固液混合铸造Al-Cu合金组织和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究利用一种新型的材料制备方法——固液混合铸造制备的Al-Cu合金的组织和性能。根据已有的研究结果制定了固液混合铸造Al-Cu合金的工艺并成功的制备了Al-Cu合金铸坯。通过DSC分析、力学性能测试及OM、SEM形貌分析等手段对固液混合铸造Al-20Cu合金、Al-40Cu合金、Al-65Cu合金的组织和性能进行了研究;分析了固液混合铸造工艺中,合金组织的细化机理;对固液混合铸造Al-40Cu合金的摩擦磨损性能进行了初步研究。
     研究结果表明:固液混合铸造工艺明显细化Al-Cu合金的组织,提高Al-Cu合金的室温力学性能。加入的粉末颗粒越细,材料的组织越细小,室温力学性能越好。固液混合铸造浆料具有良好的挤压性能,挤压坯料具有良好的室温耐磨性能。该工艺具有一定的先进性和优越性,存在一定的工业应用前景。
     普通铸造时,Al-20Cu合金的初生α-Al为树枝状。固液混合铸造Al-20Cu合金的初生α-Al为蔷薇状或近球状,其大小可以达到70μm(加入200-96μm粉末)或50μm(加入74-43μm粉末),明显小于半固态加工的120μm。固液混合铸造Al-40Cu合金初生θ相更为圆整。长度方向的平均尺寸由普通铸造500μm减至100μm(加入200-96μm粉末),或80μm(加入74-43μm粉末);径向的平均尺寸由普通铸造80μm减为40μm(加入200-96μm粉末),或30μm(加入74-43μm粉末),长径比由普通铸造的6减至2.5。固液混合铸造的Al-65Cu合金的显微组织主要由蔷薇状、近球状的θ相和η_2相组成,晶粒尺寸为35μm以下,明显小于半固态铸造的100μm。
     在固液混合铸造工艺条件下,Al-20Cu合金的室温力学性能为:σ_b=165MPa,σ_(0.2)=100MPa,δ=2%(加入200-96μm粉末);σ_b=193MPa,σ_(0.2)=116MPa,δ=3%(加入74-43μm粉末)。Al-40Cu合金的室温力学性能为:σ_b=187MPa,σ_(0.2)=113MPa,δ=1.5%(加入200-96μm粉末);σ_b=209MPa,σ_(0.2)=125MPa,δ=2%(加入74-43μm粉末)。固液混合铸造Al-40Cu合金的质量磨损量为12.3mg,其主要的磨损形式是粘着磨损、疲劳磨损和磨粒磨损。
The microstructures and mechanical properties of Al-Cu alloys fabricated by a bran-new technology—solid-liquid mixed casting (SLiM casting) was studied in this paper. The technics of the SLiM casting was conformed based on the known results. And the Al-Cu ingots were fabricated successfully by the technology. The microstrutures and mechanical properties of Al-20Cu alloys, Al-40Cu alloys and Al-65Cu alloys produced by the SLiM casting were investigated by DSC, tensile strength test, OM and SEM. The refining mechanism of the microstructures was analysised in the processing. In addition, the pilot study about the wear resistance of Al-40Cu alloys was discussed.
    These researches indicate: the microstructures of Al-Cu alloys produced by SLiM casting were finer; the mechanical properties of Al-Cu alloys at room temperature were better. Otherwise, the finer the added powders, the smaller the grain size of the SLiM casting alloys, the higher the mechanical properties at room temperature. Better extrudability and abrasive resistance at room temperature can also be obtained by the processing. So this technology has its advantages, and can be applied in some fields.
    The shape of α-Al in Al-20Cu alloy fabricated by conventional casting was dendrite. When the alloy was prepared by SLiM casting, these a-Al presented rosette or net-globoid. And the average size of the a-Al was approximately 70μm (added 200-96μm powders) or 50μm (added 74-43μm powders), which was obviously smaller than that of the Al-20Cu alloy made by semi-solid casting (120μm). The shape of θ_I (CuAl_2) in Al-40Cu alloys prepared by solid-liquid mixed casting was rounder than others. The average size in length was decreased from 500μm (conventional casting) to 100μm (added 200-96μm powders) or 80μm (added 74-43μm powders); the average size in width was decreased from 80μm (conventional casting) to 40μm (added 200-96μm powders) or 30μm (added 74-43μm powders); the length-width ratio was reduced from 6 to 2.5. The microstructures of the Al-65Cu alloys prepared by the SLiM casting were composed of 0 and η_2 which shapes presented rosette or globoid with the average size below 35μm, which was obviously smaller than that of the semi-solid casting (100μm).
    Through the SLiM casting, the room temperature mechanical properties of the
引文
[1] 崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2001:156-157
    [2] 宋维锡.金属学[M].北京:冶金工业出版社,1979:93-99
    [3] 1997:23-25
    [4] 齐丕骧.压力下结晶形核率的理论计算[J].金属学报,1984,20(6):35-41
    [5] 齐丕骧,吴岳壹,齐霖.挤压铸造合金材料的研究进展[J].特种铸造及有色合金,2005,25(1):28-31
    [6] 齐丕骧.挤压铸造[M].北京:国际工业出版社,1984:1-35
    [7] [美]Flemings M C,凝固过程.关玉龙,屠宝洪,许诚信译[M].北京:冶金工业出版社,1981:23-35
    [8] 谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999:1-12
    [9] Flemings M C, Riek R G, Young K P. Rheocasting [J]. Mater. Sci. Eng., 1976, 25:103-117
    [10] Kenney M P, Courtois J A, Evans R D, et al, Metals Handbook[M], 9~(th) ed, ASM International, Metal Park, OH, 1988, 15:327-338
    [11] Flemings M C. Behavior of Metal alloys in the semi-solid state[J]. Metall Trans, 1991, 22A(5): 957-981
    [12] Mehrabian R, Riek R G, Flemings M C. Preparation and casting of mental-particulate non- mental composites[J]. Metall Trans, 1974, 5(8): 1899-1905
    [13] Mehrabian R, Flemings M C. Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the mental composition [P]. US Patent, No3936298, 1976
    [14] Mehrabian R, Flemings M C. Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the mental composition [P]. US Patent, No3951651, 1976
    [15] Manson-whitton E D, Stone I C, Jones J R, Grant P S, Cantor B. Isothermal Grain Coarsening of Spray Formed Alloys in the Semi-solid State [J]. Acta Materialia. 2002,50(10):2517-2535[16] Tanabe F, Motegi T, Sugiura E. Characteristics of Thixoforming in Semisolid Continuous Casting Billets of 6070 and 7075 Aluminum Alloys [J]. Journal Japan Institute of Light Metals.2003, 53(8): 327-333
    [17] Czerwinski F. The Generation of Mg-Al-Zn Alloys by Semisolid State Mixing of Particulate Precursors [J]. Acta Materialia. 2004,52(17): 5057-5069
    [18] Li H, Li P, Xue K-m. Study on Refining of Semisolid Al-alloy by Ti-B [J]. Foundry Technology. 2005,26(163): 163-166
    [19] Midson S P. Rheocasting Processes for Semi-solid Casting of Aluminum Alloys [J]. Die Casting Engineer, 2006,50(1): 48-56
    [20] Nafisi, Shahrooz Ghomashchi, Reza. Effects of Modification during Conventional and Semi-solid Metal Processing of A356 Al-Si Alloy [J]. Materials Science & Engineering,2006,415(1/2): 273-280
    [21] Chiarmetta G. Thixoforming of automobile components [A]. Proc. of the 4th Int. Conf. on Semi-Solid Processing of Alloys and Composites[C], Sheffield, 1996:204-207
    [22] 毛卫民,钟雪友.半固态金属成形技术[M].北京:机械工业出版社,2004:35-100
    [23] 唐靖林,曾大本.半固态加工技术的发展和应用[J].兵器材料科学与工程,1998,21(3):56-65
    [24] 罗守靖,姜巨福,杜之明.半固态金属成形研究的新进展、工业应用及其思考[J].机械工程学报,2003,39(11):52-60
    [25] Mehrabian R, Flemings M C. Die casting of partially solidified alloys[J]. AFS Trans, 1972, 80:173-182
    [26] Flemings M C, Mehrabian R. Casting semi-solid metals [J]. Modern Casting, 1973, 63(12): 31-33
    [27] Flemings M C, Riek R G, Young K P. Rheocasting processes [J]. AFS International Cast Metals Journal, 1976, 1(3): 11-22
    [28] Vogel A, Doherty R D, Cantor B. Stir-cast microstructure and slow crack growth [A]. Solidification and Casting of Metals[C] \Proc. Conf.\, Sheffield, England, July 1977, 1979:518-525
    [29] 毛卫民,赵爱民,崔成林等.AlSi7Mg合金半固态连铸坯料和组织形成研究[J].金属学报,2000,36(5):539-544
    [30] 毛卫民,钟雪友,王华宇.A1Si7Mg枝晶合金半固态加热时的组织演变[J].北京科技大学学报,1998,20(3):258-261
    [31] Katamis T Z, Coughlin J C and Flemings M C. Influence of coarsening on??dendrite arm spacing of aluminum-copper alloys[J]. Trans Metall Soc AIME, 1967, 239(10): 1504-1511
    [32] Kirkwood D H. Semi-solid metal processing [J]. International Mater Rev, 1994, 39(5):173-189
    [33] 吴艳军.Al-8.7Fe-1.6V-1.3Si固液混合铸造组织及性能研究(硕士学位论文)[D].中南工业大学,2001:30-42
    [34] 陈祥,危仁杰,杨湘杰.半固态金属成形的研究概况和应用[J].铸造,2005,54(9):835~839
    [35] Chiarmetta G. Thixoforming of automobile components [A]. In: Kirkwood D H and Kapranos P. Proc of the 4th Int. Conf. on Semi-solid Processing of Alloys and Composites[C]. University of Sheffield, England, June 19-21, 1996. UK: Department of Engineering Materials, University of Sheffield, 1996:204-207
    [36] Efimov V A. Suspension Casting Technological Fundamentals [A]. In: Mikhavlov L J ed. Proceedings of 48~(th) International Foundry Congress[C]. Varna, Bulgaria, 3-7: oct. 1981, Sofija: Int. Acd. Press. 1981:127-130
    [37] 周起玉,樊铁船,胡美忠.ZL105合金悬浮铸造工艺研究[J].热加工工艺,1993,1:37-39
    [38] 王金华编.悬浮铸造[M].北京:国防工业出版社,1992:2-8,15-24
    [39] 刘政,刘小梅.悬浮铸造技术及其应用[J].江西冶金,1996,16(2):15-18
    [40] 刘劲松,龙小兵,何建军.悬浮铸造、半固态铸造与固液混合铸造[J].长沙航空职业技术学院学报.2003,3(1):56-59
    [41] 陈振华.Al-Si合金固液混合铸造[J].中国有色金属学报.2001,10(3):349-352
    [42] Johnson. Net-shape P/M applications [J]. Int. J Powder Metall, 1990, 26(3): 27-31
    [43] 康智涛,张豪,陈振华.6066/SIC喷射公沉积复合材料的半固态加工[J].中国有色金属学报,1998,8(4):595-599
    [44] Singer A R E. Recent developments in the spray forming of metals [J]. Inter J of Powder Metal and Powder Tech,1985,21(3):219-222
    [45] 何建军,陈振华,严红革.固液混合铸造技术[J].铸造,2005,54(3):217-221
    [46] 杨为佑.固液混合铸造过共晶Al-Si合金的研究(硕士学位论文)[D].长沙:中南大学材料科学与工程学院,2000:22-26
    [47] 陈振华,严红革,陈刚等.Al-8.7Fe-1.6V-1.3Si耐热铝合金固液混合铸造[J].中国有色金属学报,2002,12(3):422-425.
    [48] 程相飞.固液混合铸造Al-10Cr合金的研究(硕士学位论文)[D].湖南大学,??2005:25-39
    [49] 陈振华,陈鼎,严红革等.固液混合铸造的研究[J].湖南大学学报,2002,29(4):20-26
    [50] 胡汉起编.金属凝固原理(第二版)[M].北京:机械工业出版社,2000:87-106
    [51] Thaddeus B Massalski, Hiroaki Okamoto, P R Subramanian, etc. Brinary Alloy Phase Diagrams (Second Edition) [M]. ASM International, 1992:141-143
    [52] J.L.De MOL van OTTERLOO, D.BAGNOLI and J.TH.M.DE HOSSON. Enhanced Mechanical Properties of Laser Treated Al-Cu Alloy: A Microstructural Analysis [J], Acta metall, mater. 1995, 43(7): 2649-2656
    [53] 田荣璋,王祝堂编.铝合金及其加工手册(第二版)[M].长沙:中南大学出版社,1988:26
    [54] 虞觉奇,易文质,陈邦迪等.二元合金状态图集[M].上海:上海科学技术出版社,1987:137,218
    [55] M Aravind, P Yu, M Y Yau, Dickon H L Ng. Formation of Al_2Cu and AlCu inter-metallics in Al (Cu) alloy matrix composites by reaction sintering [J]. Materials Science and Engineering A 380 (2004):384-393
    [56] W Kurz, D J Fisher. Fundamentals of Solidification [M]. Third Trans. Tech, Pub.,1989: 54-68
    [57] 刘国勋.金属学原理[M].北京:冶金工业出版社,1980:27-36
    [58] 刘丹,崔建忠.金属半固态加工[J].轻合金加工技术,1999,27(2):36-43
    [59] 束德林.金属力学性能[M].北京:机械工业出版社,1999:1-5,23
    [60] 哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983:68-90
    [61] J FKnott.Fund mental soft Fracture Mechanics[M].London:Butterworths, 1973:26-30.42-46
    [62] 上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社,1979:1-5,23-30,57-62
    [63] 何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北工业大学出版社,2001,4:35-51
    [64] 高彩桥.摩擦金属学[M].哈尔滨:哈尔滨工业大学出版社,1988:35-46
    [65] 安健,张明哲,曹占义等.SiC粒子增强铸造铝基复合材料的磨损性能与磨损机制[J].热加工工艺,1997(3):19-25
    [66] L J Yang. The transient and steady wear coefficients of A6061 aluminum alloy reinforced with alumina particles [J]. Composities Science and Technology, 2003, 63:575-583
    [67] K.-H.哈比希.材料的磨损与硬度[M].北京:机械工业出版社,1987:146-149[68] 罗霞,张永振,陈跃等.材料高速干摩擦的研究现状及其发展[J].润滑与密封,2005(2):179-182,188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700