层状复合金属氢氧化物对Ni~(2+)的吸附规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别合成了两种金属体系(Mg-Al;Zn-Al),不同M2+/M3+比例(2:1、3:1、4:1),不同客体(CO32-、NO3-、EDTA)插层的水滑石,利用XRD、IR、BET、SEM等多种表征手段研究了水滑石的结构,随后以水滑石为吸附剂对水中的Ni2+进行吸附实验。利用ICP确定溶液中Ni2+浓度随时间的变化,并对吸附过程进行动力学拟合,研究了水滑石对Ni2+的吸附规律。
     由共沉淀法制备了Zn/Al投料比为(2:1,3:1,4:1),不同客体离子(CO32-, NO3-, EDTA)插层的LDHs,具有典型的水滑石层状结构,层间距的变化和FT-IT谱图表明CO32-, NO3-, EDTA分别插层成功。进而进行了吸附实验,Zn/Al投料比为(2:1)的ZnAl-CO3-LDHs具有最大的去除率,可达96%,其平衡吸附量可达19mg/g;利用动力学方程拟合其吸附过程,水滑石对于Ni2+的吸附过程符合准二级方程,表明LDHs与Ni2+的化学作用是吸附过程的速控步骤。Zn/Al投料比为(4:1)的ZnAl-EDTA-LDHs的吸附速率常数K2最大,可达0.12g·mg-1·min-1。
     同样方法制备了Mg-Al体系的水滑石,并对其结构和吸附性能进行了表征,具有典型的水滑石层状结构,层间距的变化和FT-IT谱图表明CO32-,NO3-, EDTA分别插层成功。去除率最大的为Mg/Al投料比为(3:1)的MgAl-CO3-LDHs,其平衡吸附量可达84mg/g,用准二级动力学方程拟合Mg-Al体系对于Ni2+的吸附过程,其相关系数可无限趋近于1。而Mg/Al投料比为(2:1)的MgAl-NO3-LDHs的准二级吸附速率常数可达0.05g·mg-1·min-1, MgAl-EDTA-LDHs在3min内即可完成其快速吸附过程,5mmin左右达到吸附平衡。
     综上所述,比表面积较大的水滑石是较好的Ni2+吸附剂,吸附速率较快,吸附量较大,特别是C032-插层的水滑石作为吸附剂,200min之内就能达到平衡,处理后的水溶液中Ni2+浓度最低达到0.0084 mg/L,远小于GB8978-2002中规定的0.5mg/L的排放标准。因此,水滑石有望于日后应用于含Ni2+废水的处理中。
In this paper, ZnAl-LDHs and MgAl-LDHs intercalated with CO32-, NO3-, EDTA were synthesized by coprecipitation method. XRD, IR, BET, and SEM were used to characterize the structure and morphology of LDHs. The samples were added to the solution of Ni(NO3)2·6H2O in order to study the adsorption properties. The concentration of Ni2+ was examined at real-time by ICP analysis. The adsorption kinetics were studied.
     The XRD patterns are characteristic of a layered phase with the basal diffraction due to planes (003), (006) and (110). FT-IR spectra indicate that CO32-, NO3- and EDTA were intercalated between the layers respectively. As the specific surface of the LDHs increase, the saturated adsorptive capacity increases. ZnAl-CO3-LDHs (Zn/Al molar ratio=2) has the maximum capacity, up to 19 mg/g, that is about 96% Ni2+ in the solution. The Pseudo second equation can perfectly fit the Ni2+ adsorption process on LDHs, indicates a chemispoption mechanism being the rate-determining step.
     Mg-Al LDHs have a characteristic layered structure, and CO32-, NO3- and EDTA were intercalated between the layers respectively. CO3-LDHs with the molar ratio of (3:1) which has the maximum adsorptive capacity about 84 mg/g.
     As An adsorptive material of Ni2+, the LDHs with big specific surface have favourable properties. Especially the MgAl-CO3-LDHs can reduce the Ni2+ concentration to 0.0087 mg/L which is much less than the standard 0.5mg/L of GB8978-2002. Obviously, LDHs can be expected to put in fact in the treatment of Ni2+ contained in the wastewater.
引文
[1]Anirudhan.T,Suchithra.P.S,Synthesis and characterization otannin-immobilized hydrotalcite as a potential adsorbent of heavy metal ions in effluent treatments,Appl. Clay Sci.2008,42: 214-223
    [2]熊春华,姚彩萍,冯雨洁.Adsorption of Pb2+ on macroporous weak acid adsorbent rest from aqueous solutions,Batch and column studies[J]. Cent SouthUniv Techno 12009,16: 569-574
    [3]Forano C, Hibino T. Leroux F.et al. Developments in Clay Science London[J]. Elesevier, 2006,95-101
    [4]Mauchauffee S, Meuxe. Use of sodium decanoate for selective precipitation of metals contained in indusgial wastewater[J]. Chemosphere,2007,69(5):763-768
    [5]Lazafadiz N K, Kapadastian T D,Georgan D. Kinetic analysis for the removal of a reactive dy from aqueous solution onto hydrotalcite by adsorption[J]. Wate Research,2003,37(3): 23-33
    [6]Coleman N J, Lee W E, Slipper I.Interactions of aqueous Cu, Zn and Pb ions with crushed concrete fines[J] Journal of Hazardous Materials,2005,121(1/3):203-213
    [7]Moghimi,S M,Hunter,A C and Murray J C.Nanomedicine,current status and future prospects[J]. FASEB J,2005,19:311-330
    [8]潘嘉芬.涌泉膨润土吸附废水中Cu2+,Zn2+,Cr3+的试验研究[J].非金属矿,2006,29(3):49-51
    [9]王京平,赵小波,唐树和,陈建,孔祥燕PAN.S浸渍树脂对金属Ni2+的吸附性能研究[J].离子交换与吸附,2009,25(6):527-533
    [10]Ricardo Rojas a,M. Rosario Perezb, Eustaquio M. Erroa, Patricia I. Ortiz a,Maria Angeles Ulibarri b,Carla E.Giacomelli.EDTA modified LDHs as Cu2+ scavengers,Removal kinetics and sorbent stability[J]. Journal of Colloid and Interface Science,2009,331:425-431
    [11]臧运波,侯万国,王文兴.Cr(V1)在Mg-Al型类水滑石上的吸附-脱附性研究[J].化学学报,2007,56:773-778
    [12]雷立旭,张卫锋,胡锰,等.层状复合金属氢氧化物:结构、性质及其应用[J].无机化学报,2005,21(4):451-463
    [13]冯咏梅,王文华,常秀莲,等.烟台大学学报(自然科学与工程版)[J].2004,17(1):28-32
    [14]姜述芹,于秀娟,等.含铬废水的氢氧化镁净化研究[J].哈尔滨工业大学学报,2004,36(8):1080-1084
    [15]王京平.离子交换与吸附[J].2003,19(4):357-362
    [16]郑丽波,叶瑛,季姗姗,等.Mg-Al型双金属氧化物对六价铬的吸附作用[J].地球化学,2004,3:231-234.
    [17]李志萍,陈肖刚,沈照理.Cr(VI)在Mg-Al型类水滑石上的吸附一脱附性研究环境科学学报[J].2006,26:99-101
    [18]Sujata Mandal, S. Mayadevi, and Bhaskar D KulkarniAdsorption of Aqueous Selenite Se(IV) Species on Synthetic Layered Double Hydroxide Materials Ind Eng Chem Res 2009,48:7893-7898
    [19]El-Shafey, E. I. Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell. J. EnViron. Manag,2007,84:620
    [20]Mandal, S. Mayadevi, S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere 2008,72:995
    [21]Marianna Iorio, Antonio De Martino, Antonio Violante, Massimo Pigna, And Renato Capasso Synthesis, Characterization, and Sorption Capacity of Layered Double Hydroxides and Their Complexes with Polymerin[J]. Agric Food Chem.2010,58: 5523-5530.
    [22]李爱民,张全兴,刘福强等.离子交换与吸附[J].2001,17(6):515-521.
    [23]Chen H Y, Zhang F Z, Fu S S, Duan X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials [J]. Adv Mater,2006,18:3089-3093
    [24]Yarger M S, Steinmiller E M P, Choi K S. Electrochemical synthesis of Zn-Al layered double hydroxide (LDH) films [J]. Inorg Chem,2008,47:5859-5865
    [25]吕志江,刘云国.改性粉煤灰吸附废水中Cd2+、Pb2+、Cu2+的试验研究[J].非金属矿2008,31(3):57-59
    [26]K. G. Bhattacharyya, S.S. Gupta[J]. Colloid Interface Sci.2007,310-411.
    [27]Choy J.H. Kwak.S.Y. Park. J.S. Jeong. Y.J. Portier.Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide[J]. Am. Chem. Soc.1999.121: 1399-1400.
    [28]Sannino, F, De Martino, A,Pigna, M, Violante, A, Di Leo,P, Mesto E,Capasso R,Sorption of arsenate and dichromate on polymerin, Fe(OH)x-polymerin complex and ferrihydrite [J]. Hazard.Mater,2009,166:1174-1179
    [29]Anirudhan T.S,Suchithra P.S. Synthesis and characterization of tannin-immobilized hydrotalcite as a potential adsorbent of heavy metal ions in effluent treatments[J]. Appl.Clay Sci,2008,42:214-223
    [30]Gillman, G. P.A simple technology for arsenic removal from drinking water using hydrotalcite. Sci. Total Environ,2006,366:926-931
    [31]Jinping Liu, Xintang Huang,Yuanyuan Li,K. M. Sulieman, Xiang He and Fenglou Sun[J]. Phys. Chem. B 2006,110:21865-21872
    [32]A. V. Radha, P. Vishnu Kamath and C Shivakumara[J]. Phys Chem B 2007,111: 3411-3418
    [33]Thomas, G. S.Rajamathi, M., Kamath, P. V. Clays Clay Miner 2004,52,693.
    [34]Tarasov,K,A,Isupov,V,P, Chupakhina, L E, O'Hare, D[J]. Mater, Chem,2004,14,1443.
    [35]Hong Yan, Min Wei, Jing Ma,Feng Li, David G. Evans, and Xue Duan, Theoretical Study on the Structural Properties and Relative Stability of M(II)-A1 Layered Double Hydroxides Based on a Cluster Model[J]. Phys. Chem A 2009,113:6133-6141
    [36]Pu, M., Zhang, B. Mater. Lett,2005,59,3343
    [37]Tomohito Kameda, Hidenori Takeuchi, Toshiaki Yoshioka, Kinetics of uptake of Cu2+ and Cd2+ by Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate Colloids and Surfaces A Physicochem. Eng. Aspects 2010,355:172-177
    [38]Daniel S. Robins and Prabir K. Dutta, Examination of Fatty Acid Exchanged Layered Double Hydroxides as Supports for Photochemical Assemblies[J]. Langmuir 1996,12: 402-408
    [39]Gregorio Guadalupe Carbajal Arizaga, Antonio Salvio Mangrich, Fernando Wypych, Cu+ ions as a paramagnetic probe to study the surface chemical modification process of layered double hydroxides and hydroxide salts with nitrate and carboxylate anions[J]. Colloid and Interface Science,2008,238-244
    [40]胡秋霞,谢鲜梅,严凯,席晶晶,王志忠MgAl-水滑石热分解过程动力学研究.化学研究与应用.2007,19,12-14
    [41]倪哲明,潘国祥,王力耕.二元类水滑石层板组成、结构与性能的理论研究[J].无机化学学报,2006,22(1):91-95
    [42]张国强,杨乐夫,方荣谦,等.不同制备方法对水滑石性质的影响[J].厦门大学学报(自然科学版),2006,45(5),673-676
    [43]王海玲,费正皓,陈金龙,张全兴.不同基团修饰的吸附树脂对芳香两性化合物的吸附等温线研究,离子交换与吸附.2007,23(3):237~245
    [44]姚允斌,谢涛,高英敏.物理化学手册[M].上海,上海科技出版社,1985
    [45]黄渭澄,李铭华,袁诗璞,等.电镀三废处理[M].成都,四川科学技术出版社,1985
    [46]袁诗璞,支国富,袁林春.锌压铸件镀无氰碱铜失败原因分析及改进[J].电镀与涂饰,2006,25(10):16-19
    [47]陈冬梅,吴俊.共沉淀法制备Zn-Al水滑石[J].贵州化工,2009,12,7-10
    [48]仲崇娜.阴离子柱撑磁性二元水滑石的制备与表征[D].黑龙江,哈尔滨工程大学,2007
    [49]文征.给体-受体共插层类水滑石的合成及光谱性质[D].北京,北京化工大学,2007
    [50]杜以波,段雪.阴离子型层柱材料研究进展[J].化学通报,2000,5:20-24
    [51]汪莉华,张亚男,卢凌彬,林强,傅送保.过饱和沉淀法合成Zn-Al类水滑石及其表征,海南大学学报自然科学版[J].2008,6:26-28
    [52]宁永成.有机化合物结构鉴定与有机波谱学[M].第2版,北京,科学出版社,2000,27-198
    [53]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海,华东理工大学出版社,2002:136-19
    [54]Martinez M,Miralles N, Hidalgo S, Removal of lead(Ⅱ) and cadmium(Ⅱ)from aqueous solutions using grape stalk waste[J]. Journal of Hazardous Materials,2006,133:203-211
    [55]敖晓奎,罗琳,关欣,等.废弃茶叶渣对铅离子的吸附研究[J].农业环境科学学报,2008,27(1):372-373
    [56]叶锦韶,伊华,彭辉,等.重金属的生物吸附研究进展[J].城市环境与城市生态,2001,14(3):30-32
    [57]李英敏,杨海波,吕福荣,等.小球藻对pH的吸附及生物吸附机理初探[J].农业环境科学学报,2004,23(4):696-699
    [58]许国志,郭灿雄,段雪,姜传庚.PE膜中层状双羟基复合氢氧化物的红外吸收性能,应用化学,1999,16(3),45
    [60]李国新,李庆召,薛培英,颜昌宙,高亚杰.黑藻吸附Cd2+和Cu2+的拓展Langmuir模型研究[J].农业环境科学学报2010,29(1):145-15
    [61]沈家媳.超分子层状结构[M].北京科学出版社,2003:125-185
    [62]Issavayeya G, Aroua M K,Removal of lead from aqueous solutions on palm shell activated carbon[J]. Bioresource Technology,2006,97 (18):2350-2355
    [63]王文华,冯咏梅,常秀莲,等.玉米芯对废水中铅的吸附研究[J].水处理技术,2004,30(2):95-98
    [64]Hall K R, Eagleton L C, Acrivos A, Vermeulen T. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions [J]. Ind. Eng. Chem. Fund.,1966,5: 212-223
    [65]Lalvani S B, Hubner A, Wiltowski T S. Chromium adsorption by lignin [J]. Energy Sources, 2000,22:45-56
    [66]Acar F N, Malkoc E. The removal of chromium (Ⅵ) from aqueous solutions by Fagus orientalis L [J]. Bioresour Technol,2004,94:13-15
    [67]Selvi K, Pattabi S, Kadirvedu K. Removal of Cr(Ⅵ) from aqueous solution by adsorption onto activated carbon [J]. Bioresour Technol,2001,80:87-89
    [68]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc,1918,40:1361-1403
    [69]Sandhya B, Tonni A K. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere 2004,54:951-967
    [70]Hu J, LO I M C, Chen G H. Fast removal and rcovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) Nanoparticles [J]. Langmuir,2005,21:11173-11179
    [71]Cimino G, Passerini A, Toscano G. Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell [J]. Water Res,2000,34:2955-2962

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700