改性钛铌酸盐的制备及光催化脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状钛铌酸盐由于它的独特结构越来越引起人们的重视,由于其层间的阳离子具有可交换性,可以通过离子交换、柱撑或剥片重组的方式在层间引入某些功能元素离子或氧化物可调变禁带宽度及还原电位,以此调变其活性。使得其在吸附、传导、分离和催化等诸多领域具有明显的优点,近年来对层状化合物的研究主要集中在对层状化合物的改性以及其催化性能的研究。
     本文分别利用固相反应以及聚合配合法合成钛铌酸钾KTiNbO5粉末晶体。利用x-射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)、扫描电镜(SEM)、高分辨透射电镜(HR TEM)等对催化剂进行表征。采用红外光谱技术考察了催化剂对甲烷气中乙硫醇吸附与光催化氧化性能对样品的光催化活性和结构进行了表征,结果表明:
     通过固相反应合成钛铌酸钾(KTiNbO5),具有较好的层状结构,经过Fe3+与Ce3+离子交换制备Fe0.33TiNbO5、Ce0.33TiNbO5。交换过程中层板保持较好。经过Fe3+与Ce3+离子交换后,吸收边红移,禁带宽度从3.5eV降低到2.89eV与2.26eV。骨架上的Nb06八面体相关吸收峰位置有较大的移动,而TiO6八面体中的O-Ti-O特征吸收基本不变。合成的钛铌酸钾对于乙硫醇没有较好的吸附以及没有光催化活性。同时Fe0.33TiNbO5对乙硫醇吸附作用不明显,同时光催化也没有较好的改善,而通过铈离子交换制取的改性的钛铌酸盐,在可见光照射下,就可以在吸附基础上进行光催化氧化乙硫醇为硫酸酯,这与在紫外光照射下结果相似。
     通过聚合—配合法合成具有规整纳米晶的钛铌酸钾(KTiNbO5),同时颗粒半径比固相反应合成的样品较小,较小的颗粒有利于吸附物在层间传质,经过Fe3+与Ce3+离子交换制备Fe0.33TiNb05、Ce0.33TiNbO5。交换过程中层板保持较好。禁带宽度从3.47eV降低到2.87eV与2.24eV。同时骨架上的Nb06八面体相关特征吸收有一定的移动,而Ti06八面体中的O-Ti-O特征吸收移动较小。用Fe3+离子交换改性的钛铌酸盐Fe0.33TiNbO5对乙硫醇吸附作用不明显,同时在可见光照射下,对甲烷气氛中的乙硫醇有较弱的光催化活性。而通过铈离子交换制取的改性的钛铌酸盐,在可见光照射下,就可以在吸附基础上进行光催化氧化乙硫醇,这与在紫外光照射下结果相似,因此合成的改性钛铌酸盐Ce0.33TiNbO5对光催化脱除甲烷气氛中的乙硫醇有较好的活性。
     图24表4参62
Layered titanoniobate drew increasing attention due to its unique structure. It can be pillared、exfoliated or reorganized though ion-exchange because of the exchangeability of its layer cation. Some functional element ions or oxides were introduced into the interlayer region, which can change the band gap and surface vacancy-reduction potential to modulate its activity of the catalysts. So the layer material had obvious advantages and can be used in absorption, conduction, separation and catalysis fields. The study of layered compounds focused on the modifying of layered compounds and their catalytic properties by ion-exchanging recent years.
     The potassium titanoniobate (KTiNbO5) is prepared by solid reaction and polymerizable complex method, and prepared Fe0.33TiNbO5 and Ce0.33TiNbO5 relatively through Ce3+ and Fe3+ ion-exchange respectively. The feature of samples crystalline structure, spectral response characteristics and so on were characterized by means of powder X-ray diffraction (XRD), High resolution transmission electron microscope(HR TEM), UV-visible diffuse reflectance spectroscopy (UV-vis-DRS) and Fourier transform infrared spectroscopy (FT-IR).
     The results reveal that the layer potassium titanoniobate (KTiNbO5) are prepared through solid reaction method. The layer structure remains after Fe3+、Ce3+ ion-exchanging and the energy of band gap decreases from 3.5eV to 2.89eV and 2.26eV when Potassium ion are exchanged by Ferric ion or Cerium ion. The skeleton of the NbO6 octahedral absorption peaks blue-shift, the O-Ti-O band of TiO6 octahedral in characteristic absorption unchanged. The adsorption feature and photocatalytic oxidation activity for ethanethiol of potassium titanoniobate is weak. And the adsorption feature and photocatalytic oxidation activity for ethanethiol of the Fe1/3 TiNbO5 prepared through Fe3+ ion-exchanged is very weak, too. However, the titanoniobate ion-exchanged by Ce3+, under the visible light irradiation, the photocatalytic oxidation activity for ethanethiol of it after adsorption is strong, which is similar to under the UV light irradiation.
     The layer nanocrystalline potassium titanoniobate (KTiNbO5) are prepared through polymerizable complex method. The particle radius of potassium titanoniobates is smaller and the smaller particles are conducive to the adsorption and mass transfer in the layer. And prepared Fe0.33TiNbO5 and Ce0.33TiNbO5 relatively and the layer structure remains after Fe3+、Ce3+ ion-exchanging, and the energy of band gap decreases from 3.47eV to 2.87eV and 2.24eV when Potassium ion are exchanged by Ferric ion or Cerium ion. The absorption peaks of the skeleton of the NbO6 octahedral shifts, the O-Ti-O of TiO6 octahedral in characteristic absorption are unchanged. The adsorption feature and photocatalytic oxidation activity for ethanethiol of the Fe0.33TiNbO5 prepared through Fe3+ion-exchanged is very weak. But the titanoniobate ion-exchanged by Ce3+, under the visible light irradiation, the photocatalytic oxidation activity for ethanethiol of it after adsorption is strong, which is similar to under the UV light irradiation. So the photocatalytic oxidation activity of modified titanoniobate Ce0.33TiNbO5 is strong.
     Figure 24 table 4 reference 62
引文
[1]姜彦立,周新华.郝宇.国内外燃煤脱硫技术的研究进展[J].矿业快报.2006,453(3):7-9.
    [2]蔡培,王树立,赵会军.天然气脱硫工艺的研究与发展[J].管道技术与设备.2008,(2):17-19.
    [3]何杰,杨万秀.Nb搀杂TiO2催化剂结构与光催化性能研究[J].安徽工程科技学院学报.2005.15(5):12-15.
    [4]Ye Jinhua, Zhou Zhigang,Matsushita A. A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light[J].International Journal of Hydrogen Energy,2003,28 (6):.651-655.
    [5]杨亚辉,陈启元,尹周澜等.Ni、Co、Mn、Cu掺杂对K4Nb6O17光催化活性的影响[J].材料导报.2005,19(5):117-119.
    [6]Saupe G. B., Zhao, Y., Bang, J., Evaluation of a new porous titanium-niobium mixed oxide for photocatalytic water decontamination. Microchemical Journal.2005,81 (1):156-162.
    [7]张玉清,彭淑鸽等.插层复合材料[M].北京:科学出版社.2008,1.
    [8]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社,2001.308.
    [9]谢鲜梅,严凯,胡秋霞等.铜铁二元类水滑石化合物的制备及催化性质研究[J].无机化学学报.2008,24(1):32-36.
    [10]刘炳华,上官荣昌.Ni-Cu-Mg-Al-Cr五元类水滑石的合成与表征[J].淮阴师范学院学报(自然科学版),2007,6(4):308-310.
    [11]杨作银,周宏伟,张敬畅等.Mg-Al类水滑石层板结构中A1/Mg比与稳定性的关系[J].物理化学学报,2007,23(6):795-800.
    [12]单秋杰.过氧杂多阴离子型层柱化合物的合成、表征及催化活性[J].分子科学学报.2008,24(3):210-215.
    [13]郭影,李国栋,张赫等.以含铬类水滑石型层状化合物为模板制备硫化物半导体纳米晶[J].高等学校化学学报.2006,27(4):697-700.
    [14]郭宪吉,候文华,颜其洁等.柱撑过渡金属氧化物[J].科学通报.2002,47(22):1681-1689.
    [15]Teruyuki Nakato, Tsuyoshi Ise, Yoshiyuki Sugahara, et. al. Preparation of intercalation compounds between V2O5 gel and bipyridyl metal complexes[J]. Materials Research Bulletin.1991,26(4):309-315
    [16]Soofin Cheng, Hong-Da Hwanga, Gary E. Maciel. Synthesis and pillaring of a layered vanadium oxide from V2O5 at ambient temperature [J].Journal of Molecular Structure,1998, 470(1-2):135-149
    [17]霸书红,张进,宋东明等.超细石墨插层化合物的制备及性能测试[J].火工品.2004,(1):14-16.
    [18]任慧,焦清介,崔庆忠.超细粉FeCl3-插层石墨化合物的制备与表征[J].含能材料.2005,13(5):308-311.
    [19]陈莹莹,强敏,李莉.新型粘土固体酸催化剂合成二芳基乙烷[J].应用化工,2007,36(1):58-60.
    [20]叶灵.蒙脱石改性及其吸附脱色性能研究[J].矿物学报.2001,21(2):179-182.
    [21]闫树芳.表面活性剂调控制备TiO2层柱蒙脱石及其吸附特性研究[D].北京:北京科技大学.2006.
    [22]雷绍民,郝骞,熊毕华等.蒙脱石矿物特性及开发利用前景[J].资源环境与工程.2006,20(5):565-569.
    [23]H. Tagaya, K. Saito, T. Kuwahara, J. Kadokawa. et. al. Intercalation of organic compounds into layered titanoniobate KTiNbO5[J]. Catalysis Today.1993.16(3-4):463-470.
    [24]Bo Li,Yukiya Hakut, Hiromichi Hayashi. Synthesis of potassium titanoniobate in supercritical and subcritical water and investigations on its photocatalytic performance [J]. Journal of Supercritical Fluids,2006,39 (1):63-69
    [25]Teruyuki Nakato, Yasuo Matsumoto. Preparation of a layered titanoniobic acid—alumina nanocomposite and its potential applicability to removal of organic contaminants in water[J]. Journal of Porous Materials,2004,11(2):79-86.
    [26]Jum Suk Jang, Hyun Gyu Kim, Vangala R. Reddy. et. al. Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds [J]. Journal, of catalysis, 2005,231(1):213-222.
    [27]Juanjuan Ma, Xiaobo Zhang, Chong Yan, Zhiwei Tong, Haruo Inoue. Synthesis and characterization of a polyaniline/HTiNbO5 lamellar hybrid nanocomposite[J]. Journal Material Science,2008,43(16):5534-5539.
    [28]G.H. Du, Y. Yu, Q. Chen. et. al. Exfoliating KTiNbO5 particles into nanosheets[J]. Chemical Physics Letters,377 (2003) 445-448
    [29]Ana S. Dias, Sergio Lima, Daniel Carriazo, et.al. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural[J]. Journal.of catalysis.2006,244(2):230-237.
    [30]王军锋,李子荣,康志强.室温固相法合成纳米层状双金属氢氧化物[J].安徽科技学院学报.2007,21(5):33-36.
    [31]龚洁,张高科,邹曦等.KNb3O8的制备及其光催化活性探讨[J].武汉理工大学学报.2006,28(11):70-72.
    [32]Bo Li, Yukiya Hakuta, Hiromichi Hayashi, Synthesis of potassium titanoniobate in supercritical and subcritical water and investigations on its photocatalytic performance[J]. Journal of Supercritical Fluids.2006,39(1)63-69.
    [33]Li GQ, Kako T, Zou, ZG et. al. Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods[J]. The journal of physics and chemistry of solids,2008,69 (10):2487-2491.
    [34]H. Takahashi, M. Kakihana, Y. Yamashita, K. Yoshida, Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method [J].Journal of Alloys Compound.1999, 285(1-2)77-81
    [35]Bo Li, Yukiya HakutaV,Hiromichi Hayashi The synthesis of titanoniobate compound characteristic of various particle morphologies through a novel solvothermal route Materials Letters 2007,61(18):3791-3794.
    [36]Koichi Inoue, Satoshi Suzuki, Masayuki Nagai. Ion exchanged potassium titanoniobate as photocatalyst under visible light [J] Journal of Electroceramics.2008,32(8):9558-9560.
    [37]罗水源,何杰,赵俊斌.层状铌酸盐MxNb6O17(M=K, Fe, Ni)的合成及对甲硫醇的吸附与光催化性能研究[J].广东化工,2009,36(6):14-16.
    [38]N. S. P. Bhuvanesh, J. Gopalakrishnan. Synthesis of Rutile-Related Oxides, LiMMoO6 (M= Nb, Ta), and Their Proton Derivatives. Intercalation Chemistry of Novel Broensted Acids, HMMoO6.cntdot.H2O [J]. Inorganic Chemistry,1995,34(14):3760-3764.
    [39]Caio Tagusagawa, Atsushi Takagaki, Shigenobu Hayashi, et.al. Evaluation of strong acid properties of layered HNbMoO6 and catalytic activity for Friedel-Crafts alkylation[J]. Catalysis Today,2009 142(3-4):267-271
    [40]J.F.Lambert, Zengqun Deng, J.-B. D Espinose, et.al. The intercalation process of N-alkyl amines or ammoniums within the structure of KTiNbO5[J]. Journal Colloid Interface Science.1989, 132(2):337-351.
    [41]Juanjuan Ma, Xiaobo Zhang, Chong Yan, et.al. Synthesis and characterization of a polyaniline/HTiNbO5 lamellar hybrid nanocomposite [J]. Journal Material Science.,2008,43(16): 5534-5539.
    [42]Shu Yin, Daisaku Maeda, Masayuki Ishitsuka. et.al. Synthesis of HTaWO6/(Pt, TiO2) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction[J]. Solid state ionics.2002,151(1-4):377-383.
    [43]杨娟,丁建芳,张莉莉等.高比表面柱撑纳米钛酸盐的制备[J].无机化学学报.2004, 20(12):1459-1462.
    [44]Atsushi Takagaki. Darling Lu, Junko N. Kondo, et.al. Exfoliated HNb3O8 nanosheets as a strong protonic solid acid[J].Chemistry Material.2005,17(10):2487-2489.
    [45]苗建英,王宏社,赵立芳等.层间距为1.44 nm层状氢氧化苯甲酸锌剥离重组行为研究[J].物理化学学报.2006,22(6):732-736.
    [46]Enrico Borgarello, Nick Serpone, Michael Gratzel, et al. Photodecomposition of H2S in aqueous alkaline media catalyzed by RuO2-loaded alumina in the presence of cadmium sulfide. Application of the inter-particle electron transfer mechanism[J]. Inorganica Chimica Acta,1986.112(2):197-201
    [47]李发堂,赵地顺,郝勇静.纳米F-/TiO2的合成及其光催化氧化噻吩的研究[J].现代化工2007,27(增刊2):160—162.
    [48]Li X Z, Hou M.F, L F.B, et.al. Photocatalytic oxidation of methyl mercaptan in foul gas for odour control[J]. Industry engineering chemistry research.2006,45(2):487-494.
    [49]Cantau C, Larribau S, Pigot T. et.al. Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization [J]. Catalysis Today,2007,122(1-2):27-38.
    [50]Xueguang Wang, Wenhua Hou, Xiaoshu Wang.Preparation, et.al. Characterization and activity of novel silica-pillared layered titanoniobate supported copper catalysts for the direct decomposition of NO [J].Applied Catalysis B:Environmental2002,35(3):185-193
    [51]Shanzhong Li. Wei Wu, Yao Zhai, Photoelectrochemical and characterization of intercalation compound of KTiNbO5 with methylviologen [J]. Solid State Sciences.2010,12 (4):522-526.
    [52]Park I, Han YS, Choy JH. Facile exfoliation of layered titanoniobate (KTiNbO5) into colloidal nanosheets[J]. Journal Nanoscience Nanotechnology.2009,9(12):7190-7193.
    [53]Jie HE, Jun-bin ZHAO.Yun-xiang LAN. Adsorption and photocatalytic oxidation of dimethyl sulfide and ethyl mercaptan over layered K1-2xMnxTiNbO5 and K1-2xNixTiNbO5 [J].Journal of Fuel Chemistry and Technology,2009,37(4):485-488.
    [54]候文华,彭秉承,颜其洁等.Al柱撑层状钛铌酸盐的制备[J].无机化学学报1994,52(9):166-170.
    [55]周公度,段连运等.结构化学丛础(第四版)[M].北京:北京大学出版社,2007,308.
    [56]张克力.固体无机化学[M].湖北:武汉大学出版社,2005,1:398.
    [57]黄东升,陈朝凤,李玉花灯.铁、氮共掺杂二氧化钛粉末的制备及光催化活性[J].无机化学学报.2007,23(4):738-742.
    [58]Jib-Mim Jehng, Israel E. Wacbs. Molecular Structures of Supported Niobium Oxide Catalysts under in Situ Conditions[J]. Journal Physical Chemistry.1991,95(19):7373-7379
    [59]吴瑾光.近代傅里叶变换红外光谱技术及应用(上卷)[M].北京:科学技术文献出版社1994,629-630.
    [60]荆煦瑛,陈式橡,么恩云.红外光谱实用指南[M].天津:天津科学技术出版社,1992:139-145.
    [61]Kozlov D.V.Vorontsov A.V..Smirniotis P.G.et. al. Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2:kinetic investigations and catalyst deactivation[J]. Applied Catalysis B: Environmental,2003,42(1):77-87.
    [62]Bo Li, Yukiya, Hakuta, Hiromichi Hayashi. Hydrothermal synthesis of crystalline rectangular titanoniobate particles[J]. Chemical Communication.2005, (13):1732-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700