A356合金熔体调控对流动性的影响机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流动性是衡量合金铸造性能的重要指标,对于精密铸造和近终成形技术尤为重要,但是由于流动性测量受到凝固特性、非稳态流动、非稳态传热等因素影响,使流动问题变得十分复杂。为了弄清合金元素变化、细化变质等熔体调控手段对流动性的影响,本文从流动性测试方法研究入手,通过实验对比分析,设计制造了新的流动性测试模进行流动性测量,并以A356合金为研究对象,全面探讨了粘度、氧化物、细化变质、熔体热处理等因素对流动性的影响,采用数值模拟的方法进一步研究了理想状态下合金元素变化对流动性的影响,获得了铝合金流动性变化的一些基本规律,初步建立了粘度计算和流动性计算的数学公式,对于铝合金生产和研究具有一定的参考价值。
     本文首先通过分析各种流动性测试方法的利弊,设计了新的金属型流动性测试模对流动性进行测试,解决了流动性研究的方法问题。新设计采用感应加热保温方式保持熔体温度和成份均匀;设计新的浇杯结构,解决了金属型测试模分型难的问题;配合特殊的涂层涂覆与干燥方法,保持流道参数稳定;在浇口处设置过滤,除去夹杂,平稳浇速。实验研究证明,该测试装置制作简单,重现性好,具有一定的新颖性,适用于测量各种有色合金流动性,以该测试模测试为基础,对影响流动的各主要因素逐一进行研究,取得了良好的效果。
     通过对合金熔体粘度的理论分析,认为合金液相线附近的粘度与流动性存在很大的关联。合金凝固过程中,原子从无序运动状态转变为绕固定晶格点振动状态,原子振动频率和振幅降低,原子间距缩短,原子之间的引力增大,宏观表现为熔体粘度的增大。熔体粘度增大的速度和程度与合金元素在熔体中的扩散势垒高低有关。论文研究提出了合金粘度计算的数学公式:
     该公式表达了一种以基体金属粘度为基础进行二次修正获得合金粘度的新思想。合金熔体粘度与合金元素之间的振动频率差,半径差、质量差有一定关系,并且与相变势垒、扩散激活能、熔体过热温度、合金溶质质量分数有关,并遵守基本的二次函数规律,经验证计算,该公式计算值与Al-Si合金熔体粘度随成份变化实验值基本一致。
     对熔体进行过热处理或者是添加熔体调控元素,将会改变熔体的结构以及氧化物夹杂的数量和尺寸,从而对流动性产生影响。熔体中氧化物的增多会使熔体表面氧化膜厚度增加,降低熔体与模壁的润湿,能够微弱提高流动性,但是强烈降低铸件质量;对合金熔体进行适当的热处理可以细化熔体内的准晶团簇,加强熔体过冷能力,能提高流动性。本文讨论的新的熔体温度处理+电磁搅拌工艺,在实际A356合金生产过程中既能保证合金质量,又能提高了合金流动性,获得了良好的效果。
     熔体细化与变质通过改变熔体过冷度,改变固相分散度、固相形状系数,改变粘度来影响流动性。细化与变质处理改变了熔体的过冷能力,使准晶团簇变多变小,延长长大时间,使枝晶搭接时间后延,提高流动性。但是实验发现继续添加细化剂,晶粒继续细化但流动性反而下降。分析认为,随着细化加剧,异质颗粒使熔体形核温度上升,粘度增大,同时细化剂会造成固相分散度增大,使流动变得困难,从而使流动性降低。因此,细化变质对合金流动性的影响是延迟枝晶搭接的正面效应与增加固相分散度使粘滞力增加的负面效应相互作用的结果。
     数值模拟研究发现,微量Si、Mg、Ti、Cu、Fe元素能够使A356流动性发生显著改变,微量Pb、Mn、Sn、Zn对A356流动性影响不明显;微量Si、Mg、Ti、Cu、Fe影响流动性主要表现出了指数函数和二次函数两种规律。数值模拟同时还发现流动性指标属于一种统计平均值而并非恒定不变的常数值,这将有助于对流动性评价指标的重新思考和定位。数值模拟还发现了Al-Si合金中Si增加流动性提高的原因不是Si结晶潜热的释放使熔体温度升高,共晶Si释放大量潜热的时候流动已经停止。在合金加热熔解时需要吸收了大量热能用于熔化Si,使得熔体中Al团簇被大量熔解,自由原子增多,这可能是流动性提高的主要原因。
     根据本文的研究,按照物理学定义流动性与粘度的强烈关联性,本文在粘度计算公式的基础上,综合考虑影响流动性的铸造模数、充型压头、过热度、固相分散度、固相形状系数等参数的相互作用,遵循元素影响流动性的二次函数规律和指数函数规律,构建了新的元素影响流动性的理论计算公式:
     该公式对于合金流动性的控制与提高具有一定的参考价值。
Fluidity is one of important performances of casting alloy, but it is really complex because of the effect of solidify process, unstable flow and unstable heat transfer process etc. In order to make clear what will happen about fluidity with the change of elements, this article begin with a new fluidity measuring instrument design, based on experiment contrast, theoretical analysis and manufacture, and use this instrument to research the effect of viscosity, oxide, refine, modify and melt overheating treat on the fluidity on A356 alloy. Obtained the basic rule of the effect of elements variation on alloy fluidity, and mathematical formula of fluidity theoretical calculation also have been preliminary esTab.lished, it has reference value for manufacture and research.of aluminum alloy.
     After compared advantages and disadvantages of many traditional fluidity tester, this paper designs a new metal mould to test fluidity, use induction heating to heat preservation and it can also make melt uniform, then put forward new pouring cup structure, use feat coating and drying method, design filter at the entrance of pouring cup, remove inclusion, smooth flowing speed, this fluidity test mode is easy to make and results are repeatability. it can be used to fluidity test of all nonferrous metal, and this acticle is based on the datas obtained by this new fluidity measuring instrument.
     Melt viscosity is one of the important parameters of fluidity. During alloy solidification process, atoms change from the disordered movement to the fixed vibration around one crystal lattice point, atomic vibrations frequency reduce and atomic spacing curtail, in this process, the atomic force increase gradually, the macro is melt viscosity increased, the speed and scale of the increase of melt viscosity are relation with the measurement of diffusion activation energy. there is a relationship between viscosity and its components:
     This formula indicated a new thinking of fluidity calculation is twice revises on the base of pure Al viscosity. Melt viscosity is affect by vibration frequency, amplitude, radius, quality, diffusion activation energy, melt temperature, percentage of alloy elements, for Al-Si alloy melt, viscosity value abtained by calculation is basic agreement with the datas batained by experiment.
     Fluidity will be effected by serperheart treat or addition agent change, with the change of melt structure and oxide amount. With increased of oxide films the fluidity will increase a little bit, but the quality of casting will decrease severe; proper heat treatment will make quasicrystal cluster more thining, increasing surper-cooling ability of melt, then make fluidity invreasing. A new melt treat method which dicusse in this article with compined of heat treatment and electromagic mixing together has a good result in A356 alloy manufacture.
     Grain refinement and modification changed fluidity by change the nucleation and melt environment, silidoid rate and appearance. Grain refinement can increase fluidity with surpercooling incrasing and prolong dendritic contact point. But experiment find that increase addition of refiner continue, fluidity of melt will decrease. It suggest that with the incrase addition of refiner continue will lead to liquied temperature of melt acsend, which make viscosity increasing and fluidity reducing. Therefore, the influence of alloy refine and modify is a result decided by both positive effects of delay of dendrite contact and negative effects of increase viscous force with solid-phase increased.
     Numerical simulation found, a little addition of Si、Mg、Ti、Cu、Fe will change fluidity notability, but a little addition of Pb、Mn、Sn、Zn has little effect on fluidity.The change of fluidity with a little Si、Mg、Ti、Cu、Fe addition will abide by quadratic function principle. Bi-channel fluidity test modulus simulation suggests that different channel formed different length in a practical experiments, it also proved fluidity indexes should be an average value. And numerical simulation also found during A356 filling process, head of flow stops in a-Al nucleation process, a-Al nucleation ending when flow has stopped, therefore, at the time of Si separate out to form Al-Si eutectic structure flow had been stopped, this explanation that increasing Si addition in Al-Si alloy will lead to fluidity increase for the reason of latent need further discussion, because the Si phase formed when Al-Si eutectic, flow has stopped at this time. Numerical simulation also found quadratic function discipline and exponential function discipline of the influence of fluidity with ingredient change which are similar with experimental results.
     According to the research of this articl, there is a consuming relation between viscosity and melt fluidity,because on the viscosity caculating formulation, combine those factors obtained in experiments which effect on fluidity of casting alloy such as casting modulus, solidoid dispersion degree, filling pressure, degree of superheat etc, and fluidity change with quadratic functiondiscipline, exponential function discipline, a new formula to theory calculation of effects of alloy element on fluidity has been put forwarded:
     Although this formula needs to be completed, it also has reference value on fluidity control and inhance process.
引文
[1]Young-Dong kwon, Zin-Hyoung Lee. The effect of grain refining and oxide inclusion on the fluidity of Al-4.5Cu-0.6Mn and A356 alloys[J]. Material Science and Engineering,2003, A360:372-376.
    [2]王祝堂,田荣璋,铝合金及其加工手册[M].长沙:中南大学出版社,2000.
    [3]C.J. Cooksey, C.V. Kondic, J.Wiclcock, J. Instuon of. Br. Found mental of Fe, Si, Ti change aluminum solid,Aluminum Industry[J],1959,(52):81-87.
    [3]G Lang, The relation between phase diagram and fluidity,Aluminum[J],1972,(48):664-672.
    [4]Metals Handbook 4th Ed. Properties and selection:non-ferrous alloys and pure metals, ASM, 1979,(12):164-165.
    [5]J. Campbell, Principle of ternary alloy phase diagram fluidity, Cast Metal [J],1991,4:101-103.
    [6]O. Garbellini, H. Palacio, H. Biloni, Infiltration of Saffil alumina fiber with AlCu and AlSi alloys, Scripta Materialia[J],1999,(41):187-193
    [7]S. Gowri, F.H. Samuel, Research of Fe addition into A380, Metal casting[J],1994, (25)A:437-448.
    [8]S.G.Shabestari, H.Moemeni,Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys, Jouinal of materials processing technology [J], 2004,(153-154):193-198.
    [9]E.L. Rooy, Al-Si aluminum alloy with Fe addition, AFS Transplantation Proceedings [J],1985, (93): 935-938.
    [10]L. Wang, M. Makhlouf, D. Apelian, A review of Al-Si aluminum alloy fluidity, International Material[J],1995, (40):225-252.
    [11]W.D. Pfeiffer, G Sabath, Banyasz. Kohasz. The effect of Fe, Mn, Zn on Ai-8Si-3Cu casting alloy, Lapok[J],1986,(37):39-43.
    [12]G. Chai, Z. Metallkd, relation between contact point of branch and fluidity of alloy, metal science[J], 1995,(86):54-59.
    [13]A.K. Dahle, L. Arnberg, Proceedings of the Fourth International Conference on Aluminum Alloys, Atlanta,1994:91-98.
    [14]M.C. Flemings, The mechanic of alloys stop flowing, AFS Transplantation Proceedings [J],1959, (67):496-500.
    [15]M.C. Flemings, J. Inst. Br. Addition elements in casting alloy, Foundrymen[J],1964, (57):312-315.
    [16]M.R. Seshadri, A. Ramachandran, Study flow characteristics with element addition in casting alloys, AFS Transplantation Proceedings [J],1965, (73):292-295.
    [17]C.B. Lin, Y.W. Hung, W.C. Liu, S.W. Kang, The effect elements of fluidity, Material Processing Technology[J],2001, (110):152-159.
    [18]董光明,姜云峰,孙国雄.硼对Al-13Si-0.3Mg合金的流动性的影响,特种铸造及有色合金[J],2006,26(8):470474.
    [19]K.L. Clark, Proc. Inst. Br. Casting at different temperature Foundryman [J],1945-1946,(A52):39-42.
    [20]K.L. Clark, Aluminum alloys super-heat, AFS Transplantation Proceedings[J],1946,(54):37-48.
    [21]J.E. Worthington, J. Inst. Br. Research of metal conditions, Foundryman[J],1950, (A144):43-47.
    [22]V. Kondic, H.J. Kozlowski, J. Pouring at high temperature, Institution Metal[J],1949,(75):665-670.
    [23]P. Bastein, A. Portevin, J. Melt structure of high temperature aluminum alloy, Institution Metal[J],1934,(45):54-57.
    [24]A. Kolsgaard, Ph.D. Thesis, NTNU University of Science and Technology,1993.
    [25]K.L. Sahoo, C.S. Sivaramakrishnan, J. The effect of super-heat on fluidity of Al-8Fe-0.8V-0.9Si alloy, Material Processing Technology [J],2003, (135):253-257.
    [26]R.Venkataramani, R.Simpson, C.Ravindran, Effect of metal superheat on maximum nuclei density in A356 alloy, Materials Characterization[J],1995, (35):81-92
    [27]E.N. Pan, K.Y. Liao, Study the effect of Super-heat on vanish mould casting, AFS Transplantation Proceedings[J],1998:233-242.
    [28]D.J. Lloyd, Compos. The influence of superheat on the fluidity of SiC in-forced A6061 alloy, Science Technology [J],1989,(35):159-179.
    [29]Wang Qudong, Lu Yizhen, Zeng Xiaoqin, Ding Wenjiang. Study on the fluidity of AZ91_xRE magnesium alloy, Materials Science and Engineering [J],1999,(A271):109-115
    [30]N. Kayama, K. Murali, S. Kiguchi, H. Satoh, Relate phenomena of viscose and metal temperature in Fe-Cu-S. Cast Research Lab[J],1976,(27):1-8.
    [31]A. Einstein, Particle larded metal flow with gravity condition, Physics Metallurgy [J],1911, (34): 591-595.
    [32]J. Wang, Q. Guo, M. Nishio, H. Ogawa, D. Shu, K. Li, S. He, B. Sun, J.Material Processing Technology[J],2003, (136):60-63.
    [33]C.R. Loper Jr, Research in the effect of surface tension on thin wall casting, AFS Transplantation Proceedings[J],1992,(47):533-548.
    [34]S. Morimoto, N. Ohnishi, S. Okada, Low-pressure casting within inert gasses atmosphere, AFS Transplantation Proceedings.1987,(95):39-43.
    [35]M. Di Sabatino, L. Arnberg, S. R(?)rvik, A. Prestmo. The influence of oxide inclusions on the fluidity of Al-7 wt.%Si alloy, Materials Science and Engineering[J],2005,(A413-414):272-276.
    [36]Young-Dong Kwon, Zin-Hyoung Lee. The effect of grain refining and oxide inclusion on the fluidity of Al_4.5Cu_/0.6Mn and A356 alloys, Materials Science and Engineering[J],2003,(A360): 372-376.
    [37]D.E. Groteke, The fluidity of A319 alloy treated with Ar purify method, AFS Transplantation Proceedings [J],1985,(93):953-960.
    [38]M. Tiryakioglu, D.R. Askeland, C.W. Ramsay, AFS Trans.102 (1994)17-25.
    [39]M.C. Flemings, E. Niiyama, H.F. Taylor, The effect of metal purify with Ar on fluidity of A356 Alloy, AFS Transplantation Proceedings [J],1961,(69):625-635.
    [40]J.M. Kim, C.R. Loper Jr, Dissolve gases into Al-4.5%Cu and Al-Si alloys, AFS Transplantation Proceedings,1985, (103):521-529.
    [41]YD. Kwon, Z.H. Lee, The effect of lard in A356 on fluidity, Material Science Engineering[J], 2003,(A360):372-376.
    [42]孟丽华.过滤处理对再生铝铸造性能的影响,中国科技信息[J],2007,(10):99-100.
    [43]孟丽华,除气处理对再生铝铸造性能的影响,辽宁师专学报[J],2007,9(1):90-91.
    [44]胡美忠,严青松,万红.泡沫陶瓷过滤片后添加下置包对提高砂型铸造中铝液充型能力的研究,铸造技术[J],2004,25(1):61-65.
    [45]A.K. Dahle, P.A. Tondal, J.J. Paradies, L. Arnberg, The effect of AlTi5Bl on A356 alloy fluidity, Metal Materials Transplantation Proceedings[J],1996, (A27):2305-2313.
    [46]YD. Kwon, K.H. Kim, Z.H. Lee, The addition of 0.03wt% AlTi5B1 improve fluidity, Light Metal[J],2001,(A170):1281-1284.
    [47]G.Chai, Ph.D. Thesis, Stockholm University, Chem. Com.,1994.
    [48]A.L. Greer, Grain Refinement, Manufacturing High Integrity Aluminium and Magnesium Castings, International Summer School, Worcester Polytechnic Institute,2003.
    [49]Young-Dong Kwon, Zin-Hyoung Lee. The effect of grain refining and oxide inclusion on the fluidity of Al_4.5Cu-/0.6Mn and A356 alloys, Materials Science and Engineering[J], 2003,(A360):372-/376.
    [50]A.K. Dahle, L. Baeckerund, L. Arnberg, Final report for AFS,1997.
    [51]B. Kotte, The effect of Na,Sr modification on fluidity of Al-Si alloys,Module Casting[J],1985: 33-35.
    [52]M.R. Seshadri, A. Ramachandran, Mechanical properties and microstructures of Sand and Metal mold foundry eutectic aluminum alloys, Module Casting[J],1965, (21):110-122.
    [53]E. Nielson, Lawerance, J. Compos. Fluidity of light metal Material[J],1967, (1):100-105.
    [54]A.K. Dahle, S. Karlsen, L. Arnberg, Solidification characteristic of Al-Si alloys, Int. J. Cast Metal Research[J],1996,(9):103-112.
    [55]Q. Han, H. Xu. Effect of power ultrasound on solidification of aluminum A356 alloy, Materials Letters[J],2005,(59):190-193.
    [56]E. Niyama, K. Anzai,T. Funakubo, S. Hiratsuka, J. Mater. Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy, Processing Technology[J],1997,(63):779-783.
    [57]M.C. Flemings, F.R. Mollard, H.F. Taylor, The effect of heat dissipation coefficient aon fluidity of Al-4.5%Cu alloy, AFS Transplantation Proceedings[J],1961,(69):566-576.
    [58]M. Brezina, V. Kondic, Aluminum Casting arts and crafts, The Brithish Foundry men [J], 1973,(66):337-341.
    [59]J. Wannasin, R. Canyook, R. Burapa, L. Sikong, M.C. Flemings,Evaluation of solid fraction in a rheocast aluminum die casting alloy by a rapid quenching method, Scripta Materialia[J], 2008,(59):1091-1094.
    [60]Q. Han, S. Viswanthan, Mater. Science Engineering[J],2004, (364A):48-54.
    [61]J. Wannasin, R.A. Martinez, M.C. Flemings, Grain refinement of an aluminum alloy by introducing gas bubbles during solidification,2006,(55):115-118.
    [62]潘复生,张丁非.铝合金及应用[M],北京:化学工业出版社,2006.1
    [63]胡汉起主编.凝固理论与凝固技术[M],北京:机械工业出版社,1991.5
    [64]李庆春.铸件形成理论基础[M],北京:机械工业出版社,1982
    [65]罗启全编著,铝合金熔炼与铸造[M],广州:广东科技出版社,2002.9
    [66]Young-Dong Kwon, Zin-Hyoung Lee. The effect of grain refining and oxide inclusion on the fluidity of Al_4.5Cu_/0.6Mn and A356 alloys, Materials Science and Engineering[J], 2003,(A360):372-376.
    [67]Wang Qudong, Lu Yizhen, Zeng Xiaoqin, Ding Wenjiang. Study on the fluidity of AZ91_xRE magnesium alloy, Materials Science and Engineering[J],1999, (A271):109-115.
    [68]杨钢,起华荣等.金属流动性测试装置,ZL2005 20022619.9.
    [69]Qin Hua, Deming Gao, Hongjun Zhang, Yuhui Zhang, Qijie Zhai. Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy, Materials Science and Engineering[J],2007,(A 444):69-74.
    [70]M. Di Sabatino, L. Arnberg, S. R(?)rvik, A. Prestmo. The influence of oxide inclusions on the fluidity of Al-7 wt.%Si alloy, Materials Science and Engineering A [J],2005,(413-414):272-276.
    [71]侯文生.铸造合金流动性的电测,铸造工程造型材料[J],2001,(25):22-25.
    [72]胡礼木,崔令江,李慕勤主编.材料成形原理[M],北京:机械工业出版社,2005.6
    [73]边秀房,刘相法等著.铸造金属遗传学[M],南:山东科学技术出版社,1999.2.
    [74]陈平昌等主编,材料成形原理[M],北京:机械工业出版社,2003.3
    [75]李春生,刘海鸥等.铝合金熔体的粘度及其影响因素,轻合金加工技术[J],2005,33(10):22-26.
    [76](日)饭田孝道,(加)格斯里著;冼爱平译.液态金属的物理性能[M],北京:科学出版社,2006.1
    [77]张承甫等编著,液态金属的净化与变质[M],上海:上海科学技术出版社,1989.5
    [78](苏)范塔洛夫,(苏)古里耶夫编;邓梅丹译,熔融金属的流体动力学:苏联第一次铸造过程理论会议文集[M],北京:科学出版社,1964.
    [79]李培杰.Al-si台金的结构及结构遗传研究[博士学位论文].合尔滨,哈尔滨工业大学.1995
    [80]张瑞林.固体与分子经验电子理论.长春:吉林科学技术出版社,1993.313-323.
    [81]李培杰,陈岗等.Al-Si合金熔体的价电子结构及其结构遗传,吉林大学自然科学学报[J],1997,(3):61-63.
    [82]Lina Yu, Xiangfa Liu, Haimin Ding, Xiufang Bian. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al-Si alloy, Journal of Alloys and Compounds[J],2007,(432):156-162
    [83]王广厚著,团簇物理学[M],上海:上海科学技术出版社,2003.11
    [84]张武城编著,铸造熔炼技术[M],北京:机械工业出版社,2005.1重印.
    [85]欧阳志英,毛协民,红梅.Sr和稀土对铝合金表面氧化膜保护效果的影响,铸造[J],2006,55(10):1071-1075.
    [86]孙伟成等编著,稀土在铝合金中的行为[M],北京:兵器工业出版社,1992.3
    [87]欧阳志英,毛协民,红梅.RE对铝合金表面氧化膜保护效果的影响,特种铸造及有色合金[J],2006,26(10):666-669.
    [88]仲维卓,华素坤著.晶体生长形态学[M],北京:科学出版社,1999.10
    [89]李继文,谢敬佩等.电解低钛汽车轮毂材料的研究,热加工工艺[J],2004,(11):31-34.
    [90]张建新,高爱华.影响AI.Ti-C对铝合金细化效果的因素分析,铸造技术[J],2007,28(5):680-686.
    [91]S.A. Kori, B.S. Murty, M. Chakraborty, Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium, Materials Science and Engineering A[J],2000,(283):94-104.
    [92]李敏敏,张恒华等.Ti5B1和Ti5C1对A356铝合金晶粒细化的研究,特种铸造及有色合金[J],2005,25(10):630-635.
    [93]王明星,朱小瑜等.B对电解低钛铝制备的6009铝合金微观组织的影响,特种铸造及有色合金[J],2008,28(1):15-19.
    [94]文东辉,杨孟刚等.AlTiC晶粒细化剂对6063铝合金铸态组织性能的影响,轻合金加工技术[J], 2007,35(2):14-17.
    [95]胡永杰,钟均勇,张玉良.Al-Ti-C和Al-Ti-B线杆对铝合金扁铸锭晶粒度的影响,轻合金加工技术[J],2007,35(10):7-10.
    [96]任峻,陶钦贵,马颖.AI-Ti-B合金晶粒细化剂及细化机理的发展与现状,铸造技术[J],2007,28(1):69-53.
    [97]王芳,王明星,李云良,刘志勇.Al-B中间合金对铝合金晶粒的细化机理,中国有色金属学报[J],2008,18(6):974-978.
    [98]李双寿,唐靖林等.A356合金细化处理效果的孕育和衰退,特种铸造及有色合金[J],2005, 25(10):627-630.
    [99]于丽娜,王海梅,刘相法,刘建同,边秀房.微量TiC、TiB2引起铝熔体粘度的突变现象,铸造[J],2002,51(11):287-291.
    [100]李勇.微量Si、Mg元素对细化剂作用效果的影响,轻金属[J],2005,(12):50-52.
    [101]贺永东,张新明.微量Cr、Mn、Ti、Zr细化7A55铝合金铸锭组织的效果与机理,中国有色金属学报[J],2005,15(10):1594-1601.
    [102]孙洪强,赵玉涛,陈刚,松利.添加微量稀土对锶变质铝轮毂材料组织和性能的影响,热加工工艺[J],2007,36(13):4-8.
    [103]杨明,罗正明.铝钛碳晶粒细化剂的研究,有色金属加工[J],2008,37(5):5-9.
    [104]熊玉华,张燕飞,李培杰,曾大本.铝基细化剂和变质剂的遗传性对A356.2合金组织和性能的影响,铸造[J],2002,51(10):587-590.
    [105]马晓光,刘相法,丁海民.铝合金中Si含量对AI-Ti-C细化效果的影响,铸造[J],2008,57(5):491-495.
    [106]K.G. Basavakumar, P.G. Mukunda□, M. Chakraborty. Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys, Materials characterization [J],2008,(9):283-289.
    [107]G.S. Vinod Kumar, B.S. Murty, M. Chakraborty. Grain refinement response of LM25 alloy towards Al-Ti-Cand Al-Ti-B grain refiners.Journal of Alloys and Compounds[J],2008.
    [108]Dequan Shi, Dayong Li, Guili Gao. Relation between surface tension and microstructural modification in Al-Si alloys, Materials characterization [J],2008,(9):1541-1545
    [109]李双寿,唐靖林,曹大本.Sr变质对A356合金细化效果的影响,铸造[J],2004,53(8):599-603.
    [110]李继文,谢敬佩,刘忠侠,宋谋胜.直接电解A356合金的熔体变质处理,铸造技术[J],2005,26(5):413-416.
    [111]红梅,毛协民,欧阳志英.A356合金熔体加锶对其氢含量的影响,铸造技术[J],2006,27(9):943-947.
    [112]Iztok Naglica,, Anton Smolej, Mirko Dobersek, The influence of TiB2 particles on the effectiveness of Al-3Ti-0.15C grain refiner, Materials characterization [J],2008, (59):1458-1465.
    [113]李健,韩明义.锶变质生产铝合金铸件的研制,沈阳工程学院学报,2007,3(4):388-390
    [114]Hongliang Zhao, Huilong Bai, Jun Wang, Shaokang Guan. Preparation of Al-Ti-C-Sr master alloys and their refining efficiency on A356 alloy, Materials characterization [J],2008.
    [115]Wattanachai Prukkanon, Nakorn Srisukhumbowornchai,Chaowalit Limmaneevichitr. Modification of hypoeutectic Al-Si alloys with scandium, Journal of Alloys and Compounds[J],2008.
    [116]A. Knuutinen, K. Nogita, S.D. McDonald, A.K. Dahle. Modification of Al-Si alloys with Ba, Ca, Y and Yb, Journal of Light Metals[J],2001,(1):229-240.
    [117]K. Narayan Prabhu, B.N. Ravishankar. Effect of modification melt treatment on casting/chill interfacial heat transfer and electrical conductivity of Al_/13% Si alloy, Materials Science and Engineering A[J],2003,(360):293-298.
    [118]龚磊清等编著,铸造铝合金金相图谱[M],长沙:中南工业大学出版社,1987.
    [119]宋人英,于年中.稀土在铝及铝合金中的作用研究,江苏冶金[J],1994,(5):29-31.
    [120]刘政,胡咏梅.稀土细化剂对ZL101半固态组织影响的研究,铸造[J],2008,57(6):596-600.
    [121]仲维卓,华素坤著,晶体生长形态学[M],北京:科学出版社,1999.10.
    [122]Lina Yu, Xiangfa Liu, Haimin Ding, Xiufang Bian. A new nucleation mechanism of primary Si by peritectic-like coupling of A1P and TiB2 in near eutectic Al-Si alloy, Journal of Alloys and Compounds[J],2007,(432):156-162.
    [123]左秀荥,李立祥,仲志国.Ti、B、Sr、RE联合细化及变质对A356铝合金微观组织的影响,铸造技术[J],2007,28(1):57-59.
    [124]左秀荣,井元伟,Ti+B+RE细化的铝合金微观组织及性能研究,建筑材料学报[J],2008,11,(1):39-41.
    [125]崔海超,左秀荣.Ti、Sc、Zr对铝合金微观组织的影响,铸造技术[J],2007,28(1):64-66.
    [126]刘贵立,李荣德.铸造锌铝合金稀土变质机理的电子理论研究,物理学报[J],2003,52(9):2264-2267.
    [127](瑞士)库尔兹(Kurz,W.),(瑞士)费希尔(Fisher,D.J.)著;毛协民等译,凝固原理[M],西安:西北工业大学出版社,1987.8
    [128]Jun Wang, Shuxian He, Baode Sun, Qixin Guo,Mitsuhiro Nishio. Grain refinement of Al-Si alloy (A356) by melt thermal treatment. Journal of Materials Processing Technology[J],2003,(141):29-34.
    [129]毛协民,傅恒志,史正兴等.熔体过热对Al-Cu合金定向凝固某些特性的影响.金属学报[J],1983,19A:244
    [130]王寿彭编.铸件形成理论及工艺基础[M].陕西:西北工业大学出版社,1994.
    [131]Li.Q.C. Theoretical Foundations of Solidification of Castings, Beijing:Mechanical Industry Press, 1982:24.
    [132]霍裕平,郑久仁.非平衡态统计理论[M],北京:科学出版社,1987:37.
    [133]耿兴国,陈光,傅恒志.过热合金熔体的几种物性滞后效应,材料科学与工程[J],2002,20,(4):549-551.
    [134]胡汉起.金属凝固[M].北京:冶金工业出版社,1985:29
    [135]阂乃本.晶体生长的物理基础[M],上海:上海科学技术出版社.1982:256.
    [136]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986:55
    [137]赵建新,朱鸣芳.Al-Si合金在凝固过程中晶粒和枝晶组织的演变,理化检验-物理分册[J],2004,40(9):433-435.
    [138]P.D. Lee, A. Chirazi, D. See. Modeling microporosity in aluminum-silicon alloys:a review, Journal of Light Metals[J],2001,(1):15-30.
    [139]徐宏,侯华,程军,陈铮.铸造充型模拟快速算法模型研究,兵器材料科学与工程[J],2004,27(2):46-50.
    [140]何树先,王俊,孙宝德,周尧和.高密度脉冲电流对A356铝合金凝固组织的影响,中国有色金属学报[J],2002,12(3):426-430.
    [141]Farshid Taghavi,Hasan Saghafian, Yousef H.K. Kharrazi. Study on the effect of prolonged mechanical vibration on the grain efinement and density of A356 aluminum alloy, Materials and Design[J],2009,(30):1604-1611.
    [142]E. Taghaddos, M.M. Hejazi, R. Taghiabadi, S.G. Shabestari. Effect of iron-intermetallics on'the fluidity of 413 aluminum alloy, Journal of Alloys and Compounds[J],2009,(468):539-545.
    [143]R.Mollard, MS Thesis, Massachusetts Institute of Technology, Cambridge,MA,1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700