wen HY, Young ME, et al. Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine [J].J Biol Chem. 2003,278(15): 13143-50.
    [79] Bhavesh J., Amy C. and Rosemary J. Characterization of mammalian eIF4E-family members [J]. Eur. J. Biochem. 2004,271(11):2189-203.
    [80] Rhoads RE. eIF4E: new family members, new binding partners, new roles [J].J Biol Chem. 2009, 19;284(25):16711-5.
    
    [81] Nahum S. and Anne CG. The mRNA 5' cap-binding protein elF4E and control of cell growth [J]. Cell regulation. 1996,268-275.
    [82] Von der Haar T, Gross JD, Wagner G, et al. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression [J].Nat Struct Mol Biol. 2004,1 l(6):503-ll.
    [83] Goodfellow IG, Roberts LO. Eukaryotic initiation factor 4E [J]. Int J Biochem Cell Biol. 2008,40(12):2675-80.
    [84] Pestova, TV, Lorsch, JR, Hellen, C. The mechanism of translation initiation in eukaryotes. In Translational control in biology and medicine [J]. Cold Spring Harbor Laboratory Press. 2007, 87-128.
    [85] De Benedetti A, Graff JR. eIF4E expression and its role in malignancies and metastases [J].Oncogene. 2004, 19; 23(18):3189-99.
    [86] Culjkovic B, Topisirovic I, Borden KL. Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor eIF4E [J]. Cell Cycle. 2007,6(l):65-9.
    [87] Lai HK, Borden KL. The promyelocytic leukemia (PML) protein suppresses cyclin Dl protein production by altering the nuclear cytoplasmic distribution of cyclin Dl mRNA [J].Oncogene. 2000, 19(13): 1623-34.
    [88] Bonneau AM, Sonenberg N. Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis [J].J Biol Chem. 1987,262(23):11134-9.
    [89] Klann, E. and Richter, JD. Translational control of synaptic plasticity and learning and memory. In Translational control in biology and medicine [J]. Cold Spring Harbor Laboratory Press. 2007, 485-506.
    [90] Rosenwald IB. The role of translation in neoplastic transformation from a pathologist's point of view [J]. Oncogene, 2004, 23 (18):3230-47.
    [91] Li S, Takasu T, Perlman DM, et al. Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release [J].J Biol Chem. 2003 , 278(5):3015-22.
    [92] Scheper GC, Proud CG. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? [J]. Eur J Biochem. 2002, 269(22):5350-9.
    [93] Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: A novel two-step mechanism [J]. Genes Dev. 1999, 13 (11): 1422-37.
    [94] Wackerhage H, Rennie MJ. How nutrition and exercise maintain the human musculoskeletal mass [J]. J Anat. 2006, 208(4):451 -8.
    [95] Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1 alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation [J]. FASEB J. 2005, 19(7):786-8.
    [96] Owen KL, Pretorius L, McMullen JR. The protective effects of exercise and phosphoinositide 3-kinase (pi lOalpha) in the failing heart [J]. Clin Sci (Lond). 2009, 116(5):365-75.
    [97] Sakamoto K, Hirshaman M F, Aschenbach W. G.et al. Contraction regulation of Akt in rat skeletal muscle [J]. J Biol Chem, 2002,27:11910-11917.
    [98] Perez AC, Cabral de Oliveira AC, Estevez E, et al. Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats [J]. Comp Biochem Physiol C Toxicol Pharmacol. 2003, 134(2): 199-206.
    [99] Peres SB, de Moraes SM, Costa CE, et al. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway [J]. J Appl Physiol. 2005; 98(3): 1037-43.
    [100] Fluckey JD, Knox M, Smith L, et al. Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway [J]. Am J Physiol Endocrinol Metad, 2006,290(6):E1205-1211.
    [101] Hoffman EP, Nader GA. Balancing muscle hypertrophy and atrophy [J]. Nat Med. 2004, 10(6):584-5.
    [102] Medeiros C, Frederico MJ, da Luz G, et al. Exercise training reduces insulin resistance and up regulates the mTOR/p70S6k pathway in cardiac muscle of diet-induced obesity rats [J]. J Cell Physiol. 2011; 226(3):666-74.
    [103] Lou H, Danelisen I, Singal PK. Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy [J]. Am J Physiol Heart Circ Physiol. 2005, 288(4):H 1925-30.
    [104] Salazar NC, Chen J, Rockman HA. Cardiac GPCRs: GPCR signaling in healthy and failing hearts [J]. Biochim Biophys Acta. 2007, 1768(4): 1006-18.
    [105] Bader M. Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models [J].J Mol Cell Cardiol. 2002,34(11):1455-62.
    [106] Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone [J]. J Clin Invest. 1996, 15; 97(8):1916-23.
    [107] Weiss D, Kools JJ, Taylor WR. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice [J]. Circulation. 2001,23; 103(3):448-54.
    [108] Noda K, Feng YH, Liu XP, et al. The active state of the ATI angiotensin receptor is generated by angiotensin II induction [J]. Biochemistry. 1996, 35(51): 16435-42.
    [109] Miura S, Zhang J, Boros J, et al. TM2-TM7 interaction in coupling movement of transmembrane helices to activation of the angiotensin II type-1 receptor [J]. J Biol Chem. 2003, 278(6):3720-5.
    [110] Miura S, Saku K, Karnik SS. Molecular analysis of the structure and function of the angiotensin II type 1 receptor [J]. Hypertens Res. 2003,26(12):937-43.
    [111] Iemitsu M, Maeda S, Jesmin S, et al.Activation pattern of MAPK. signaling in the hearts of trained and untrained rats following a single bout of exercise [J]. J Appl Physiol. 2006,101(1):151-63.
    [112] van Esch JH, Gembardt F, Sterner-Kock A, et al .Cardiac phenotype and angiotensin II levels in ATI a, ATlb, and AT2 receptor single, double, and triple knockouts [J]. Cardiovasc Res. 2010, 86(3):401-9.
    [113] Xu X, Wan W, Powers AS, et al. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats [J]. J Mol Cell Cardiol. 2008, 44(1):114-22.
    [114] Leite LH, Lacerda AC, Balthazar CH, et al. Central angiotensin ATI receptors are involved in metabolic adjustments in response to graded exercise in rats [J]. Peptides. 2009, (10):1931-5.
    [115] Tesmer JJ. The quest to understand heterotrimeric G protein signaling [J]. Nat Struct Mol Biol. 2010,17(6):650-2.
    [116] Kang M, Chung KY, Walker JW. G-protein coupled receptor signaling in myocardium: not for the faint of heart [J]. Physiology. 2007, 22:174-84.
    [117] Marty C, Ye RD. Heterotrimeric G protein signaling outside the realm of seven transmembrane domain receptors [J]. Mol Pharmacol. 2010,78(l):12-8.
    [118] D'Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice [J]. ProcNatl Acad Sci U S A. 1997, 94(15):8121-6.
    [119] Bunney TD, Baxendale RW, Katan M. Regulatory links between PLC enzymes and Ras superfamily GTPases: signalling via PLCepsilon [J]. Adv Enzyme Regul. 2009; 49(l):54-8.
    [120] Jalili T, Takeishi Y, Walsh RA. Signal transduction during cardiac hypertrophy: the role of G alpha q, PLC beta I, and PKC [J]. Cardiovasc Res. 1999,44(l):5-9.
    [121] Litosch I. G-protein betagamma subunits antagonize protein kinase C-dependent phosphorylation and inhibition of phospholipase C-betal [J]. Biochem J. 1997,326 (Pt 3):701-7.
    [122] Yang C, Kazanietz MG. Divergence and complexities in DAG signaling: looking beyond PKC [J]. Trends Pharmacol Sci. 2003,24(11):602-8.
    [123] Kalive M, Faust JJ, Koeneman BA, et al. Involvement of the PKC family in regulation of early development [J]. Mol Reprod Dev. 2010,77(2):95-104.
    [124] Sodha NR, Clements RT, Bianchi C, et al. Cardiopulmonary bypass with cardioplegic arrest activates protein kinase C in the human myocardium [J]. J Am Coll Surg. 2008,206(l):33-41.
    [125] Lay AJ, Northway CM, Donahue DL, et al. Low levels of tissue factor rescue protein C-associated pregnancy failure in mice [J]. J Thromb Haemost, 2008 ,6(10): 1815-7.
    [126] Wang QJ. PKD at the crossroads of DAG and PKC signaling [J]. Trends Pharmacol Sci. 2006, 27(6):317-23.
    [127] Taylor CW, da Fonseca PC, Morris EP. IP (3) receptors: the search for structure [J]. Trends Biochem Sci. 2004,29(4):210-9.
    [128] Horiba M, Muto T, Ueda N, et al. T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers [J].Life Sci. 2008 ,82(11-12):554-60.
    [129] Kim KA, Lee YA, Shin MH, et al. Calpain-dependent calpastatin cleavage regulates caspase-3 activation during apoptosis of Jurkat T cells induced by Entamoeba histolytica [JJ.Int J Parasitol. 2007,37(11): 1209-19.
    [130] Nakagawa Y, Kuwahara K, Harada M, et al. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes [J]. J Mol Cell Cardiol. 2006,41(6):1010-22.
    [131] Rajappa M, Sharma A. Biomarkers of cardiac injury: an update [J].Angiology. 2005, 56(6):677-91.
    [132] Twerenbold R, Reichlin T, Mueller C. Clinical application of sensitive cardiac troponin assays: potential and limitations [J]. Biomark Med. 2010, (3):395-401.
    [133] Davis JP, Tikunova SB. Ca(2+) exchange with troponin C and cardiac muscle dynamics [J]. Cardiovasc Res. 2008,77(4):619-26.
    [134] Gallon CE. Current techniques for the study of troponin I phosphorylation in human heart [J]. J Muscle Res Cell Motil. 2008; 29(6-8): 169-72.
    [135] Gomes AV, Barnes JA, Harada K, et al. Role of troponin T in disease [J]. Mol Cell Biochem. 2004, 263(1-2): 115-29.
    [136] Apple FS, Quist HE, Murakami MM. Diagnostic and prognostic value of cardiac troponin I assays in patients admitted with symptoms suggestive of acute coronary syndrome [J]. Arch Pathol Lab Med, 2004,128(4):430-434.
    [137] Neumayr QGaenzer H.Pfister R,et al.Plasma levels of cardiac troponin 1 after prolonged strenuous endurance exercise [J]. Am J Cardiol, 2001, 87(3):369-71.
    [138] Pfister R, Schneider CA. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: application of natriuretic peptides [J].Eur Heart J. 2009,30(3):382-3;
    [139] Lubien E, DeMaria A, Krishnaswamy P, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings [J]. Circulation. 2002,105(5):595-601.
    [140] Qi W, Kjekshus J, Hall C. Differential responses of plasma atrial and brain natriuretic peptides to acute alteration in atrial pressure in pigs [J]. Scand J Clin Lab Invest. 2000; 60(l):55-63.
    [141] McGrath MF, de Bold ML, de Bold AJ, et al. The endocrine function of the heart [J]. Trends Endocrinol Metab. 2005; 16(10):469-77.
    [142] Morrison LK, Harrison A, Krishnaswamy P, et al. Utility of a rapid B-natriuretic peptide assay in differentiating congestive heart failure from lung disease in patients presenting with dyspnea [J]. J Am Coll Cardiol. 2002; 39(2):202-9.
    [143] Lubien E, DeMaria A, Krishnaswamy P, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings [J]. Circulation. 2002, 105(5):595-601.
    [144] Krupicka J, Janota T, Kasalova Z, et al. Effect of short-term maximal exercise on BNP plasma levels in healthy individuals [J]. Physiol Res. 2010; 59(4):625-8.
    [1]Naylor LH, Arnolda LF, Deague JA, et al. Reduced ventricular flow propagation velocity in elite athletes is augmented with the resumption of exercise training [J]. J Physiol.2005, 15(563):957-63.
    [2]Lauschke J, Maisch B. Athlete's heart or hypertrophic cardiomyopathy? [J].Clin Res Cardiol. 2009,98(2):80-8.
    [3]Lou H, Danelisen I, Singal PK. Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy [J]. Am J Physiol Heart Circ Physiol.2005, 288(4):H 1925-30.
    [4]Kociol RD, Pang PS, Gheorghiade M, et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications [J]. J Am Coll Cardiol.2010,56(14):1071-8.
    [5]Palazzuoli A, Gallotta M, Quatrini I, et al. Natriuretic peptides (BNP and NT-proBNP): measurement and relevance in heart failure [J]. Vasc Health Risk Manag.2010; 6:411-8.
    [6]McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy:novel therapeutic strategies to treat heart failure [J].Clin Exp Pharmacol Physiol, 2007,34(4):255-62.
    [7]Lajoie C, Calderone A, Trudeau F, et al. Exercise training attenuated the PKB and GSK-3 dephosphorylation in the myocardium of ZDF rats [J]. J Appl Physiol.2004; 96(5):1606-12.
    [8]Haudek SB, Cheng J, Du J, et al. Monocytic fibroblast precursors mediate fibrosis in angiotensin-Ⅱ-induced cardiac hypertrophy [J]. J Mol Cell Cardiol.2010; 49(3):499-507.
    [9]Pandey KN, Vellaichamy E. Regulation of cardiac angiotensin-converting enzyme and angiotensin AT1 receptor gene expression in Nprl gene-disrupted mice [J]. Clin Exp Pharmacol Physiol.2010; 37(2):e70-7.
    [10]李欣,潘珊珊.《耐力训练对心脏局部血管紧张素Ⅱ及其受体表达的影响》[D].上海:上海体育学院.2005.
    [11]Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex biological samples [J]. FEBS Lett.2009; 583(24):3966-73.
    [12]Fenning A, Harrison G, Dwyer D, et al. Cardiac adaptation to endurance exercise in rats [J]. Mol Cell Biochem.2003; 251(1-2):51-9.
    [13]Wisl?ff U, Helgerud J, Kemi OJ, et al. Intensity-controlled treadmill running in rats:VO (2max) and cardiac hypertrophy [J]. Am J Physiol Heart Circ Physiol.2001; 280(3):H1301-10.
    [14]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta CT) method [J]. Methods.2001,25(4):402-408.
    [15]Sedehi D, Ashley EA. Defining the limits of athlete's heart:implications for screening in diverse populations [J]. Circulation.2010,9; 121(9):1066-8.
    [16]Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy [J]. Cardiovasc Res.1998,39(1):60-76.
    [17]Medeiros A, Oliveira EM, Gianolla R, et al. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats [J]. Braz J Med Biol Res.2004; 37(12):1909-17.
    [18]Allen DL, Harrison BC, Maass A, et al. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse [J]. J Appl Physiol.2001; 90(5):1900-8.
    [19]Hφydal MA, Wislφff U, Kemi OJ, et al. Running speed and maximal oxygen uptake in rats and mice:practical implications for exercise training [J]. Eur J Cardiovasc Prev Rehabil.2007; 14(6):753-60.
    [20]Bao X, Lu CM, Liu F, et al. Epinephrine is required for normal cardiovascular responses to stress in the phenylethanolamine N-methyltransferase knockout mouse [J]. Circulation.2007,28; 116(9):1024-31.
    [21]Batterham AM, George KP, Mullineaux DR. Allometric scaling of left ventricular mass by body dimensions in males and females [J]. Med Sci Sports Exerc.1997; 29(2):181-6.
    [22]Cunha DF, Cunha SF, Reis MA, et al. Heart weight and heart weight/body weight coefficient in malnourished adults [J]. Arq Bras Cardiol.2002,78(4):382-7.
    [23]Dorn GW 2nd. The fuzzy logic of physiological cardiac hypertrophy [J]. Hypertension.2007; 49(5):962-70.
    [24]常芸,孙迎,陈小同,等.运动心脏内分泌功能可复性的研究[J].中国运动医学杂志.1999,18(1):3-6.
    [25]陈主初.病理生理学[M].北京:人民卫生出版社.2002:270.
    [26]李开刚,陆绍中.不同强度的耐力训练后大鼠心肌超微结构适应性变化的研究[J].中国应用生理学杂志.1997,13(3):193-197.
    [27]洪长青,邓树勋.三种训练对大鼠循环系统内分泌的影响[J].中国运动医学杂志.2000,19(1):51-2.
    [28]田斌,高广道,刘健等.心脏肾素-血管紧张素系统在游泳引起的生理心肌肥大中的作用[J].生理学报.1994;46(5):509-13.
    [29]P. Jourdain, F. Funck, E. Canault, et al. Value of type B natriuretic peptide in the emergency management of patients with suspected cardiac failure. Report of 125 cases [J]. Arch Mal Coeur Vaiss.2002; 95(9):763-7.
    [30]Magga J, Marttila M, Mantymaa P, et al. Brain natriuretic peptide in plasma, atria, and ventricles of vasopressin- and phenylephrine-infused conscious rats [J]. Endocrinology.1994; 134(6):2505-15.
    [31]Sabatine MS, Morrow DA, de Lemos JA, et al. Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia [J]. J Am Coll Cardiol.2004; 44(10):1988-95.
    [32]Kato M, Kinugawa T, Ogino K, et al. Augmented response in plasma brain natriuretic peptide to dynamic exercise in patients with left ventricular dysfunction and congestive heart failure [J]. J Intern Med.2000; 248(4):309-15.
    [33]Iemitsu M, Miyauchi T, Maeda S, et al. Effects of aging and subsequent exercise training on gene expression of endothelin-1 in rat heart [J]. Clin Sci (Lond).2002; 103 Suppl48:152S-157S.
    [34]Allen DL, Harrison BC, Maass A, et al. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse [J]. J Appl Physiol.2001; 90(5):1900-8.
    [35]Qi W, Kjekshus J, Hall C. Differential responses of plasma atrial and brain natriuretic peptides to acute alteration in atrial pressure in pigs [J]. Scand J Clin Lab Invest.2000; 60(1):55-63.
    [36]Chen Y, Serfass RC, Mackey-Bojack SM, et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise [J]. J Appl Physiol.2000; 88(5):1749-55.
    [37]Koller A, Summer P, Moser H. Regular exercise and subclinical myocardial injury during prolonged aerobic exercise [J]. JAMA.1999,17; 282(19):1816.
    [38]Koller A. Exercise-induced increases in cardiac troponins and prothrombotic markers [J]. Med Sci Sports Exerc.2003; 35(3):444-8.
    [39]Carlson RJ, Navone A, McConnell JP, et al. Effect of myocardial ischemia on cardiac troponin I and T [J]. Am J Cardiol.2002,89(2):224-226.
    [40]Rifai N, Douglas PS, O'Toole M, Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses and ejection fractions in athletes participating in the Hawaii Ironman Triathlon [J]. Am J Cardiol.1999; 83(7):1085-9.
    [41]Koller A, Mertelseder S, Moser H. Is exercise-induced myocardial injury self-abating? [J] Med Sci Sports Exerc.2001; 33(5):850-1.
    [42]Feng YJ, Chen C, Fallon JT, et al. Comparison of cardiac troponin I, creatine kinase-MB, and myoglobin for detection of acute ischemic myocardial injury in a swine model [J]. Am J Clin Pathol.1998; 110(1):70-7.
    [43]Noakes TD. Maximal oxygen uptake:"classical" versus "contemporary" viewpoints:a rebuttal [J] Med Sci Sports Exerc.1998; 30(9):1381-98.
    [44]Clarke MS, Caldwell RW, Chiao H, et al. Contraction-induced cell wounding and release of fibroblast growth factor in heart [J]. Circ Res.1995; 76(6):927-34.
    [45]Scharhag J, Urhausen A, Schneider G, et al. Reproducibility and clinical significance of exercise-induced increases in cardiac troponins and N-terminal pro brain natriuretic peptide in endurance athletes [J]. Eur J Cardiovasc Prev Rehabil.2006; 13(3):388-97.
    [46]Feng J, Schaus BJ, Fallavollita JA, Preload induces troponin I degradation independently of myocardial ischemia [J]. Circulation.2001; 103(16):2035-7.
    [47]Hickman PE, Potter JM, Aroney C, et al. Cardiac troponin may be released by ischemia alone, without necrosis [J]. Clin Chim Acta.2010; 411(5-6):318-23.
    [48]Lippi G, Targher G, Franchini M, et al. Genetic and biochemical heterogeneity of cardiac troponins:clinical and laboratory implications [J]. Clin Chem Lab Med.2009; 47(10):1183-94.
    [49]Lippi G, Guidi GC, Salvagno GL, et al. Highly sensitive cardiac troponin T is not increased by strenuous eccentric exercise [J]. Am J Cardiol.2010; 105(7):1043-4.
    [50]Sahlin K, Shabalina IG, Mattsson CM, et al. Ultraendurance exercise increases the production of reactive oxygen species in isolated mitochondria from human skeletal muscle [J]. J Appl Physiol.2010; 108(4):780-7.
    [51]Sen CK. Antioxidants in exercise nutrition [J]. Sports Med.2001; 31(13):891-908.
    [52]Arakawa N, Nakamura M, Aoki H, et al. Relationship between plasma level of brain natriuretic peptide and myocardial infarct size [J]. Cardiology.1994; 85(5):334-40.
    [53]Lim PO, Donnan PT, Struthers AD, et al. Exercise capacity and brain natruiretic peptide in hypertension [J]. J Cardiovasc Pharmacol.2002; 40(4):519-27.
    [54]Logeart D, Gambert A, Beyne P, et al. Brain natriuretic peptide (BNP) in coronary insufficiency:relationship with left ventricular filling and exercise tolerance [J]. Ann Cardiol Angeiol.1999; 48(7):523-8.
    [55]Xu X, Wan W, Powers AS, et al. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats [J]. J Mol Cell Cardiol,2008, 44(1):114-22.
    [56]Taylor DA, Zenovich AG. Cell therapy for left ventricular remodeling [J].Curr Heart Fail Rep,2007,4(1):3-10.
    [57]Anilkumar N, Sirker A, Shah AM, et al. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure [J]. Front Biosci,2009,14:3168-87.
    [58]Vanamala SK, Gopinath S, Gondi CS, et al. Effect of human umbilical cord blood cells on Ang-II-induced hypertrophy in mice [J]. Biochem Biophys Res Commun,2009,386(2):386-91.
    [59]Keidar S, Kaplan M, Gamliel-Lazarovich A, et al. ACE2 of the heart:From angiotensin I to angiotensin (1-7) [J]. Cardiovasc Res.2007; 73(3):463-9.
    [60]Thomas DP, Marshall KI. Effects of repeated exhaustive exercise on myocardial subcellular membrane structures [J]. Int J Sports Med.1988; 9(4):257-60.
    [61]Schliiter KD, Wenzel S. Angiotensin Ⅱ:a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks [J]. Pharmacol Ther. 2008,119(3):311-25.
    [62]Cingolani HE, Villa-Abrille MC, Cornelli M, et al. The positive inotropic effect of angiotensin Ⅱ:role of endothelin-1 and reactive oxygen species [J]. Hypertension.2006; 47(4):727-34.
    [63]Mackins CJ, Kano S, Seyedi N, et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion [J]. J Clin Invest,2006,116(4):1063-70.
    [64]Alves GB, Oliveira EM, Alves CR, et al. Influence of angiotensinogen and angiotensin-converting enzyme polymorphisms on cardiac hypertrophy and improvement on maximal aerobic capacity caused by exercise training [J]. Eur J Cardiovasc Prev Rehabil.2009, 16(4):487-92.
    [65]Belardinelli R. Exercise training in chronic heart failure:how to harmonize oxidative stress, sympathetic outflow, and angiotensin Ⅱ [J]. Circulation.2007; 115(24):3042-4.
    [66]Kimura S, Zhang GX, Nishiyama A, et al. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin Ⅱ [J]. Hypertension.2005; 45(5):860-6.
    [67]李维根,李昭波,高云秋.运动性与高血压性心肌肥大时心源性活性肽变化比较[J].中国 运动医学杂志.2000;19:27-8.
    [68]Fillion D, Guillemette G, Leduc R, et al. Photo-probe peptides to map the interactions of angiotensin Ⅱ with its receptor AT, [J].Adv Exp Med Biol.2009;611:329-3.
    [69]Zhang GX, Ohmori K, Nagai Y, et al. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice [J]. J Mol Cell Cardiol.2007,42(4):804-11.
    [70]Saito M, Shinohara Y, Sasaki H, et al. Type 1 angiotensin receptor (AT1-R)-mediated decrease in type 2 angiotensin receptor mRNA level is dependent on Gq and extracellular signal-regulated kinase 1/2 in AT1-R-transfected PC12 cells [J]. J Neuroendocrinol.2008; 20(3):299-308.
    [71]李昭波,高云秋,崔志澄.运动性肥大心脏心肌血管紧张素Ⅱ受体特征变化[J].中国运动医学杂志.1998;17(4):291-92.
    [72]田振军,熊正英.过度负荷大鼠心脏左室心肌纤维及微血管变化的研究[J].体育与科学.1995;16(6):29.
    [73]Suzuki J, Mastsubara H, Urakami M. Rat angiotensin Ⅱ (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy [J]. Circ Res.1993:73(3):439-47.
    [74]Anavekar NS, Solomon SD. Angiotensin Ⅱ receptor blockade and ventricular remodeling [J]. J Renin Angiotensin Aldosterone Syst.2005; 6(1):43-8.
    [75]Rajagopalan S, Kurz S, Miinzel T, et al. Angiotensin Ⅱ-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone [J]. J Clin Invest.1996,15; 97(8):1916-23.
    [76]Weiss D, Kools JJ, Taylor WR. Angiotensin Ⅱ-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice [J]. Circulation.2001,23; 103(3):448-54.
    [77]Yousufuddin M, Haji S, Starling RC, et al. Cardiac angiotensin Ⅱ receptors as predictors of transplant coronary artery disease following heart transplantation [J]. Eur Heart J.2004; 25(5):377-85.
    [78]Jiang XY, Gao GD, Du XJ, et al. The signaling of AT2 and the influence on the collagen metabolism of AT2 receptor in adult rat cardiac fibroblasts [J]. Acta Cardiol,2007,62(5):429-38.
    [79]Fatini C, Guazzelli R, Manetti P, et al. RAS genes influence exercise-induced left ventricular hypertrophy:an elite athlete's study [J]. Med Sci Sports Exerc.2000; 32(11):1868-72.
    [80]Ito K, Caramori G, Adcock IM.Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease [J]. Pharmacol Exp Ther.2007,321(1):1-8.
    [81]Kewei Ma, Samuel M. Cheung, Aaron J. et al. PI(3,4,5)P3 and PI(3,4)P2 levels correlate with AKT/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine AKT activity [J]. Cellular Signalling.2008,20(4):684-694.
    [82]W. Matthijs Blankesteijn, Veerle A.M. van de Schans. TheWnt/frizzled/GSK-3β pathway:a novel therapeutic target for cardiac hypertrophy [J]. Trends in Pharmacological Sciences.2008, 29(4):175-180.
    [83]Richardson RS. Oxygen transport:air to muscle cell [J].Med Sci Sports Exerc.1998; 30(1):53-9.
    [84]Wackerhage H, Rennie MJ. How nutrition and exercise maintain the human musculoskeletal mass [J]. J Anat.2006,208(4):451-8.
    [85]Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation [J]. FASEB J.2005,19(7):786-8.
    [86]Owen KL, Pretorius L, McMullen JR. The protective effects of exercise and phosphoinositide 3-kinase (p110alpha) in the failing heart [J]. Clin Sci (Lond).2009,116(5):365-75.
    [87]Sakamoto K, Hirshaman M F, Aschenbach W. Get al. Contraction regulation of Akt in rat skeletal muscle [J]. J Biol Chem.2002,27:11910-11917.
    [88]Perez AC, Cabral de Oliveira AC, Estevez E, et al. Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats [J]. Comp Biochem Physiol C Toxicol Pharmacol.2003,134(2):199-206.
    [89]Peres SB, de Moraes SM, Costa CE, et al. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway [J]. J Appl Physiol.2005; 98(3):1037-43.
    [90]Fluckey JD, Knox M, Smith L, et al. Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway [J]. Am J Physiol Endocrinol Metad, 2006,290(6):E 1205-1211.
    [91]Hoffman EP, Nader GA. Balancing muscle hypertrophy and atrophy [J]. Nat Med.2004, 10(6):584-5.
    [92]Medeiros C, Frederico MJ, da Luz G, et al. Exercise training reduces insulin resistance and up regulates the mTOR/p70S6k pathway in cardiac muscle of diet-induced obesity rats [J]. J Cell Physiol.2010,226(3):666-74.
    [93]Gygi SP, Rochon Y, Franza BR, Correlation between protein and mRNA abundance in yeast [J]. Mol Cell Biol.1999; 19(3):1720-30.
    [94]Futcher B, Latter GI, Monardo P, et al. A sampling of the yeast proteome [J]. Mol Cell Biol. 1999; 19(11):7357-68.
    [95]Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver [J]. Electrophoresis.1997; 18(3-4):533-7.
    [96]Lichtinghagen R, Musholt PB, Lein M, et al. Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue [J]. Eur Urol.2002; 42(4):398-406.
    [97]Grossman AD, Zhou YN, Gross C, et al. Mutations in the rpoH (htpR) gene of Escherichia coli K-12 phenotypically suppress a temperature-sensitive mutant defective in the sigma 70 subunit of RNA polymerase[J]. J Bacteriol.1985; 161 (3):939-43.
    [98]Golding I, Paulsson J, Zawilski SM, et al. Real-time kinetics of gene activity in individual bacteria [J]. Cell.2005; 123(6):1025-36.
    [99]Mehta P, Goyal S, Wingreen NS, et al. A quantitative comparison of sRNA-based and protein-based gene regulation [J]. Mol Syst Biol.2008;4:221.
    [100]Friberg M, von Rohr P, Gonnet G. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae [J]. Yeast. 2004;21(13):1083-93.
    [101]Lithwick G, Margalit H. Hierarchy of sequence-dependent features associated with prokaryotic translation [J]. Genome Res.2003; 13(12):2665-73.
    [102]Wu G, Nie L, Zhang W. Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data [J]. Curr Microbiol.2008; 57(1):18-22.
    [103]常芸,袁箭峰,祁永梅,等.运动心脏重塑与微损伤发生中的细胞凋亡现象[J].中国运动医学杂志.2003,22(4):344-349.
    [104]Ascensao A, Magalhaes J, Soares JM, et al. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis [J]. Am J Physiol Heart Circ Physiol.2005; 289(2):H722-31.
    [105]Jeong S J, Pise-Masison C A, Radonovich M F, et al. Activated Akt regulates NF-κB activation, p53 inhibition and cell survival in HTLV-1 transformed cells [J].Oncogene.2005, 24(44):6719-6728.
    [106]Vellaichamy E, Khurana ML, Fink J. et al. Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A [J]. J Biol Chem.2005,280(19):19230-42.
    [107]Vandermoere F, Yazidi-Belkoura I, Adriaenssens E, et al. The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-κB activation induced via interaction between Akt and IκB kinase-β in breast cancer cells [J].Oncogene.2005,24(35):5482-5491.
    [108]Yin H, Chao L, Chao J. Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways [J]. J Biol Chem.2005; 280(9):8022-30.
    [109]Sun H, Zhou F, Wang Y, et al. Effects of beta-adrenoceptors overexpression on cell survival are mediated by Bax/Bcl-2 pathway in rat cardiac myocytes [J]. Pharmacology.2006, 78(2):98-104.
    [110]Huang C, Gu H, Zhang W, et al. Testosterone-down-regulated Akt pathway during cardiac ischemia/reperfusion:a mechanism involving BAD, Bcl-2 and FOXO3a [J].J Surg Res. 2010;164(1):e1-11.
    [111]Miyoshi N, Oubrahim H, Chock PB et al. Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis [J]. Proc Natl Acad Sci U S A.2006, 103(6):1727-31.
    [112]Blankesteijn WM, van de Schans VA, ter Horst P, et al. The Wnt/frizzled/GSK-3 beta pathway:a novel therapeutic target for cardiac hypertrophy [J]. Trends Pharmacol Sci.2008; 29(4):175-80.
    [113]Kroczynska B, Kaur S, Platanias LC. Growth suppressive cytokines and the AKT/mTOR pathway [J].Cytokine.2009,48(1-2):138-43.
    [114]Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling [J].Nat Cell Biol.2002,4(9):648-57.
    [115]Shah OJ, Kimball SR, Jefferson LS. Among translational effectors, p70S6k is uniquely sensitive to inhibition by glucocorticoids [J]. Biochem J,2000,347(Pt 2):389-97.
    [116]Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis [J]. J Appl Physiol.2007; 103(3):903-10.
    [117]Mascher H, Andersson H, Nilsson PA, et al. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise [J]. Acta Physiol (Oxf).2007; 191(1):67-75.
    [118]Pestova, TV, Lorsch, JR, Hellen, C. The mechanism of translation initiation in eukaryotes. In Translational control in biology and medicine [J]. Cold Spring Harbor Laboratory Press.2007, 87-128.
    [119]De Benedetti A and Graff JR. eIF4E expression and its role in malignancies and metastases [J].Oncogene.2004,19; 23(18):3189-99.
    [120]Dufner A, Andjelkovic M, Burgering BM, et al. Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation [J]. Mol Cell Biol.1999; 19(6):4525-34.
    [121]Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase [J]. J Biol Chem.2005; 280(28):26089-93.
    [122]Hornberger TA, Stuppard R, Conley KE, et al. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism [J]. Biochem J.2004; 380(Pt 3):795-804.
    [123]Littler DR, Walker JR, Davis T, et al. A conserved mechanism of autoinhibition for the AMPK kinase domain:ATP-binding site and catalytic loop refolding as a means of regulation [J]. Acta Crystallogr Sect F Struct Biol Cryst Commun.2010; 66(Pt 2):143-51.
    [124]Tian R, Musi N, D'Agostino J, et al. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy [J]. Circulation.2001; 104(14):1664-9.
    [125]Chan AY, Soltys CL, Young ME, et al. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte [J]. J Biol Chem.2004; 279(31):32771-9.
    [126]Liao Y, Takashima S, Maeda N, et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism [J]. Cardiovasc Res.2005; 67(4):705-13.
    [127]Dorn GW 2nd. The fuzzy logic of physiological cardiac hypertrophy [J]. Hypertension. 2007; 49(5):962-70.
    [128]McLeod LE, Proud CG. ATP depletion increases phosphorylation of elongation factor eEF2 in adult cardiomyocytes independently of inhibition of mTOR signaling [J]. FEBS Lett.2002; 531(3):448-52.
    [129]Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling [J]. J Biol Chem.2002; 277(27):23977-80.
    [130]Krause U, Bertrand L, Hue L. Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes [J]. Eur J Biochem.2002; 269(15):3751-9.
    [131]Kovacic S, Soltys CL, Barr AJ, et al. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart [J]. J Biol Chem.2003; 278(41):39422-7.
    [132]Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation [J]. FASEB J.2005; 19(7):786-8.
    [133]Nader GA, Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise [J]. J Appl Physiol.2001; 90(5):1936-42.
    [134]Zanchi NE, Lancha AH Jr. Mechanical stimuli of skeletal muscle:implications on mTOR/p70s6k and protein synthesis [J]. Eur J Appl Physiol.2008; 102(3):253-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700