大网膜联合自体心房组织移植治疗大鼠慢性心肌梗死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     组织工程心肌为心肌梗死的治疗提供了新的途径,由于缺乏足够的血供,现有的方法无法构建出具有足够体积和生物学功能的心肌组织而应用于临床。本研究的主要目的是探讨自体心房组织以及大网膜联合移植对慢性心肌梗死大鼠心脏功能以及心律失常的影响。
     方法:
     通过前降支结扎法建立大鼠心肌梗死模型。3周后将筛选合格的模型动物随机分为4组:对照组(Con group),仅再次开胸;心房移植组(A group),开胸后裁取左心耳组织移植于心肌梗死及周边区;大网膜移植组(O group)经膈肌将大网膜移植于心肌梗死及周边区;联合移植组(OA group)分别移植左心耳组织和大网膜。手术4周后,超声心动图评价心室重构和心脏功能,Masson染色检测心肌梗死面积和疤痕厚度,免疫组化评价心耳存活、血管化,蛋白免疫印迹法检测血管内皮生长因子(VEGF)、金属蛋白酶(MMP-2/MMP-9)及其抑制物(TIMP-3)蛋白表达,明胶酶谱法评价金属蛋白酶活性,酶联免疫吸附法检测内皮素-1(ET-1)蛋白水平,程序性电刺激评价心律失常易感性(Arrhythmia Score).
     结果:
     4周后,仅在OA组观察到左心耳组织部分存活。Masson染色显示各组心肌梗死面积无显著差异(P>0.05),OA组疤痕厚度显著增厚(391±31μm vs 329±33μm,P<0.05);超声心动图结果证实OA组心脏功能显著改善(LVEF:57.9±5.8% vs 47.5±4.5%,P<0.05 and LVFS:25.2±3.6% vs 20.7±2.0%,P<0.05);免疫组织化学结果显示A组以及OA组梗死周边区血管密度明显增加(49/0.2mm2 vs 33/0.2mm2,P 0.01 and 48/0.2mm2 vs 33/0.2mm2,P<0.01蛋白免疫印迹显示MMP-2/MMP-9在OA组表达下降,TIMP-3表达无显著差异,VEGF在O组以及OA组表达增加;明胶酶谱法证实OA组金属蛋白酶活性下降(MMP-2:68%P=0.002 and MMP-9:64%P=0.016),;酶联免疫吸附法证实ET-1蛋白水平在O组以及OA组显著下调(4.69±0.47 pg/mg vs 5.95±0.55 pg/mg,P<0.01 and 4.79±0.57 pg/mg vs 5.95±0.55 pg/mg;P<0.05);程序性电刺激显示单纯大网膜以及联合移植大鼠心律失常易感性显著下降(0.46±0.31vs2.10±0.60,P<0.05 and 0.50±0.34 vs 2.10±0.60,P<0.05)
     结论:
     大网膜能通过再血管化使移植的心房组织部分存活,联合移植的方法能通过降低室壁应力、改善胶原重构和增加血供等途径改善慢性心肌梗死大鼠心脏功能,大网膜移植能有效的降低慢性心肌梗死大鼠心律失常易感性。
     目的:
     心脏神经重构是心肌梗死后心律失常的重要发病机制,研究组前期的动物实验提示大网膜以及大网膜联合移植降低了慢性心肌梗死大鼠心律失常的易感性,本研究将证实大网膜移植是否通过逆转心脏神经重构降低心律失常易感性。
     方法:
     Sprague-Dawley大鼠随机分为3组:假手术组(Sham group,n=20),第一次开胸穿线不结扎,3周后仅再次开胸;单纯心肌梗死组(MI group,n=20),第一次通过前降支结扎法建立心肌梗死模型,3周后仅再次开胸,不移植大网膜;大网膜移植组(MI+O group,n=20),第一次通过前降支结扎法建立心肌梗死模型,3周后再次开胸并移植大网膜。4周后分别采用电生理方法评价各组大鼠的电生理特性,免疫组织化学方法检测心脏神经分布及密度,蛋白免疫印迹检测连接蛋白43(Connexin43)、礻神经生长因了(NGF)的表达,酶联免疫吸附法检测心肌组织内皮素-1(ET-1)的表达。
     结果:
     与MI组相比,MI+O组大鼠心律失常易感性显著下降(评分:0.9±0.2 vs 3.5±1.2,p<0.05),电传导阻滞得到显著改善(自发电位:3.4±0.3mv vs 1.5±0.2mv,p<0.05;同步阂值:2.2±0.2mv vs 5.5±0.3mv,p<0.05);免疫组织化学显示大网膜移植显著降低了心肌梗死周边区新生神经以及交感神经密度(GAP43:768.6±144.1μm2/mm2vs 1388.4±244.9μm2/mm2,p<0.05;TH:1018.5.±124.7μm2/mm2vs 1552.4±270.3μm2/mm2,p<0.05):蛋白免疫印迹结果表明MI+O组NGF表达下调而Connexin43的表达上调,酶联免疫吸附法显示MI+O组ET-1的表达下调(4.5±0.3pg/mg vs 5.8±0.4 pg/mg,p<0.05)
     结论:
     心肌梗死后在其周边区存在以交感神经过度再生的重构现象,大网膜移植能显著逆转心肌梗死后的心脏神经重构,并降低低慢性心肌梗死大鼠心律失常易感性。
     目的:
     术前风险评估模型对临床医生以及卫生行政部门都具有重要的指导意义,本课题组前期研究证实目前的“金标准”欧洲心脏手术风险评估模型(EuroSCORE)显著高估我国冠状动脉旁路移植术的死亡率,因此根据中国心脏外科数据库构建了适合我国国情的中国冠心病手术风险评估模型(SinoSCORE)。本研究旨在验证SinoSCORE对阜外医院单中心单纯非体外循环冠状动脉旁路移植手术的预测价值。
     方法:
     自2004年1月至2008年12月,共1966例患者在阜外医院行单纯非体外循环冠状动脉旁路移植术,收集这些患者的人口学资料、术前危险因素、术中危险因素、住院死亡率、术后并发症等信息,根据SinoSCORE和EuroSCORE评分法则分别评分,终点事件定义为住院死亡。采用应用接受者工作特征曲线(ROC)下面积(AUC)衡量模型的区分度,采用单因素logistic回归及Hosmer-Lemeshow (HL)卡方检验考察模型的校准度。
     结果:
     患者平均年龄为61.6±9.3岁,其中80.5%为男性患者。住院死亡22例,总体死亡率为1.1%。EuroSCORE预测住院死亡率为2.9±2.2%,SinoSCORE则为1.6±3.7%。SinoSCORE和EuroSCORE的AUC分别为0.76(95%置信区间,0.66-0.87,P<0.01)和0.68(95%置信区间,0.52-0.84,P<0.05);HL卡方检验P值分别为0.78和0.76。
     结论:
     该单中心数据证实,SinoSCORE比EuroSCORE能更准确的预测非体外循环冠状动脉旁路移植术的住院死亡率。SinoSCORE为我国非体外循环冠状动脉旁路移植术的术前风险评估和分层提供了一种较客观准确的手段。
Objectives:
     Regional application of tissue engineered cardiac patch can alleviate ventricular remodeling and improve functional recovery in experimental models of ischemia. However, the size of the engineered patch is limited due to the insufficient vascularization. The present study evaluated the effects of autologous atrial tissue patch cardiomyoplasty and/or omentopexy in rat models of myocardial infarction (MI).
     Methods:
     Myocardial infarction was induced by left coronary artery ligation in Sprague-Dawley rats. The qualified animals would be allocated randomizedly to four groups three weeks post operatively. The animals in control group only received re-thoracotomy. The autologous atrial tissue patch was harvested from the left atrial appendage along its long axis and was transplanted to the infracted zone in autologous atrial tissue patch cardiomyoplasty group. The omentum was transplanted to the same zone through the diaphragm. In the combined group, these two procedures were completed. The echocardiogram (UCG) was used to evaluate the cardiac remodeling and heart function. The infracted size and scar thickness were assessed by histological study. The angiogenesis and survival of the transplanted atrial tissue were estimated by the immunohistochemistry. Western blot was employed to evaluate the expression of VEGF, MMPs and TIMP3. The activities of MMPs were identified by gelatin zymography. Programmed electrical stimulation was utilized to assess the susceptibility of arrhythmia.
     Results:
     After 4 weeks, surviving myocardium was only visualized in the OA group as indicated by immunolabeling cardiac troponin-I. Histological study showed that the infracted size did not decreased in any treatment group while the scar thickness was increased in OA group compared with Con group (391±31μm vs 329±33μm, P<0.05). Only the animals in OA group showed improved heart function assessed by LVEF (57.9±5.8%vs 47.5±4.5%, P<0.05) and LVFS (25.2±3.6%vs 20.7±2.0%, P<0.05). The immunohistochemistry study demonstrated the angiogenesis was improved in the group O and OA (49/0.2mm2 vs 33/0.2mm2, P< 0.01 and 48/0.2mm2 vs 33/0.2mm2, P< 0.01) companied by increased expression of VEGF by western blot. Western blot revealed the expression of MMPs decreased significantly in the OA group while the TIMP3 did not change. The activities of MMP2 and MMP9 were decreased by 68% and 64% respectively by gelatin zymography. The ELISA showed the endothelin-1 level in group O and OA decreased significantly (4.69±0.47 pg/mg vs 5.95±0.55 pg/mg, P<0.01 and 4.79±0.57 pg/mg vs 5.95±0.55 pg/mg; P<0.05). The programmed electrical stimulation demonstrated the arrhythmia score in group O and OA decreased significantly (0.46±0.31vs2.10±0.60, P<0.05 and 0.50±0.34 vs 2.10±0.60, P<0.05).
     Conclusions:
     The omentopexy supported the survival of transplanted autologous atrial tissue patch, which resulted in attenuated ventricular remodeling and restoration of heart function in rats with experimental MI. In addition, the omentopexy and combined surgery could decrease the susceptibility of arrhythmia. Our findings might represent a novel therapeutic strategy for heart failure after myocardial infarction.
     Objectives:
     The cardiac nerve remodeling plays a key role in the ventricular arrhythmia after myocardial infarction. Our previous research has indicated that the omentopexy could decrease the susceptibility of the ventricular arrhythmia in rats with chronic myocardial infarction. This study aimed to test the hypothesis that this benefit effect is partly attributed to the attenuation of the cardiac nerve remodeling.
     Methods:
     The Sprague-Dawley rats were allocated randomizedly to three groups:the sham group without myocardial infarction or omentopexy; the isolated myocardial infarction group without omentopexy and the omentopexy group. Four weeks after the operation, the electrophysiological characteristics were assessed by the electrophysiological techniques. The new and sympathetic nerves in the border zone were analyzed by immunohistochemistry. The expressions of NGF and Connexin43 were manifestated by western blot. The ELISA was utilized to evaluate the expression of the ET-1 of the cardiac tissue.
     Results:
     After four weeks, the arrhythmia score of the rats in omentopexy group was significantly less than those in isolated myocardial infarction group(0.9±0.2 vs 3.5±1.2, p<0.05). Meanwhile, the electrical transduction improved significantly in the omentopexy group compared with isolated myocardial infarction group (spontaneous signal ampti tude:3.4±0.3mv vs 1.5±0.2mv,p<0.05; capture threshold:2.2±0.2mv vs 5.5±0.3mv,p<0.05). The immunihistochemisty staining by GAP43 and TH showed that densities of the new and sympathetic nerves decreased remarkably in the omentopexy group (GAP43:768.6±144.1μm2/mm2 vs 1388.4±244.9μm2/mm2, p<0.05; TH:1018.5.±124.7μm2/mm2 vs 1552.4±270.3μm2/mm2, p<0.05). The western blot showed that the expression level of NGF was down-regulated while that of Connexin43 was up-regulated. The ELISA study demonstrated the expression of ET-1 decreased significantly (4.5±0.3pg/mg vs 5.8±0.4 pg/mg,p<0.05).
     Conclusions:
     The omentopexy could decrease the susceptibility of ventricular arrhythmia after myocardial infarction by attenuation of the cardiac nerve remodeling. The ET-1-NGF pathway may play a key role in this beneficial effect.
     Objectives:
     The risk evaluation model possesses great importance for the cardiac surgeons and the administrative department of health. Our previous research has convinced that the European System of Cardiac Operative Risk Evaluation (EuroSCORE) overestimated the risk of Chinese patients with coronary artery bypass grafting(CABG) and we constructed the Sino System of Coronary Operative Risk Evaluation (SinoSCORE) based on the data from Chinese Coronary Artery Bypass Grafting Registry. This study aimed to compare the predictive values of SinoSCORE and EuroSCORE in the patients undergone isolated off-pump coronary artery bypass grafting (OPCAB) in Fuwai hospital.
     Method:
     The clinical data of 1966 consecutive patients undergone isolated OPCAB in Fuwai hospital between Jan.2004 and Dec.2008 was retrospectively collected. The endpoint event was defined as the in-hospital mortality. The score values of all patients were calculated according to the SinoSCORE and EuroSCORE additive model respectively. The areas under the receiver operator curves (ROC) were computed to evaluate the two models'discriminatory ability in predicting in-hospital mortality. The univariate logistic regression and Hosmer-Lemeshow (HL) chi-square test was utilized to assess the calibration of the two models.
     Results:
     The mean age of all patients was 61.6±9.3 years and 80.5% were male. Mean SinoSCORE and EuroSCORE of the 1966 patients were 1.6±3.7 and 2.9±2.2 with an observed mortality of 1.1%. The areas under the ROC curves for SinoSCORE and EuroSCORE were 0.76 (95%CI 0.66 to 0.87,P<0.01) and 0.68 (95%CI 0.52 to 0.84,.P<0.05). P values of the HL chi-square test were 0.80 and 0.63, respectively.
     Conclusions:
     The present single center study demonstrated that the SinoSCORE is superior to EuroSCORE in predicting the in-hospital mortality in patients undergoing isolated OPCAB. SinoSCORE is an accurate and objective risk stratification model for Chinese OPCAB patients.
引文
1. Wright RS, Anderson JL, Adams CD, Bridges CR, Casey DE, Jr., Ettinger SM, Fesmire FM, Ganiats TG, Jneid H, Lincoff AM, Peterson ED, Philippides GJ, Theroux P, Wenger NK, Zidar JP.2011 ACCF/AHA Focused Update of the Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction (Updating the 2007 Guideline):A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation.2011.
    2. Andersen K, Johannesdottir BK, Kristjansson JM, Gudnason T. Decreasing case fatality in myocardial infarction is explained by improved medical treatment. Acta Cardiol.201 1;66(1):39-45.
    3. Moller CH, Perko MJ, Lund JT, Andersen LW, Kelbaek H, Madsen JK, Winkel P, Gluud C, Steinbruchel DA. Three-year follow-up in a subset of high-risk patients randomly assigned to off-pump versus on-pump coronary artery bypass surgery:the Best Bypass Surgery Trial. Heart.2011.
    4. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078-80.
    5. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W. Left ventricular remodeling after myocardial infarction:a corollary to infarct expansion. Circulation. 1986;74(4):693-702.
    6. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161-72.
    7. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med.2001;345(20):1473-82.
    8. Adabag AS, Therneau TM, Gersh BJ, Weston SA, Roger VL. Sudden death after myocardial infarction. JAMA.2008;300(17):2022-9.
    9. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O'Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T. Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480-6.
    10.Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100(19 Suppl):11247-56.
    11. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Bioengineered cardiac grafts:A new approach to repair the infarcted myocardium? Circulation.2000;102(19 Suppl 3):Ⅲ56-61.
    12. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest.1999; 103(5):697-705.
    13. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg.2003;75(3):775-9.
    14. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005;112(8):1128-35.
    15. Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease:promise, uncertainties, and challenges. Eur Heart J.2011.
    16. Lipinski MJ, Biondi-Zoccai GG, Abbate A, Khianey R, Sheiban I, Bartunek J, Vanderheyden M, Kim HS, Kang HJ, Strauer BE, Vetrovec GW. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction:a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol.2007;50(18):1761-7.
    17. Fuh E, Brinton TJ. Bone marrow stem cells for the treatment of ischemic heart disease:a clinical trial review. J Cardiovasc Transl Res.2009;2(2):202-18.
    18. D'Alessandro DA, Michler RE. Current and future status of stem cell therapy in heart failure. Curr Treat Options Cardiovasc Med.2010;12(6):614-27.
    19. Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail.2010; 12(7):721-9.
    20. Mathiasen AB, Haack-Sorensen M, Kastrup J. Mesenchymal stromal cells for cardiovascular repair:current status and future challenges. Future Cardiol. 2009;5(6):605-17.
    21. Traverse JH, McKenna DH, Harvey K, Jorgenso BC, Olson RE, Bostrom N, Kadidlo D, Lesser JR, Jagadeesan V, Garberich R, Henry TD. Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J.2010;160(3):428-34.
    22. Zimmermann WH, Cesnjevar R. Cardiac tissue engineering:implications for pediatric heart surgery. Pediatr Cardiol.2009;30(5):716-23.
    23. Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR. Myocardial tissue engineering. Br Med Bull.2008;87:31-47.
    24. Johnson PC, Mikos AG. Fisher JP, Jansen JA. Strategic directions in tissue engineering. Tissue Eng.2007;13(12):2827-37.
    25. Wu KH, Mo XM, Liu YL, Zhang YS, Han ZC. Stem cells for tissue engineering of myocardial constructs. Ageing Res Rev.2007;6(4):289-301.
    26. Bouten CV, Dankers PY, Driessen-Mol A, Pedron S, Brizard AM, Baaijens FP. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev.2011.
    27. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle:artificial myocardial tissue. J Thorac Cardiovasc Surg. 2002;124(1):63-9.
    28. Choi YS, Matsuda K, Dusting GJ, Morrison WA, Dilley RJ. Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials. 2010;31(8):2236-42.
    29. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+embryonic-stem-cell-derived population. Nature.2008;453(7194):524-8.
    30. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med.2006;12(4):452-8.
    31. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation.2002; 106(12 Suppl 1):1151-7.
    32. Taheri SA, Yeh J, Batt RE, Fang Y. Ashraf H. Heffner R, Nemes B, Naughton J. Uterine myometrium as a cell patch as an alternative graft for transplantation to infarcted cardiac myocardium:a preliminary study. Int J Artif Organs. 2008;31(1):62-7.
    33.Taheri SA, Ashraf H, Merhige M, Miletich RS, Satchidanand S, Malik C, Naughton J, Zhao Q. Myoangiogenesis after cell patch cardiomyoplasty and omentopexy in a patient with ischemic cardiomyopathy. Tex Heart Inst J.2005;32(4):598-601.
    34. Benardeau A, Hatem SN, Rucker-Martin C, Tessier S. Dinanian S, Samuel JL, Coraboeuf E, Mercadier JJ. Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J Mol Cell Cardiol.1997;29(5):1307-20.
    35. Sakai T, Li RK, Weisel RD, Mickle DA, Kim EJ, Tomita S, Jia ZQ, Yau TM. Autologous heart cell transplantation improves cardiac function after myocardial injury. Ann Thorac Surg.1999;68(6):2074-80; discussion 80-1.
    36. Zhang H, Hou JF, Shen Y, Wang W, Wei YJ, Hu S. Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. J Cell Mol Med.2010;14(7):1975-87.
    37. Su W, Zhang H, Jia Z, Zhou C, Wei Y, Hu S. Cartilage-derived stromal cells:is it a novel cell resource for cell therapy to regenerate infarcted myocardium? Stem Cells. 2006;24(2):349-56.
    38. Zhang H, Yuan X. Jin PF, Hou JF, Wang W, Wei YJ, Hu S. Alteration of parasympathetic/sympathetic ratio in the infarcted myocardium after Schwann cell transplantation modified electrophysiological function of heart:a novel antiarrhythmic therapy. Circulation.2010; 122(11 Suppl):S193-200.
    39. Li W, Knowlton D, Van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol.2004;286(6):H2229-36.
    40. Qi G, Jia L, Li Y, Bian Y, Cheng J, Li H, Xiao C, Du J. Angiotensin II Infusion-Induced Inflammation, Monocytic Fibroblast Precursor Infiltration, and Cardiac Fibrosis are Pressure Dependent. Cardiovasc Toxicol.2011.
    41. Zhou Q, Zhou JY, Zheng Z, Zhang H, Hu SS. A novel vascularized patch enhances cell survival and modifies ventricular remodeling in a rat myocardial infarction model. J Thorac Cardiovasc Surg.2010;140(6):1388-96 el-3.
    42. Candelario-Jalil E, Thompson J, Taheri S, Grossetete M, Adair JC, Edmonds E, Prestopnik J, Wills J, Rosenberg GA. Matrix Metalloprotcinases Are Associated With Increased Blood-Brain Barrier Opening in Vascular Cognitive Impairment. Stroke.2011.
    43. Lee TM, Lai PY, Chang NC. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovasc Res.2010;85(1):137-46.
    44. Muller-Ehmsen J, Krausgrill B, Burst V, Schenk K, Neisen UC, Fries JW, Fleischmann BK, Hescheler J, Schwinger RH. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol.2006;41(5):876-84.
    45. Suzuki R, Hattori F, Itabashi Y, Yoshioka M, Yuasa S, Manabe-Kawaguchi H, Murata M, Makino S, Kokaji K, Yozu R, Fukuda K. Omentopexy enhances graft function in myocardial cell sheet transplantation. Biochem Biophys Res Commun. 2009;387(2):353-9.
    46. Goldsmith HS. Omental transposition in treatment of Alzheimer disease. J Am Coll Surg.2007;205(6):800-4.
    47. Villa MT, Chang DW. Muscle and omental flaps for chest wall reconstruction. Thorac Surg Clin.2010;20(4):543-50.
    48. Saifzadeh S, Pourreza B, Hobbenaghi R, Naghadeh BD, Kazemi S. Autogenous greater omentum, as a free nonvascularized graft, enhances bone healing:an experimental nonunion model. J Invest Surg.2009;22(2):129-37.
    49. Vineberg AM, Baichwal KS, Myers J. treatment of acute myocardial infarction by epicardiectomy and free omental graft. Surgery.1965;57:836-8.
    50. Feiler EM, Rainer WG. Surgical technic of myocardial revascularization (Vineberg 3). Am J Surg.1966;112(5):670-3.
    51. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation.2000; 102(16):1944-9.
    52. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res.2000;46(2):214-24.
    53. Yorikane R, Koike H, Miyake S. Electrophysiological effects of endothelin-1 on canine myocardial cells. J Cardiovasc Pharmacol.1991;17 Suppl 7:S159-62.
    54. Merkely B, Geller L, Toth M, Kiss O, Kekesi V, Solti F, Vecsey T, Horkay F, Tenczer J, Juhasz-Nagy A. Mechanism of endothelin-induced malignant ventricular arrhythmias in dogs. J Cardiovasc Pharmacol.1998;31 Suppl 1:S437-9.
    55. Deschamps AM, Zavadzkas J, Murphy RL, Koval CN, McLean JE, Jeffords L, Saunders SM, Sheats NJ, Stroud RE, Spinale FG. Interruption of endothelin signaling modifies membrane type 1 matrix metalloproteinase activity during ischemia and reperfusion. Am J Physiol Heart Circ Physiol.2008;294(2):H875-83.
    56. Matsushima H, Yamada N, Matsue H, Shimada S. The effects of endothelin-1 on degranulation, cytokine, and growth factor production by skin-derived mast cells. Eur J Immunol.2004;34(7):1910-9.
    57. Gepstein L, Ding C, Rehemedula D, Wilson EE, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin JE. In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells. 2010;28(12):2151-61.
    58.Kim SK, Pak HN, Park JH, Fang YF, Kim GI, Park YD, Hwang C, Kim YH, Kim BS. Cardiac cell therapy with mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, and reduced connexin43-positive gap junctions, but concomitant electrical pacing increases connexin43-positive gap junctions in canine heart. Cardiol Young.2010;20(3):308-17.
    59. Chen HS, Kim C, Mercola M. Electrophysiological challenges of cell-based myocardial repair. Circulation.2009;120(24):2496-508.
    60. Zhou Y, Wang S, Yu Z, Hoyt RF, Jr., Qu X, Horvath KA. Marrow stromal cells differentiate into vasculature after allogeneic transplantation into ischemic myocardium. Ann Thorac Surg.2011;91(4):1206-12.
    61. Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y, Xu M. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol.2010;299(6):H1772-81.
    1. Davies CA, Leyland AH. Trends and inequalities in short-term acute myocardial infarction case fatality in Scotland,1988-2004. Popul Health Metr.2010;8:33.
    2. Liew R, Chiam PT. Risk stratification for sudden cardiac death after acute myocardial infarction. Ann Acad Med Singapore.2010;39(3):237-46.
    3. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med.2001;345(20):1473-82.
    4. Adabag AS. Luepker RV, Roger VL, Gersh BJ. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol.2010;7(4):216-25.
    5. Cutler MJ, Rosenbaum DS, Dunlap ME. Structural and electrical remodeling as therapeutic targets in heart failure. J Electrocardiol.2007;40(6 Suppl):S1-7.
    6. Wellens HJ, Brugada P, Farre J. Ventricular arrhythmias:mechanisms and actions of antiarrhythmic drugs. Am Heart J.1984;107(5 Pt 2):1053-7.
    7. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000; 101 (16):1960-9.
    8. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS. Nerve sprouting and sudden cardiac death. Circ Res.2000;86(7):816-21.
    9. Lee TM, Lai PY, Chang NC. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovasc Res.2010;85(1):137-46.
    10. Lee TM, Chen CC, Lin MS, Chang NC. Effect of endothelin receptor antagonists on ventricular susceptibility in postinfarcted rats. Am J Physiol Heart Circ Physiol. 2008;294(4):H1871-9.
    11. Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, Nekolla SG, Dong J, Lardo AC, Halperin H, Dannals RF, Marban E, Bengel FM. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51(23):2266-75.
    12. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res.2001;50(2):409-16.
    13. Ieda M, Fukuda K, Hisaka Y, Kimura K, Kawaguchi H, Fujita J, Shimoda K, Takeshita E, Okano H, Kurihara Y, Kurihara H, Ishida J, Fukamizu A, Federoff HJ, Ogawa S. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest. 2004;113(6):876-84.
    14. Lee TM, Lin MS, Chang NC. Effect of pravastatin on sympathetic reinnervation in postinfarcted rats. Am J Physiol Heart Circ Physiol.2007;293(6):H3617-26.
    15. Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK. Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res. 1997;67(2):147-54.
    16. Garcia-Gomez I, Goldsmith HS, Angulo J, Prados A, Lopez-Hervas P, Cuevas B, Dujovny M, Cuevas P. Angiogenic capacity of human omental stem cells. Neurol Res.2005;27(8):807-11.
    17. Zhang H, Yuan X, Jin PF, Hou JF, Wang W, Wei YJ, Hu S. Alteration of parasympathetic/sympathetic ratio in the infarcted myocardium after Schwann cell transplantation modified electrophysiological function of heart:a novel antiarrhythmic therapy. Circulation.2010;122(11 Suppl):S193-200.
    18. Li W, Knowlton D, Van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol.2004;286(6):H2229-36.
    19. Qi G, Jia L, Li Y, Bian Y, Cheng J, Li H, Xiao C, Du J. Angiotensin II Infusion-Induced Inflammation, Monocytic Fibroblast Precursor Infiltration, and Cardiac Fibrosis are Pressure Dependent. Cardiovasc Toxicol.2011.
    20. Zhou Q, Zhou JY, Zheng Z, Zhang H, Hu SS. A novel vascularized patch enhances cell survival and modifies ventricular remodeling in a rat myocardial infarction model. J Thorac Cardiovasc Surg.2010;140(6):1388-96 e1-3.
    21. El-Sherif N, Hope RR, Scherlag BJ, Lazzara R. Re-entrant ventricular arrhythmias in the late myocardial infarction period.2. Patterns of initiation and termination of re-entry. Circulation.1977;55(5):702-19.
    22. Sakai T, Ogawa S, Miyazaki T, Hosokawa M, Sakurai K, Yoshino H, Nakamura Y. Electrophysiological effects of acute ischaemia on electrically stable myocardial infarction. Cardiovasc Res.1989;23(2):169-76.
    23. Tolmachov O, Ma YL. Themis M, Patel P, Spohr H, Macleod KT, Ullrich ND, Kienast Y, Coutelle C, Peters NS. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. BMC Cardiovasc Disord.2006:6:25.
    24. Li LD. Zhang CT, Ruan L, Ni MK, Fang Y, Wang GQ, Wang XF. Effects of combined amiodarone and antiarrhythmic peptide use on the cardiac gap junctions and incidence of induced ventricular arrhythmias in healed myocardial infarction rabbit models. Zhonghua Xin Xue Guan Bing Za Zhi. 2010;38(12):1102-7.
    25. Bacova B, Radosinska J, Knezl V, Kolenova L, Weismann P, Navarova J, Barancik M, Mitasikova M, Tribulova N. Omega-3 fatty acids and atorvastatin suppress ventricular fibrillation inducibility in hypertriglyceridemic rat hearts: implication of intracellular coupling protein, connexin-43. J Physiol Pharmacol. 2010;61(6):717-23.
    26. O'Quinn MP, Palatinus JA, Harris BS, Hewett KW, Gourdie RG. A Peptide Mimetic of the Connexin43 Carboxyl Terminus Reduces Gap Junction Remodeling and Induced Arrhythmia Following Ventricular Injury. Circ Res. 2011.
    27. Yuan MJ, Huang CX, Tang YH, Wang X, Huang H, Chen YJ, Wang T. A novel peptide ghrelin inhibits neural remodeling after myocardial infarction in rats. Eur J Pharmacol.2009;618(1-3):52-7.
    28. El-Helou V, Proulx C, Gosselin H, Clement R, Mimee A, Villeneuve L, Calderone A. Dexamethasone treatment of post-MI rats attenuates sympathetic innervation of the infarct region. J Appl Physiol.2008; 104(1):150-6.
    29. Van der Zee CE, Nielander HB, Vos JP, Lopes da Silva S, Verhaagen J, Oestreicher AB, Schrama LH, Schotman P, Gispen WH. Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting. J Neurosci.1989;9(10):3505-12.
    30. Chang CM, Wu TJ, Zhou S, Doshi RN, Lee MH, Ohara T, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation.2001;103(1):22-5.
    31. Korsching S, Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat:correlation with density of sympathetic innervation. Proc Natl Acad Sci USA.1983;80(11):3513-6.
    32. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res.2004;95(1):76-83.
    33. Hempstead BL. Sculpting organ innervation. J Clin Invest.2004; 113(6):811-3.
    34. Stener-Victorin E. Lundeberg T, Cajander S, Aloe L, Manni L, Waldenstrom U, Janson PO. Steroid-induced polycystic ovaries in rats:effect of electro-acupuncture on concentrations of endothelin-1 and nerve growth factor (NGF), and expression of NGF mRNA in the ovaries, the adrenal glands, and the central nervous system. Reprod Biol Endocrinol.2003;1:33.
    1. Lee TH, Hillis LD, Nabel EG. CABG vs. stenting--clinical implications of the SYNTAX trial. N Engl J Med.2009;360(8):e10.
    2. Bunch TJ, May HT, Bair TL, Crandall BG, Weiss JP, Osborn.JS, Anderson JL, Muhlestein JB, Horne BD, Lappe DL, Day JD. Trends in early and late morality in patients undergoing coronary catheterization for myocardial infarction: Implications on observation periods and risk factors to determine ICD candidacy. Heart Rhythm.2011.
    3. Nashef SA, Roques F, Michel P, Gauducheau E, Lemeshow S, Salamon R. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg.1999; 16(1):9-13.
    4. Mark DB. Implications of cost in treatment selection for patients with coronary heart disease. Ann Thorac Surg.1996;61(2 Suppl):S12-5; discussion S33-4.
    5. Edwards FH, Grover FL, Shroyer AL, Schwartz M, Bero J. The Society of Thoracic Surgeons National Cardiac Surgery Database:current risk assessment. Ann Thorac Surg.1997;63(3):903-8.
    6. Reid C, Billah B, Dinh D, Smith J, Skillington P, Yii M, Seevanayagam S, Mohajeri M, Shardey G. An Australian risk prediction model for 30-day mortality after isolated coronary artery bypass:the AusSCORE. J Thorac Cardiovasc Surg. 2009;138(4):904-10.
    7. Higgins TL, Estafanous FG, Loop FD, Beck GJ, Blum JM, Paranandi L. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients. A clinical severity score. JAMA. 1992;267(17):2344-8.
    8. Michel P, Roques F, Nashef SA. Logistic or additive EuroSCORE for high-risk patients? Eur J Cardiothorac Surg.2003;23(5):684-7; discussion 7.
    9. van Straten AH, Tan EM, Hamad MA, Martens EJ, van Zundert AA. Evaluation of the EuroSCORE risk scoring model for patients undergoing coronary artery bypass graft surgery:a word of caution. Neth Heart J.2010;18(7-8):355-9.
    10. Toumpoulis IK, Anagnostopoulos CE, DeRose JJ, Swistel DG. Does EuroSCORE predict length of stay and specific postoperative complications after coronary artery bypass grafting? Int J Cardiol.2005; 105(1):19-25.
    11. Nashef SA, Roques F, Hammill BG, Peterson ED, Michel P, Grover FL, Wyse RK, Ferguson TB. Validation of European System for Cardiac Operative Risk Evaluation (EuroSCORE) in North American cardiac surgery. Eur J Cardiothorac Surg.2002;22(1):101-5.
    12. Toumpoulis IK, Anagnostopoulos CE, Toumpoulis SK, DeRose JJ, Jr., Swistel DG. EuroSCORE predicts long-term mortality after heart valve surgery. Ann Thorac Surg.2005;79(6):1902-8.
    13. Hirose H, Inaba H, Noguchi C, Tambara K, Yamamoto T, Yamasaki M, Kikuchi K, Amano A. EuroSCORE predicts postoperative mortality, certain morbidities, and recovery time. Interact Cardiovasc Thorac Surg.2009;9(4):613-7.
    14. Hirose H, Noguchi C, Inaba H, Tambara K, Yamamoto T, Yamasaki M, Kikuchi K, Amano A. The role of EuroSCORE in patients undergoing off-pump coronary artery bypass. Interact Cardiovasc Thorac Surg.2010;10(5):771-6.
    15. Choong CK, Sergeant P, Nashef SA, Smith JA, Bridgewater B. The EuroSCORE risk stratification system in the current era:how accurate is it and what should be done if it is inaccurate? Eur J Cardiothorac Surg.2009;35(1):59-61.
    16. Gummert JF, Funkat A, Osswald B, Beckmann A, Schiller W, Krian A, Beyersdorf F, Haverich A, Cremer J. EuroSCORE overestimates the risk of cardiac surgery:results from the national registry of the German Society of Thoracic and Cardiovascular Surgery. Clin Res Cardiol.2009;98(6):363-9.
    17. Akar AR, Kurtcephe M, Sener E, Alhan C, Durdu S, Kunt AG, Guvenir HA. Validation of the EuroSCORE risk models in Turkish adult cardiac surgical population. Eur J Cardiothorac Surg.2011.
    18. Zheng Z, Li Y, Zhang S, Hu S. The Chinese coronary artery bypass grafting registry study:how well does the EuroSCORE predict operative risk for Chinese population? Eur J Cardiothorac Surg.2009;35(1):54-8.
    19. O'Brien PE, Sawyer SM, Laurie C, Brown WA, Skinner S. Veit F, Paul E, Burton PR, McGrice M, Anderson M, Dixon JB. Laparoscopic adjustable gastric banding in severely obese adolescents:a randomized trial. JAMA.2010;303(6):519-26.
    20. Hosmer DW, Taber S, Lemeshow S. The importance of assessing the fit of logistic regression models:a case study. Am J Public Health.1991;81 (12):1630-5.
    21. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240(4857):1285-93.
    22. Abramov D, Tamariz MG, Fremes SE, Guru V, Borger MA, Christakis GT, Bhatnagar G, Sever JY, Goldman BS. Trends in coronary artery bypass surgery results:a recent,9-year study. Ann Thorac Surg.2000;70(1):84-90.
    23. Pintor PP, Colangelo S, Bobbio M. Evolution of case-mix in heart surgery:from mortality risk to complication risk. Eur J Cardiothorac Surg.2002;22(6):927-33.
    24. Ngaage DL. The EuroSCORE has served us well. Eur J Cardiothorac Surg. 2010;38(1):114; author reply-5.
    25. Youn YN, Kwak YL, Yoo KJ. Can the EuroSCORE predict the early and mid-term mortality after off-pump coronary artery bypass grafting? Ann Thorac Surg.2007;83(6):2111-7.
    1. Levene LS, Baker R, Bankart MJ, Khunti K. Association of features of primary health care with coronary heart disease mortality. JAMA.2010;304(18):2028-34.
    2. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, Ali IS, Pohost G, Gradinac S, Abraham WT, Yii M, Prabhakaran D, Szwed H, Ferrazzi P, Petrie MC, O'Connor CM, Panchavinnin P, She L, Bonow RO, Rankin GR, Jones RH, Rouleau JL. Coronary-Artery Bypass Surgery in Patients with Left Ventricular Dysfunction. N Engl J Med.2011.
    3. Park SJ, Kim YH, Park DW, Yun SC, Ahn JM, Song HG, Lee JY, Kim WJ, Kang SJ, Lee SW, Lee CW, Park SW, Chung CH, Lee JW, Lim DS, Rha SW, Lee SG, Gwon HC, Kim HS, Chae IH, Jang Y, Jeong MH, Tahk SJ, Seung KB. Randomized Trial of Stents versus Bypass Surgery for Left Main Coronary Artery Disease. N Engl J Med.2011.
    4. Moller CH, Perko MJ, Lund JT, Andersen LW, Kelbaek H, Madsen JK, Winkel P, Gluud C, Steinbruchel DA. Three-year follow-up in a subset of high-risk patients randomly assigned to off-pump versus on-pump coronary artery bypass surgery: the Best Bypass Surgery Trial. Heart.2011.
    5. Hahalis G, Dangas G, Davlouros P, Alexopoulos D. Revascularization strategies for stable multivessel and unprotected left main coronary artery disease:From BARI to SYNTAX. Int J Cardiol.2011.
    6. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078-80.
    7. Hertz MI, Aurora P, Christie JD, Dobbels F, Edwards LB, Kirk R, Kucheryavaya AY, Rahmel AO, Rowe AW, Stehlik J. Scientific Registry of the International Society for Heart and Lung Transplantation:introduction to the 2010 annual reports. J Heart Lung Transplant.2010;29(10):1083-8.
    8. Kobashigawa J, Crespo-Leiro MG, Ensminger SM, Reichenspurner H, Angelini A, Berry G, Burke M, Czer L, Hiemann N, Kfoury AG, Mancini D, Mohacsi P, Patel J, Pereira N, Platt JL, Reed EF, Reinsmoen N, Rodriguez ER, Rose ML, Russell SD, Starling R, Suciu-Foca N, Tallaj J, Taylor DO, Van Bakel A, West L, Zeevi A, Zuckermann A. Report from a consensus conference on antibody-mediated rejection in heart transplantation. J Heart Lung Transplant. 2011;30(3):252-69.
    9. Emin A, Rogers CA, Thekkudan J, Bonser RS, Banner NR. Antithymocyte globulin induction therapy for adult heart transplantation:A UK national study. J Heart Lung Transplant.2011.
    10. Angert D, Berretta RM, Kubo H, Zhang H, Chen X, Wang W, Ogorek B, Barbe M, Houser SR. Repair of the Injured Adult Heart Involves New Myocytes Potentially Derived From Resident Cardiac Stem Cells. Circ Res.2011.
    11. Oguz E, Ayik F, Ozturk P, Engin C, Nalbantgil S, Yagdi T, Ozbaran M. Long-term Results of Autologous Stem Cell Transplantation in the Treatment of Patients With Congestive Heart Failure. Transplant Proc.2011;43(3):931-4.
    12. Persoon S, Kersten MJ, Chinapaw MJ, Buff art LM, Burghout H, Schep G, Brug J, Nollet F. Design of the EXercise Intervention after Stem cell Transplantation (EXIST) study:a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of an individualized high intensity physical exercise program on fitness and fatigue in patients with multiple myeloma or (non-) Hodgkin's lymphoma treated with high dose chemotherapy and autologous stem cell transplantation. BMC Cancer.2010; 10:671.
    13. Cleland JG, Coletta AP, Torabi A, Ahmed D, Clark AL. Clinical trials update from the European Society of Cardiology Meeting 2010:SHIFT, PEARL-HF, STAR-heart, and HEBE-Ⅲ. Eur J Heart Fail.2010; 12(11):1261-4.
    14. Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease:promise, uncertainties, and challenges. Eur Heart J. 2011.
    15. D'Alessandro DA, Michler RE. Current and future status of stem cell therapy in heart failure. Curr Treat Options Cardiovasc Med.2010;12(6):614-27.
    16. Wang HJ, Bertrand-de Haas M, van Blitterswijk CA, Lamme EN. Engineering of a dermal equivalent:seeding and culturing fibroblasts in PEGT/PBT copolymer scaffolds. Tissue Eng.2003;9(5):909-17.
    17. Rada T, Reis RL, Gomes ME. Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential. Stem Cell Rev.2011;7(1):64-76.
    18. Makowski L, Caspar DL, Phillips WC, Baker TS, Goodenough DA. Gap junction structures. Ⅵ. Variation and conservation in connexon conformation and packing. BiophysJ.1984;45(1):208-18.
    19. Gros DB, Nicholson BJ, Revel JP. Comparative analysis of the gap junction protein from rat heart and liver:is there a tissue specificity of gap junctions? Cell. 1983;35(2 Pt 1):539-49.
    20. Li RK, Jia ZQ, Weisel RD. Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation.1999; 100(19 Suppl):Ⅱ63-9.
    21. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle:artificial myocardial tissue. J Thorac Cardiovasc Surg. 2002;124(1):63-9.
    22. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Bioengineered cardiac grafts:A new approach to repair the infarcted myocardium? Circulation.2000;102(19 Suppl 3):Ⅲ56-61.
    23. Miyagawa S, Roth M, Saito A, Sawa Y, Kostin S. Tissue-engineered cardiac constructs for cardiac repair. Ann Thorac Surg.2011;91(1):320-9.
    24. Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng.2000;68(1):106-14.
    25. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation.2002; 106(12 Suppl 1):1151-7.
    26. Naito H, Melnychenko I, Didie M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhagen T, Zimmermann WH. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation.2006; 114(1 Suppl):172-8.
    27. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med.2006;12(4):452-8.
    28. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials.1995;16(4):297-303.
    29. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res.2002;90(3):e40.
    30. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J.2006;20(6):708-10.
    31. Stevens KR, Kreutziger KL, Dupras SK, Korte FS. Regnier M, Muskheli V, Nourse MB, Bendixen K, Reinecke H, Murry CE. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA.2009;106(39):16568-73.
    32. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix:using nature's platform to engineer a bioartificial heart. Nat Med.2008;14(2):213-21.
    33. Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension:an ultrastructural study. J Anat.1979;129(Pt 3):541-59.
    34. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci.2007;53(1-2):25-35.
    35. Qian SW, Li X, Zhang YY, Huang HY, Liu Y, Sun X, Tang QQ. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Dev Biol.2010; 10:47.
    36. Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S, Marrelli A, Dolo V, Pavan A, Saccardi R, Tyndall A. Giacomelli R, Cerinic MM. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells:new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum. 2007;56(6):1994-2004.
    37. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697-705.
    38. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation.1999; 100(19 Suppl):II247-56.
    39. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med.2003;9(9):1195-201.
    40. Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res.2004;94(2):223-9.
    41. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg.2003;75(3):775-9.
    42. Choi YS. Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ. Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med.2010; 14(4):878-89.
    43. Choi YS, Matsuda K, Dusting GJ, Morrison WA, Dilley RJ. Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials. 2010;31(8):2236-42.
    44. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature.2008;453(7194):524-8.
    45. Blancas A, Shih A, Lauer N, McCloskey KE. Endothelial Cells from Embryonic Stem Cells in Chemically Defined Medium. Stem Cells Dev.2011.
    46. Vazao H, Neves RP, Graos M, Ferreira L. Towards the maturation and characterization of smooth muscle cells derived from human embryonic stem cells. PLoS One.201 1;6(3):e17771.
    47. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res.2007;100(2):263-72.
    48. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE. Transplantation of undifferentiated murine embryonic stem cells in the heart:teratoma formation and immune response. FASEB J.2007;21(7):1345-57.
    49. Dengler J, Song H, Thavandiran N, Masse S, Wood GA, Nanthakumar K, Zandstra PW, Radisic M. Engineered heart tissue enables study of residual undifferentiated embryonic stem cell activity in a cardiac environment. Biotechnol Bioeng.2011;108(3):704-19.
    50. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76.
    51. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell.2007;131(5):861-72.
    52. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation.2009; 120(15):1513-23.
    53. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP. Thomson JA. Kamp TJ. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res.2009;104(4):e30-41.
    54. Moretti A, Bellin M, Jung CB, Thies TM, Takashima Y, Bernshausen A, Schiemann M, Fischer S, Moosmang S, Smith AG, Lam JT, Laugwitz KL. Mouse and human induced pluripotent stem cells as a source for multipotent Isll+ cardiovascular progenitors. FASEB J.2010;24(3):700-11.
    55. Hosseinkhani H, Hosseinkhani M, Hattori S, Matsuoka R, Kawaguchi N. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J Biomed Mater Res A.2010;94(1):1-8.
    56. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A.2003;66(3):586-95.
    57. Pego AP, Van Luyn MJ, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone:Degradation and tissue response. J Biomed Mater Res A.2003;67(3):1044-54.
    58. Chen QZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials. 2008;29(1):47-57.
    59. Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix:a new heart muscle model system. FASEB J.1997;11(8):683-94.
    60. Krupnick AS, Kreisel D, Engels FH, Szeto WY, Plappert T, Popma SH, Flake AW, Rosengard BR. A novel small animal model of left ventricular tissue engineering. J Heart Lung Transplant.2002;21(2):233-43.
    61. Johnson PC, Mikos AG, Fisher JP, Jansen JA. Strategic directions in tissue engineering. Tissue Eng.2007;13(12):2827-37.
    62. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G. Cardiac tissue engineering:cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng. 1999;64(5):580-9.
    63. Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol Prog.2010;26(2):565-72.
    64. Kensah G, Gruh I, Viering J, Schumann H, Dahlmann J. Meyer H, Skvorc D, Bar A, Akhyari P, Heisterkamp A, Haverich A, Martin U. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng Part C Methods. 2011;17(4):463-73.
    65. Kofidis T, Lenz A, Boublik J, Akhyari P, Wachsmann B, Mueller-Stahl K, Hofmann M, Haverich A. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials.2003;24(27):5009-14.
    66. Radisic M, Euloth M, Yang L, Langer R, Freed LE, Vunjak-Novakovic G. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol Bioeng.2003;82(4):403-14.
    67. Morritt AN, Bortolotto SK, Dilley RJ, Han X, Kompa AR, McCombe D, Wright CE, Itescu S, Angus JA, Morrison WA. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation.2007; 115(3):353-60.
    68. Seach N, Mattesich M, Abberton K, Matsuda K, Tilkorn DJ, Rophael J, Boyd RL Morrison WA. Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts. Tissue Eng Part C Methods. 2010;16(3):543-51.
    69. Forster N, Palmer JA, Yeoh G, Ong WC, Mitchell GM, Slavin J, Tirnitz-Parker J, Morrison WA. Expansion and hepatocytic differentiation of liver progenitor cells in vivo using a vascularized tissue engineering chamber in mice. Tissue Eng Part C Methods.2011;17(3):359-66.
    70. Nomi M, Miyake H, Sugita Y, Fujisawa M, Soker S. Role of growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering. Curr Stem Cell Res Ther.2006;1(3):333-43.
    71. Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res. 2006;98(5):705-12.
    72. Gepstein L, Ding C, Rehemedula D, Wilson EE, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin JE. In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells. 2010;28(12):2151-61.
    73. Liao SY, Liu Y, Siu CW, Zhang Y, Lai WH, Au KW, Lee YK, Chan YC, Yip PM, Wu EX, Wu Y, Lau CP, Li RA, Tse HF. Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm.2010;7(12):1852-9.
    74. Motoki N, Shimizu T, Akazawa Y, Saito S. Tanaka M, Yanagisawa R, Motoki H, Nakazawa Y, Sakashita K, Iwasaki Y, Shiohara M, Koike K. Increased pretransplant QT dispersion as a risk factor for the development of cardiac complications during and after preparative conditioning for pediatric allogeneic hematopoietic stem cell transplantation. Pediatr Transplant.2010;14(8):986-92.
    1. Santangeli P, Di Biase L, Dello Russo A, Casella M, Bartoletti S, Santarelli P, Pelargonio G, Natale A. Meta-analysis:age and effectiveness of prophylactic implantable cardioverter-defibrillators. Ann Intern Med.2010;153(9):592-9.
    2. Liew R, Chiam PT. Risk stratification for sudden cardiac death after acute myocardial infarction. Ann Acad Med Singapore.2010;39(3):237-46.
    3. Liew R. Prediction of sudden arrhythmic death following acute myocardial infarction. Heart.2010;96(14):1086-94.
    4. Davies CA, Leyland AH. Trends and inequalities in short-term acute myocardial infarction case fatality in Scotland,1988-2004. Popul Health Metr.2010;8:33.
    5. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med.2001;345(20):1473-82.
    6. Adabag AS, Luepker RV, Roger VL, Gersh BJ. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol.2010;7(4):216-25.
    7. Makkar KM, Sanoski CA, Spinler SA. Role of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers. and aldosterone antagonists in the prevention of atrial and ventricular arrhythmias. Pharmacotherapy. 2009;29(1):31-48.
    8. Cutler MJ, Rosenbaum DS, Dunlap ME. Structural and electrical remodeling as therapeutic targets in heart failure. J Electrocardiol.2007;40(6 Suppl):S1-7.
    9. Wellens HJ, Brugada P, Farre J. Ventricular arrhythmias:mechanisms and actions of antiarrhythmic drugs. Am Heart J.1984; 107(5 Pt 2):1053-7.
    10. Podrid PJ, Fuchs T, Candinas R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation.1990;82(2 Suppl):I103-13.
    11. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101(16):1960-9.
    12. Angelakos ET, King MP, Millard RW. Regional distribution of catecholamines in the hearts of various species. Ann N Y Acad Sci.1969; 156(1):219-40.
    13. Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels.2003;18(1):32-9.
    14. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res.1966;18(4):416-28.
    15. Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters RJ, Durrer D. Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation.1985;72(3):585-95.
    16. Brandys JC, Hopkins DA, Armour JA. Cardiac responses to stimulation of discrete loci within canine sympathetic ganglia following hexamethonium. J Auton Nerv Syst.1984;11(3):243-55.
    17. Cardinal R, Scherlag BJ, Vermeulen M, Armour JA. Distinct activation patterns of idioventricular rhythms and sympathetically-induced ventricular tachycardias in dogs with atrioventricular block. Pacing Clin Electrophysiol. 1992;15(9):1300-16.
    18. Snow HM, Furnival CM, Linden RJ. Functional distribution of sympathetic and parasympathetic nerves to the heart. Br Heart J.1969;31(3):393.
    19. Wasilewska-Dziubinska E. Distribution of acetylcholine in the structures of dog heart ventricles. Acta Physiol Pol.1970;21(3):255-9.
    20. Ahonen A, Harkonen M. Juntunen J, Kormano M, Penttila A. Effects of myocardial infarction on adrenergic nerves of the rat heart muscle, a histochemical study. Acta Physiol Scand.1975;93(3):336-44.
    21. Barber MJ, Thomas JX, Jr., Jones SB, Randall WC. Effect of sympathetic nerve stimulation and cardiac denervation on MBF during LAD occlusion. Am J Physiol.1982;243(4):H566-74.
    22. Sosunov AA, Afonskaia NI, Ostrogorskii Iu M, Smirnova S. Histochemical study of the adrenergic innervation of the heart in experimental myocardial infarct treated by intravenous nitroglycerin administration. Kardiologiia. 1982;22(3):109-13.
    23. Inoue H, Zipes DP. Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart. Circ Res. 1988;62(6):1111-20.
    24. Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellman HN, Zipes DP. Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation.1988;78(4):1008-19.
    25. Vracko R, Thorning D, Frederickson RG. Fate of nerve fibers in necrotic, healing, and healed rat myocardium. Lab Invest.1990;63(4):490-501.
    26. Nori SL, Gaudino M, Alessandrini F, Bronzetti E, Santarelli P. Immunohistochemical evidence for sympathetic denervation and reinnervation after necrotic injury in rat myocardium. Cell Mol Biol (Noisy-le-grand). 1995;41(6):799-807.
    27. Simula S, Lakka T, Kuikka J, Laitinen T, Remes J, Kettunen R, Hartikainen J. Cardiac adrenergic innervation within the first 3 months after acute myocardial infarction. Clin Physiol.2000;20(5):366-73.
    28. Hartikainen J, Kuikka J, Mantysaari M, Lansimies E, Pyorala K. Sympathetic reinnervation after acute myocardial infarction. Am J Cardiol.1996;77(1):5-9.
    29. Dae MW, O'Connell JW, Botvinick EH, Chin MC. Acute and chronic effects of transient myocardial ischemia on sympathetic nerve activity, density, and norepinephrine content. Cardiovasc Res.1995;30(2):270-80.
    30. Dae MW, Herre JM, O'Connell JW, Botvinick EH, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction. J Am Coll Cardiol.1991; 17(6):1416-23.
    31. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS. Nerve sprouting and sudden cardiac death. Circ Res.2000;86(7):816-21.
    32. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res.2004;95(1):76-83.
    33. Zhou S, Cao JM, Swissa M, Gonzalez-Gomez I, Chang CM, Chien K, Miyauchi Y, Fu KJ, Yi J, Asotra K, Karagueuzian HS, Fishbein MC, Chen PS, Chen LS. Low-affinity nerve growth factor receptor p75NTR immunoreactivity in the myocardium with sympathetic hyperinnervation. J Cardiovasc Electrophysiol. 2004;15(4):430-7.
    34. Ieda M, Fukuda K, Hisaka Y, Kimura K, Kawaguchi H, Fujita J, Shimoda K, Takeshita E, Okano H, Kurihara Y, Kurihara H, Ishida J, Fukamizu A, Federoff HJ, Ogawa S. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest. 2004;113(6):876-84.
    35. Eitel I, Nowak M, Stehl C, Adams V, Fuernau G, Hildebrand L, Desch S, Schuler G, Thiele H. Endothelin-1 release in acute myocardial infarction as a predictor of long-term prognosis and no-reflow assessed by contrast-enhanced magnetic resonance imaging. Am Heart J.2010;159(5):882-90.
    36. Murray DB, Gardner JD, Brower GL, Janicki JS. Effects of nonselective endothelin-1 receptor antagonism on cardiac mast cell-mediated ventricular remodeling in rats. Am J Physiol Heart Circ Physiol.2008;294(3):H1251-7.
    37. Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res.2006;1124(1):142-54.
    38. Wernli G, Hasan W, Bhattacherjee A, van Rooijen N, Smith PG. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol.2009; 104(6):681-93.
    39. Rana OR, Schauerte P, Hommes D, Schwinger RH, Schroder JW, Hoffmann R, Saygili E. Mechanical stretch induces nerve sprouting in rat sympathetic neurocytes. Auton Neurosci.2010;155(1-2):25-32.
    40. Suarez V, Guntinas-Lichius O, Streppel M, Ingorokva S, Grosheva M, Neiss WF, Angelov DN, Klimaschewski L. The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur J Neurosci. 2006;24(6):1555-64.
    41. Habecker BA, Gritman KR, Willison BD, Van Winkle DM. Myocardial infarction stimulates galanin expression in cardiac sympathetic neurons. Neuropeptides. 2005;39(2):89-95.
    42. Ewert TJ, Gritman KR, Bader M, Habecker BA. Post-infarct cardiac sympathetic hyperactivity regulates galanin expression. Neurosci Lett.2008;436(2):163-6.
    43. Fagret D, Wolf JE, Comet M. Myocardial uptake of meta-[123I]-iodobenzylguanidine [(123I]-MIBG) in patients with myocardial infarct. Eur J Nucl Med.1989; 15(9):624-8.
    44. Nishimura T, Uehara T, Oka H, Kumita S, Mitani I, Yokota I, Hayashida K, Haze K, Ohe T. Serial assessment of denervated but viable myocardium following acute myocardial infarction by using 123I-MIBG and 201T1C1 myocardial SPECT. Kaku Igaku.1990;27(7):709-18.
    45. Lekakis J, Antoniou A, Vassilopoulos N, Tsinikas D, Palaistides C, Kostamis P, Moulopoulos S.I-123 metaiodobenzylguanidine--thallium-201 mismatch following myocardial infarction. Clin Cardiol.1994;17(1):21-5.
    46. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation.1987;75(4):877-87.
    47. Zhou S, Cao JM, Tebb ZD, Ohara T, Huang HL, Omichi C, Lee MH, Kenknight BH, Chen LS, Fishbein MC, Karagueuzian HS, Chen PS. Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol.2001; 12(9):1068-73.
    48. Simoes MV, Barthel P, Matsunari I, Nekolla SG, Schomig A, Schwaiger M, Schmidt G, Bengel FM. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J.2004;25(7):551-7.
    49. Lu ZB, Jiang H, Yu Y, Zhao DD, Lei HD, Wang T, Huang CX. Relationship between sympathetic remodeling and electrical remodeling at infarcted border zone of rabbit with chronic myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi.2006;34(11):1016-20.
    50. Jiang H, Lu Z, Yu Y, Zhao D, Yang B, Huang C. Relationship between sympathetic nerve sprouting and repolarization dispersion at peri-infarct zone after myocardial infarction. Auton Neurosci.2007; 134(1-2):18-25.
    51. Ren C, Wang F, Li G, Jiao Q, Bai J, Yu D, Hao W, Wang R, Cao JM. Nerve sprouting suppresses myocardial I(to) and I(K1) channels and increases severity to ventricular fibrillation in rat. Auton Neurosci.2008;144(1-2):22-9.
    52. Jiang H, Lu Z, Yu Y, Zhao D, Jian X, Yang B, Huang C. Effects of metoprolol on sympathetic remodeling and electrical remodeling at infarcted border zone after myocardial infarction in rabbits. Cardiology.2007;108(3):176-82.
    53. Wen H, Jiang H, Lu Z, Hu X, He B, Tang Q, Huang C. Carvedilol ameliorates sympathetic nerve sprouting and electrical remodeling after myocardial infarction in rats. Biomed Pharmacother.2010;64(7):446-50.
    54. Lee TM, Lin MS, Chang NC. Effect of pravastatin on sympathetic reinnervation in postinfarcted rats. Am J Physiol Heart Circ Physiol.2007;293(6):H3617-26.
    55. Lee TM, Lin MS, Chang NC. Physiological concentration of 17beta-estradiol on sympathetic reinnervation in ovariectomized infarcted rats. Endocrinology. 2008;149(3):1205-13.
    56. Kang CS, Chen CC, Lin CC, Chang NC, Lee TM. Effect of ATP-sensitive potassium channel agonists on sympathetic hyperinnervation in postinfarcted rat hearts. Am J Physiol Heart Circ Physiol.2009;296(6):H 1949-59.
    57. Yan SH, Hu HS, Wang LX, Xing QC, Cheng WJ, Xue M. Effects of angiotensin converting enzyme inhibition on cardiac innervation and ventricular arrhythmias after myocardial infarction. Clin Invest Med.2008;31(4):E198-205.
    58. Montecucco F, Pende A, Mach F. The renin-angiotensin system modulates inflammatory processes in atherosclerosis:evidence from basic research and clinical studies. Mediators Inflamm.2009;2009:752406.
    59. Cadeddu C, Piras A, Mantovani G, Deidda M, Dessi M, Madeddu C, Massa E, Mercuro G. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J.2010;160(3):487 e1-7.
    60. Yuan MJ, Huang CX, Tang YH, Wang X, Huang H, Chen YJ, Wang T. A novel peptide ghrelin inhibits neural remodeling after myocardial infarction in rats. Eur J Pharmacol.2009;618(1-3):52-7.
    61. El-Helou V, Proulx C, Gosselin H, Clement R, Mimee A, Villeneuve L, Calderone A. Dexamethasone treatment of post-MI rats attenuates sympathetic innervation of the infarct region. J Appl Physiol.2008;104(1):150-6.
    62. Xin P, Pan Y, Zhu W, Huang S, Wei M, Chen C. Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur J Pharmacol.2010;649(1-3):293-300.
    63. Lee TM, Chen CC, Hsu YJ. Differential effects of NADPH oxidase and xanthine oxidase inhibition on sympathetic reinnervation in postinfarct rat hearts. Free Radic Biol Med.2011.
    64. Lee TM, Chen CC, Lin MS, Chang NC. Effect of endothelin receptor antagonists on ventricular susceptibility in postinfarcted rats. Am J Physiol Heart Circ Physiol. 2008;294(4):H1871-9.
    65. Lee TM, Lai PY, Chang NC. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovasc Res.2010;85(1):137-46.
    66. Saraste A, Nekolla SG, Schwaiger M. Cardiovascular molecular imaging:an overview. Cardiovasc Res.2009;83(4):643-52.
    67. Nishimura T, Oka H, Sago M, Matsuo T, Uehara T, Noda H, Takano H. Serial assessment of denervated but viable myocardium following acute myocardial infarction in dogs using iodine-123 metaiodobenzylguanidine and thallium-201 chloride myocardial single photon emission tomography. Eur J Nucl Med. 1992;19(1):25-9.
    68. Kramer CM, Nicol PD, Rogers WJ, Suzuki MM, Shaffer A, Theobald TM, Reichek N. Reduced sympathetic innervation underlies adjacent noninfarcted region dysfunction during left ventricular remodeling. J Am Coll Cardiol. 1997;30(4):1079-85.
    69. Mitrani RD, Klein LS, Miles WM, Hackett FK, Burt RW, Wellman HN, Zipes DP. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol.1993;22(5):1344-53.
    70. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Schalij MJ, Bax JJ. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol.2010;55(24):2769-77.
    71. Nishisato K, Hashimoto A, Nakata T, Doi T, Yamamoto H, Nagahara D, Shimoshige S, Yuda S, Tsuchihashi K, Shimamoto K. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: quantification of cardiac tracers in patients with ICDs. J Nucl Med. 2010;51(8):1241-9.
    72. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, Masuda M, Okuda K, Iwasaki Y, Yasui T, Hori M, Fukunami M. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction:results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol.2009;53(5):426-35.
    73. Heston TF, Wahl RL. Clinical significance of iodine-123 metaiodobenzylguanidine cardiac imaging. J Am Coll Cardiol.2009;54(6):575-6; author reply 6.
    74. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3(1):92-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700