锂离子电池正极材料Li_3V_2(PO_4)_3的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为聚阴离子型锂离子电池正极材料,单斜结构Li3V2(PO4)3因具有结构稳定、循环性能优良、及安全性能好等优点而日益为人们所关注。但由于存在影响其电化学性能的低电导率问题,因此提高电导率已成为研究这种材料的重点。本文分别采用高温碳热还原法、低温碳热还原法、溶胶-凝胶法合成了纯的和掺杂的Li3V2(PO4)3正极材料,利用XRD、SEM等技术对合成产物的微观结构及形貌进行了分析,并采用恒电流充放电、恒电压充放电、循环伏安(CV)等技术测试了材料的电化学性能。重点讨论了合成条件对活性材料的物理性能及电化学性能的影响。
     采用高温碳热还原法合成了Li3V2(P04)3。主要研究了烧结温度、烧结时间、球磨方式、碳含量以及碳源对样品结构、形貌和电化学性能的影响。结果表明:烧结温度、烧结时间、球磨方式、碳含量以及碳源对Li3V2(PO4)3晶形结构影响不大,但对样品形貌影响较大。不同条件下合成Li3V2(PO4)3的充放电曲线形状相似,但比容量和循环性能差异很大。经过球磨、750℃烧结30 h、以蔗糖为碳源合成的样品物理性能和电化学性能比较理想。合成样品的表面光滑,平均粒径分布比较均匀。首次充、放电容量分别为131、122mAh-g"1,循环30次后容量为113 mAh·g-1。
     在高温碳热还原法合成样品合成的过程中分别添加了一定量的LiOH、V2O5、LiF,研究了不同量的Li、V、以及Li和F复合掺杂对Li3V2(PO4)3的晶形结构、表面形貌和电化学性能的影响。结果表明:适量元素掺杂均不会改变Li3V2(PO4)3的单斜晶系结构,掺杂后的一次样品颗粒减小且粒度分布均匀。掺杂样品的首次充、放电容量增大,库仑效率和循环性能明显提高。Li3.04V2(PO4)3、Li3V2.04(PO4)3和Li3.02V2(PO4)F0.02的掺杂效果比较理想,在0.2 C倍率下充放电,其首次放电容量分别为123、125、127mAh-g"1,循环30次后容量分别为114、115和118 mAh-g-1,样品的衰减率分别为7.32%、8.00%和7.09%。循环伏安研究结果表明:掺杂Li3V2(PO4)3样品的氧化峰和还原峰的电位差比未掺杂的Li3V2(PO4)3样品减小,电极反应的可逆性提高。掺杂使得Li3V2(PO4)3样品的循环性能在一定程度上有所提高,但是Li3V2(PO4)3的循环性能仍不十分理想。
     为了克服高温固相法的缺陷,采用低温碳热还原法合成了Li3V2(PO4)3。通过将钒的醇盐水解转变成V2O5凝胶,然后再和磷酸二氢铵、氢氧化锂和乙炔黑混合均匀,在较低温度下合成Li3V2(PO4)3。分别研究了不同合成条件对Li3V2(PO4)3物理性能和电化学性能的影响,并对Li3V2(PO4)3的合成条件进行了优化。结果表明烧结温度和烧结时间对Li3V2(PO4)3的晶形结构和表面形貌均有较大影响。600℃烧结20 h合成的Li3V2(PO4)3样品一次颗粒较小、粒度分布均匀且电化学性能较好,首次充、放电容量分别为134、126 mAh-g-1,循环30次后容量为120 mAh-g-1。
     首次开发了新型溶胶-凝胶法合成Li3V2(PO4)3的工艺。以V2O5、LiOH·H2O、NH4H2PO4、柠檬酸为原料,采用溶胶-凝胶液相法在较低温度下合成了具有优异化学性能的Li3V2(PO4)3正极材料。与固相反应相比,该方法反应温度降低,反应时间缩短。优化工艺条件下(合成温度:650℃,时间15 h)合成的Li3V2(PO4)3样品,在0.2 C倍率下充放电时,首次充、放电容量分别为135、129 mAh-g-1,以0.2 C充放电循环30次后的容量为125 mAh-g-1,以0.2 C充放电循环100次后的容量为106 mAh-g-1;以0.5 C倍率充放电循环30次后的容量为119 mAh-g-1;以1.0 C倍率充放电循环100次后的容量为106mAh·g-1;以1 C倍率充放电循环30次后的容量为112 mAh-g-1。
     采用溶胶-凝胶法结合体相掺杂的方法,通过不同量的Li和V掺杂对Li3V2(PO4)3进行了改性。研究发现,掺杂对Li3V2(PO4)3的晶形结构、表面形貌和电化学性能有一定的影响。结果表明适量Li和V掺杂均不会改变Li3V2(PO4)3的单斜晶系结构,掺杂样品一次颗粒减小且粒度分布均匀。掺杂样品的首次充、放电容量均有一定程度增大,库仑效率和循环性能明显得到提高。Li3.04V2(PO4)3和Li3V2.02(PO4)3样品电化学性能相对较好,其首次放电容量分别为129、128mAh·g-1,以0.2 C倍率充放电循环100次后容量分别为113 mAh-g"1和115 mAh-g-1,以1 C倍率充放电循环30次后容量为120 mAh-g"1和122 mAh-g"1。循环伏安研究结果表明,Li3V2(PO4)3样品的氧化峰和还原峰的电位差比未掺杂的Li3V2(PO4)3样品减小,电极反应的可逆性提局。
     初步探讨了不同合成方法对材料Li3V2(PO4)3的动力学性质影响。采用线性极化和恒电位阶跃等方法,分别测定了不同方法合成的Li3V2(PO4)3在不同嵌锂状态下的交换电流密度和扩散系数。发现Li3V2(PO4)3材料的交换电流密度以及锂离子在Li3V2(PO4)3材料中的扩散系数总体上随嵌锂量的增加而增大,锂离子在Li3V2(PO4)3材料中的扩散系数数量级在10-11-10-14 cm2·s-1,掺杂和改变合成方法均能改变Li3V2(PO4)3材料的交换电流密度和锂离子在Li3V2(PO4)3材料中的扩散系数。动力学测试结果与电化学性能测试结果变化趋势一致。
As polyanion cathode materials for lithium ion batteries, monoclinic lithium vanadium phosphate Li3V2(PO4)3 is attractive for stable structure, excellent cycle performance and safety. However, their low electronic conductivity impedes their use as electrode materials. In this paper, Li3V2(PO4)3 was respectively prepared by high temperature carbothermal reduction reaction, low temperature carbothermal reduction, sol-gel method reaction. The physical properties of Li3V2(PO4)3 were investigated by XRD and SEM, and their electrochemical performances were investigated by galvanostatic current charge-discharge, cyclic voltammetry, electrochemical impedance spectroscopy. The effects of preparation conditions on the physical properties and electrochemical performances of active materials were investigated.
     The cathode material Li3V2(PO4)3 was prepared by high temperature carbothermal reduction reaction. The effect of synthesis conditions on the physical performance and electrochemical behavior of Li3V2(PO4)3 was studied and the synthesis conditions were optimized. The results showed that with the increase of sintering temperature, the growth of crystal was quickened and the crystal becomes more perfect. It was also found that the morphology of samples was affected by the specific capacity and cycling performance of Li3V2(PO4)3 varied with different synthesis conditions, while the charge-discharge curves were similar. The initial charge and discharge capacity of Li3V2(PO4)3 synthesized on the optimized condition was 131,122 mAh-g-1, respectively, and the capacity retained 113 mAh-g'1 after 30 cycles.
     The modification of Li3V2(PO4)3 by doping was studied. The effect of different content of doped-Li, V, Li and F on the structure, morphology and electrochemical properties was investigated. The results indicate that doping doesn't affect the structure of samples. Appropriate amount of doping can make the particle size of samples smaller. It was clear that the initial charge and discharge capacity of samples increased and the corresponding coulombic efficiency and cycling performance were enhanced. The discharge capacity of Li3.04V2(PO4)3, Li3V2.04(PO4)3 and Li3.o2V2(PO4)Fo.o2 were 123,125 and 127 mAh·g-1, and the capacity retained 114,115 and 118 mAh·g"1 after 30 cycles. The potential difference between the oxidation potential and the reduction potential of samples become samller than those of Li3V2(PO4)3, indicating the enhancement of the reversibility of electrode reaction due to doping. Though modification by doping can enhance the cycling performance of the materials, their capacity fading was still notable.
     Li3V2(PO4)3 cathode material was prepared by low temperature carbothermal reduction reaction. Compared with high temperature carbothermal reduction reaction, low sintering temperature and short sintering time are involved. The results showed that the sintering temperature and time played an important role in the crystal structure and morphology. The optimized sintering temperature and time were 600℃and 20 h. Electrochemical test showed that the initial discharge capacity of Li3V2(PO4)3 powder synthesized at the optimized conditions was 126 mAh g-1, the capacity retained 120 mAh-g-1 and the capacity fading was 4.76% after 30 cycles.
     Synthesizing technologies of Li3V2(PO4)3 was first exploited by sol-gel method in aqueous solution. Its advantages included low sintering temperature and short sintering time. Electrochemical test showed that the initial charge and discharge capacity of Li3V2(PO4)3 powder synthesized on the optimized condition was 135,129 mAh-g-1, respectively, the capacity retained 106 mAh-g'1 and the capacity fading was 17.82% at 0.2 C after 100 cycles. And the capacity retained 112 mAh-g-1 and the capacity fading was 13.17% at 1 C after 30 cycles.
     The modification of Li3V2(PO4)3 by doping was studied. The effect of different content of doped-Li and V on the structure, morphology and electrochemical properties was investigated. The results indicated that doping didn't affect the structure of the material. Appropriate amount of doping can make the particle size of samples smaller. It was clear that the initial charge and discharge capacity of samples increased and the corresponding coulombic efficiency and cycling performance were enhanced. The discharge capacity of Li3.04V2(PO4)3 and Li3 were 129 and 128 mAh·g-1, and the capacity retained 113 and 115 mAh·g-1 at 1 C after 100 cycles, and the capacity retained 120 and 122 mAh·g-1 at 1 C after 30 cycles. The potential difference between the oxidation potential and the reduction potential of samples become samller than that of Li3V2(PO4)3, indicating the enhancement of the reversibility of electrode reaction due to doping.
     The kinetics behaviors of Li3V2(PO4)3 were studied by means of linear sweep voltammetry and the potentiostatic intermittent titration technique (PITT). It was found that the exchange current density and diffusion coefficient (DLi+) were increased with Li interaction into Li3V2(PO4)3 material. And the magnitude level of diffusion coefficient (DLi+) in Li3V2(PO4)3 material is about 10-11-10-14 cm2·s-1 respectively. Doping and synthesized method can affect the exchange current density and diffusion coefficient (DLi+).
引文
[1]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002.1-294
    [2]Murphy D.W., Broodhead J., Steel B.C. Materials for advanced batteries. New York:Plenum Press,1980.145
    [3]Thackeray M.M. Structural considerations of layered and spinel lithiated oxides for lithium ion battery. J. Electrochem. Soc.,1995,142 (8):2558-2563
    [4]郭炳焜,徐徽,王先友,肖立新.锂离子电池.长沙:中南大学出版社,2002
    [5]雷永泉,万群,石永康等.新能源材料.天津:天津大学出版社,2000:50-100.
    [6]毕道治.21世纪电池技术展望.电池工业,2002,(3,4):205-210
    [7]Yoshio M., Tanaka H., Tominaya K., et al. Synthesis of LiCoO2 from cobalt-organic acid complex and its electrode behavior in a lithium secondary battery. J.Power Sources,1992,40:347-353
    [8]Thackeray M.M. Structural considerations of layered and spinel lithiated oxides for lithium ion battery. J. Electrochem. Soc.,1995,142 (8):2558-2563
    [9]Rougier A., Gravereau P., Delmas C. Optimization of composition of the Li1-zNi1+zO2 electrode material:Structural, magnetic and electrochemical studies. J. Electrochem. Soc.,1996,143 (4):1168-1175
    [10]Ohzuku T., Kitagawa M., Hiral T. Electrochemistry of manganese dioxide in lithium nonaqueous cell. J. Electrochem. Soc.,1990,137(3):769-775
    [11]Chirayil T.A., Zavalij P.Y., Whitetingham M.S. A new vanadium dioxide cathode. J. Electrochem. Soc.,1996,143 (9):L193-L195
    [12]Fujimoto H., Mabuchi A., Tokumitsu K., et al. Effect of crystallite size on the chemical compostion of the stage 1 alkali metal-graphite intercalation compounds. Carbon,1994,32 (4):193-198
    [13]Mabuchi A. Charge-discharge characteristics of the mesocarbon micrbeads heat-treated at different temperatures. J. Electrochem. Soc.,1995,142 (4): 1041-1046
    [14]Besenhard J.O., Wachtler M., Winter M., et al. Kinetics of Li insertion into polycrystalline and nanocrystallirie'SnSb' alloys investigated by transient and steady state techniques. J. Power Sources,1999,81-82:268-272
    [15]Li H., Huang X., Chen L. Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries. J. Power Sources,1999, 81-82:340-345
    [16]Idota Y., Kubota T., Matsufuji A., et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material. Science,1997,276:1395-1397
    [17]Chouvin J., Branci C., Sarradin J., et al. Lithium intercalation in tin oxide J. Power Sources,1999,81-82:277-281
    [18]吴宇平,万春荣,姜长印,等.锂电池非水电解质盐的制备LiPF6.电源技术,1999,23:99-101
    [19]Ein-Eli Y., Thomas S.R., Koch V.R. The role of SO2 as an additive to organic li-ion battery electrolytes. J. Electrochem. Soc.,1997,144 (4):1159-1165
    [20]Takeuchi E.S., Gan H., Palazzo M., et al. Anode passivation and electrolyte solvent disproportionation:mechanism of ester exchange reaction in lithium-ion batteries. J. Electrochem. Soc.,1997,144 (6):1944-1948
    [21]Smart M.C., Ratnakumar B.V., Surampudi S., et al. Irreversible capacities of graphite in low temperature electrolytes for lithium-ion batteries. J. Electrochem. Soc.,1999,146(11):3963-3969
    [22]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:化学工业出版社,2004:1-300
    [23]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:1-20
    [24]毕道治.21世纪电池技术展望.电池工业,2002,(3-4):205-210
    [25]Mark Schimpt.如何选择不同类型的锂原电池.电子产品世界,1996,(04):32
    [26]肖建民.高能量电池开发的新近进展.电池,1994,(06):54-58
    [27]Yoshiaki A.扣式锂离子可充电池的开发.新型炭材料,1997,(01):19-23
    [28]Murphy D.W., Broodhear J., Steel B.C. Materials for advanced batteries. New York:Plenum Press,1980:145
    [29]高海春.锂离子电池.盐湖研究,1994,(4):54-58
    [30]任学佑.锂离子电池及其发展全景.电池,2000,30(1):36-38
    [31]Eudo M, Kim C, Nishimura K. Recent development of carbon materials for li-ion batteries. Carbon,2000,138(2):183-197
    [32]张文.锂离子电池用负极材料.电池,1997,27(3):132-135
    [33]Winter M., Besenhard J.O., Besenhard O. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater,1998, (10):742-745
    [34]黄振谦,张昭.锂离子电池(RCB)的研究现状.电池.1995,(6):143-146
    [35]Smart M. C., Ratnakumar B. V., Surampuli S., et al. Irreversible capacities of graphite in low temperature electrolytes for lithioum-ion batteries. J. Electrochem Soc,1999,146 (11):3963-3969
    [36]查全性.二次锂电池最新进展—中国科学院院士教授访谈录.电池,1995,(1):28-31
    [37]Poizot P., Grugeon S. Nano-sized transition-metal oxides as negative electrode materials for lithium ion batteries. Nature,2000, (407):496-499
    [38]Boone B,Owens. Overview of materials and applications during the last third of the Twentieth Century. J.Power Sources,2000, (90):2-8
    [39]Masataka, Wakihara. Recent developments in lithium ion batteries [J]. Materials Science and Engineering,2001, (33):110-120.
    [40]张胜利,余仲宝,韩周详.锂离子电池的研究与进展.电池工业,1999,4(1):26-28
    [41]周恒辉,慈云祥,刘昌炎.锂离子电池正极材料研究进展.化学进展,1998,10(1):85-94
    [42]刘景,温兆银,吴梅等.锂离子电池正极材料的研究进展.无机材料学报,2002,(17):1-9
    [43]韩景立,刘庆国.锂镍钴复合氧化物锂离子电池正极材料的研究.电化学.2000,6(4):469-471
    [44]应皆荣,姜长印,万春荣.溶胶凝胶法制备LiNixCO1-xO2正极材料的研究进展.化学世界,2001,(3):157-160
    [45]张淑静,钟盛文,张骞等.镍酸锂前驱体-球形Ni(OH)2的制备工艺研究.江西有色金属,2005,(10):40-42
    [46]刘立朋,李亚东.尖晶石相锂锰氧化物合成工艺的研究进展.河北化工,2006,(2):13-16
    [47]庄大高,赵新兵,曹高劭等.水热法合成LiFePO4的形貌和反应机理.中国有色金属学报,2005,(12):2034-2039
    [48]李嵩,程杰锋,季世军等.水热合成锂离子正极材料LiMn2O4.稀有金属材料与工程,2003,(6):468-470
    [49]陶颖,陈振华,祝宝军.锂离子电池正极薄膜制备技术进展.湖南有色金属,2005,(4):25-27
    [50]魏晓,韩高荣.锂离子电池正极材料研究进展以及水热法制备LiCoO2超细粉体.材料科学与工程学报,2006,(1):118-124
    [51]Lee M. H., Kang Y. J., Myung S. T.,et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta,2004,(50): 939-948
    [52]肖劲,曾雷英,陈召勇等.锂离子电池正极材料LiNi0.5Mn0.5O2的合成.无机化学学报,2006,(04):685-690
    [53]张爱波,刘建睿,李岚等.柠檬酸溶胶-凝胶燃烧法制备LiNi0.5Co0.5O2.精细化工,2006,(5):422-425
    [54]刘素琴,李世彩,唐联兴等.Li3V2(PO4)3的溶胶-凝胶法合成及其性能研究.无机化学学报,2006,(4):645-650
    [55]夏三宇,陈晓红,宋怀河.炭气凝胶微球的制备及在锂离子电池负极材料中的应用.北京化工大学学报(自然科学版),2006,(2):46-49
    [56]Chang C. C., Kim J. Y., Kumta P. J Electrochim Soc,2002, (149):331
    [57]WU Hui-ming, TU Jiang-ping, YUAN Yong-feng, et al. A spray-drying method to synthesis LiMn1.5Ni0.5O4 and its electrochemical characteristics as a cathode material.中山大学学报(自然科学版),2005, (S2):42-45
    [58]李阳兴,姜长印,万春荣.喷雾干燥法制备LiCoO2超细粉.无机材料学报,1999,(4):657-660
    [59]Akimoto J., Gotoh Y., Oosawa Y. Synthesis and structure refinement of LiCoO2 single crystals. J.Solid State Chemistry,1998,14:298-302
    [60]何志奇,于利红,郑曦等.球形钴酸锂的乳液法合成及其结构、性能研究.化学学报,2005,(24):2185-2188
    [61]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 starting from carbonate precursors:The reaction mechanisms. Solid State Ionics,1997, (96):173-181
    [62]Mizushma K., Jones P.C., Wiseman P.J., et al. LixCoO2(0    [63]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 starting from carbonate precursors:Influence of calcinations conditions and leaching. Solid State Ionics, 1997,(96):183-193
    [64]Tukaoto H., West A.R., Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc.,1997,144 (9):3164-3168
    [65]杨新河,刘人敏,吴国良.锂离子电池正极材料LiCoO2的合成机理及其化学行为研究.第23届全国化学与物理电源学术会议论文集,河南新乡,1999:342-344
    [66]Kang S. G., Kang S.Y., Ryu K.S., et al. Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics,1999, (120):155-161
    [67]Mizushma K., Jones P. C., Wiseman P. J. et al. A new cathode material for batter-ies of high energy density. Mat Res Bull,1980,15:783-799
    [68]Reimers J.N., Dahn J.R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc.,1992,139 (8):2091-2097
    [69]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 starting from carbonate precursors:I The reaction mechanisms. Solid State Ionics,1997,96:173-181
    [70]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 starting from carbonate precursors:II Influence of calcinations conditions and leaching. Solid State Ionics,1997,96:183-193
    [71]Tukaoto H., West A.R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc.,1997,144(9):3164-3168
    [72]Holzapfel M., Schreiner R., Ott A. Lithium-ion conductors of the system LiCo1-xFexO2:A first electrochemical investigation. Electrochim Acta,2001, 46:1063-1070
    [73]Li W, Currie J.C. Morphology effects on the electrochemical performance of LiNi1-xCoxO2. J. Electrochem. Soc.,1997,144:2773-2779
    [74]Kweon H. J., Kim S.S., Kim G B., et al. Synthesis of LiMn2O4, LiCoO2 and LiNio.8Coo.2O2 by the PVA-precursor method and their use as a cathode in the lithium-ion rechargeable battery. J. Mater. Sci. Lett.,1998,17:1697-1701
    [75]Delmas C., Saadounne I., Rougier A., et al. The cycling properties of the LiNi1-yCoyO2 electrode. J. Power Sources,1993,43-44:595-602
    [76]Banov B., Boueilkov J., Mladenov M. Cobalt stabilized layered lithium nickel oxides cathodes in lithium rechargeable cells. J. Power Sources,1995,54: 268-270
    [77]Kubo K., Fujiwara M., Yanana S., et al. Synthesis and electrochemical properties for LiNiO2 substituted by other elements. J. Power Sources,1997,68: 553-557
    [78]Spahr M.E., Novak P., Schnyder B., et al. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J. Electrochem. Soc.,1998,145(4):1113-1121
    [79]Lu C.H., Lee W.C. Novel emulision process for synthesizing submicron lithium nickel oxide powder used in lithium ion batteries. Materials Letters,1999,40 (3): 103-108
    [80]Peng Z.S., Jiang C.Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials. J. Power Sources,1998,72:215-220
    [81]Kang S.G, Kang S.Y., Ryu K.S., et al. Electrochemical and structural properties of HT-LiCoO2and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics,1999,120:155-161
    [82]Chen Yinghua, Zhao Yanming, An Xiaoning, et al. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochimica Acta,2009,54 (24): 5844-5850
    [83]Garcia B., Farcy J., Pereira-Ramos P. J. Low temperature cobalt oxide as rechargeable cathodic material for lithium batteries. J. Power Sources,1995,54: 373-377
    [84]Garcia B., Farcy J., Pereira-Ramos J.P., et al. Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc.,1998,145(7):1179-1184
    [85]Lu C.H., Yeh P.Y. Surfactant effects on the microstructure and electrochemical properties of emulsion-derived lithium cobalt oxide podwers. Materials science and Engineering,2001, B84:243-247
    [86]Larcher D., Palacin M.R., Ammtucci GG, et al. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions. J. Electrochem. Soc.,1997,144 (2):408-417
    [87]Yoshio M., Tanaka H., Tominaya K., et al. Synthesis of LiCoO2 from cobalt-organic acid complex and its electrode behavior in a lithium secondary battery. J.Power Sources,1992,40:347-353
    [88]Jeong E.D., Won M.S., Shim Y.B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction. J.Power Sources,1998,70:70-77
    [89]Le D.B., Smyrl W.H., Owens B., et al. Patent WO 96,388865,1996
    [90]ChiangY.M., Jang Y.I., Wang H.F., et al. Synthesis of LiCoO2 by decomposition and intercalation of hydroxides. J. Electrochem. Soc.,1998,145(3):887-891
    [91]Yan H.W., Huang X.J., Li H.L., et al. Electrochemical study on LiCoO2 synthesized by microwave energy. Solid State Ionics,1998,113-115:11-15
    [92]Ohzuku T., Yanagawa T., Kouguchi M., et al. Innovative insertion material of LiAl1/4Ni3/4O2(R3m). J. Power Sources,1997,68(1):131-134
    [93]Zhong Q., Sacken V.U.Crystal structures and electrochemical properties of LiAlyNi1-yO2 solid solution. J. Power Sources,1995,54:221-223
    [94]Nishida Y, Nakane K., Satoh T. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries. J. Power Sources, 1997,68:561-564
    [95]Li W., Currie J.C. Morphology effects on the electrochemical performance of LiNi1-xCoxO2. J. Electrochem. Soc.,1997,144:2773-2779
    [96]Kweon H. J., Kim S.S., Kim G.B., et al. Synthesis of LiMn2O4, LiCoO2 and LiNio.8Co0.2O2 by the PVA-precursor method and their use as a cathode in the lithium-ion rechargeable battery. J. Mater. Sci. Lett.,1998,17:1697-1701
    [97]Delmas C., Saadounne I., Rougier A., et al. The cycling properties of the LiNi1-yCoyO2 electrode. J. Power Sources,1993,43-44:595-602
    [98]Banov B., Boueilkov J., Mladenov M. Cobalt stabilized layered lithium nickel oxides cathodes in lithium rechargeable cells. J. Power Sources,1995,54: 268-270
    [99]Spahr M.E., Novak P., Schnyder B., et al. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J. Electrochem. Soc.,1998,145 (4):1113-1121
    [100]Lu C.H., Lee W.C. Novel emulision process for synthesizing submicron lithium nickel oxide powder used in lithium ion batteries. Materials Letters,1999,40 (3):103-108
    [101]Lee Y.S., Sun Y.K., Nahm K.S. Synthesis and characterization of LiNiO2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries. Solid State ionics,1999,118(1-2):159-168
    [102]Chang C.C., kumta P.N. Particulate sol-gel synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Coo.25) powders. J.Power Sources, 1998,75(1):44-45
    [103]Yamada K., Sato N., Fujino T., et al. Preparation of LiNiO2 and LiMyNi1-yO2(M=Co, Al) film by electrostatic spray deposition. J.Solid State Electrochemistry,1999,3(3):148-153
    [104]Obrovac M.N., Mao O., Dahn J.R. Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis. Solid State Ionics,1998,112:9-19
    [105]Tukaoto H, West AR. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. J. Electrochem. Soc.,1997,144 (9):3164-3168.
    [106]李建刚.锂离子电池用LixMn2-xO4正极材料的应用基础研究.天津:天津大学,2001:40-87
    [107]张胜涛,胡舸,伍明军. 尖晶石型锰酸锂的性质及改性研究现状. 重庆职业技术学院学报,2004,(01):5-9
    [108]沈俊,陶菲,田从学等.Pechini法合成尖晶石LiCoxMn(2-x)O4及其结构表征.四川有色金属,2004,(02):25-29
    [109]王凤,戴永年,崔萌佳等.掺杂对尖晶石锰酸锂正极材料的影响.无机盐工业,2005,(01):30-35
    [110]Amarilla J. M., Martin J. L. Electrochemical characteristics of coball-doped LiCoyMn2-yO4 (0≤y≤0.66) spinels synthesized at low temperature from CoxMn3-xO4 precuvsors. Sovid State Zonics,2000, (127):73-77
    [111]许云飞,李新海,张云河等.化学镀镍包覆提高尖晶石型LiMn2O4的高温性能.电源技术,2004,161(3):88-90
    [112]李智敏,仇卫华.Al3+,F-掺杂LiMn2O4的高温电化学性能.电池,2003,33(2):71-73
    [113]卢星河,唐致远,张娜等.掺杂元素Co、Cr、La对尖晶石型锰酸锂电化学性能的影响.河北建筑科技学院学报,2005,(03):4-7
    [114]刘兴泉,刘培松,陈召勇等.锂离子电池正极材料LiMn2O4的合成及其电化学性能研究.功能材料,2001,(02):178-180
    [115]韩景立,刘庆国.锂镍钴复合氧化物锂离子电池正极材料的研究.电化学.2000,6(4):469-471
    [116]李智敏,仇卫华,赵海雷等.Al3+、F-掺杂LiMn2O4的高温电化学性能.电池,2003,(02):71-72
    [117]马国胜,高虹,杨国生等.锂离子电池正极材料LiMn2O4的LiCoO2包覆性能研究.辽宁化工,2005,(07):285-289
    [118]刘静静,仇卫华,赵海雷等.锂离子电池用层状LiMnO2基正极材料的研究进展.硅酸盐学报,2005,(09):1128-1134
    [119]Armstrong A.R., Bruce P.G. Synthesis of layered LiMnO2 as electrode for rechargeable lithium batteries. Nature,1996, (381):499-500
    [120]Tabuchi M., Ado K., Kobayshi H. Sythesis of LiMnO2 with a-NaMnO2 type by a mixed alkaline hydrothermal reaction. J.Electrochem.Soc,1998, (145):49-52
    [121]Armstrony A.R., Bruce P.G. Sythesis of layered LiMnO2 as an electrode for
    rechargeable lithium batteries. Nature,1996, (381):499-500
    [122]Ammundsen B., Desilvestro J., Routso T.G., et al. Formation and structural properties of layered LiMnO2 cathode materials. J. Electrochem Soc.2000, 147, (11):4078-4082
    [123]Wadsley A.D. Crystal cheminstry of nonstoichiometric quinquevalent vanadium oxides:crystal structure of Li1+xV3O8. Acta Crystallogram,1957, (10):261-267
    [124]Picciotto A.L., Thackeray M.M., Pictoia G. An electrochemical study of the lithium vanadate system Li1+xV2O4 and Li1-xVO2.. Solid State Ionics,1988, (30):1364-1370
    [125]Fey G. T. K., Li W., Dahn J.R. LiNiVO4:A 4.8 V electrode material for lithium cells. J. Electrochem. Soc.,1994,141(9):2279-2282
    [126]Begam K. M., Taufiq-Yap Y. H., Michael M. S., Prabaharan S. R. S. A new NASICON-type polyanion, LixNi2(MoO4)3 as 3-V class positive electrode material for rechargeable lithium batteries. Solid State Ionics,2004,172 (1-4): 47-52
    [127]Prabaharan S. R. S., Fauzi A., Michael M. S., Begam K. M. New NASICON-type Li2Ni2(MoO4)3 as a positive electrode material for rechargeable lithium batteries. Solid State Ionics,2004,171 (3-4):157-165
    [128]Manthiram A., Goodenough J. B. Lithium insertion into Fe2(SO4)3 frameworks. J. Power Sources,1989,26 (3-4):403-408
    [129]Reiff W. M., Zhang J. H., Torardi C. C. Topochemical lithium insertion into Fe2(MoO4)3:Structure and magnetism of Li2Fe2(MoO4)3. J. Solid State Chem., 1986,62 (2):231-240
    [130]Manthiram A., Goodenough J. B. Lithium insertion into Fe2(MO4)3 frameworks Comparison of M=Wwith M= Mo. J. Solid State Chem.,1987, 71 (2):349-360
    [131]Sun J. K., Huang F. Q., Wang Y. M., Characterization of Nasicon-type Li3Fe2-2xTixMnx(PO4)3/C cathode materials. Journal of Alloys and Compounds, 2009,469:327-331
    [132]Patoux S., Wurm C., Morcrette M., Rousse G., Masquelier C.. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J. Power Sources,2003,119-121:278-284
    [133]Nagamine K., Hirose K., Honma T. and Komatsu T., Lithium ion conductive glass-ceramics with Li3Fe2(PO4)3 and YAG laser-induced local crystallization in lithium iron phosphate glasses. Solid State Ionics,2008,179 (13-14): 508-515
    [134]Xianjun Zhu, Yunxia Liu, Liangmei. Synthesis and characteristics of Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Solid State Ionics, 2008,179 (27-32):1679-1682
    [135]Zhao-yong Chen, Hua-li Zhu, Shan Ji, Rushanah Fakir, Vladimir Linkov. Influence of carbon sources on electrochemical performances of LiFePO4/C composites. Solid State Ionics,2008,179 (27-32):1810-1815
    [136]Haisheng Fang, Zhiyun Pan, Liping Li, Yong Yang, Guofeng Yan, Guangshe Li, Shiqiang Wei. The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity. Electrochemistry Communications,2008,10 (7):1071-1073
    [137]Xie J., Imanishi N., Zhang T., Hirano A., Takeda Y, Yamamoto O. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J. Power Sources,2009,192 (2): 689-692
    [138]Wilmont F. Howard, Robert M. Spotnitz. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J. Power Sources, 2007,165(2):887-891
    [139]Fu Zhou, Xuemei Zhao, Dahn J.R. Reactivity of charged LiVPO4F with 1 M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochemistry Communications,2009,11(3):589-591
    [140]Qian Zhang, Shengkui Zhong, Letong Liu. A novel method to synthesize LiVPO4F/C composite materials and its electrochemical Li-intercalation performances. J. Physics and Chemistry of Solids,2009,70(7):1080-1082
    [141]Barker J., Gover R. K. B., Burns P., Bryan A. J. A lithium-ion cell based on Li4/3Ti5/3O4 and LiVPO4F. Electrochem. Solid-State. Lett.2007,10 (5): A130-A133
    [142]Padlhi.A.K, Nanjundaswamy K. S., Goodenough J. B. Phospho-olivines as positive-electrode materials for rechangeable lithium batteries. J Electrochem Soc,1997,144(4):1188-1194
    [143]Anderson A. S., Thomas J. O. The source of first-cycle capacity loss in LiFePO4. J.Power Sources,2001, (97-98):498-502
    [144]Anderson A. S., Kalska B., Haggstrom L., et al. Lithium extraction/insertion in
    LiFePO4:an X-ray diffraction and Mossbauser spectroscopy study. Solid State Ionics,2002,5(5):A95-98
    [145]Sung-Yoon Chung, Jasont.Bloking, Yet-ming Chiang. Electronical conductive phospho-olivines as lithium storage electrodes. Nature materials,2002,10(1): 123-128
    [146]Lin C. and Ritter J.A. Effect of synthesis ph on the structure of carbon xerogel.Carbon 1997,35 (9):1271-1278
    [147]Yamada A., Chung S. C., Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J.Electrochem Soc,2001,148(3):A224-A229
    [148]Franger S., Le Cras F., Bourbon C., et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J.Power Sources,2003,119-120:252-257
    [149]Higuchi M., Katayama K., Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing. J.Power Sources,2003 (119-121):258-261
    [150]Yang S., Zabalij P.Y., Whittingham M.S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Coummunications,2001,3(9):505-508
    [151]Padhi A.K., Nanjundaswamy K.S., Masquelier C., et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem.Soc, 1998,144(5):1609-1613
    [152]Croce F., Epifanio A.D. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Letter,2002,5:A47
    [153]Arold G., Garche J., Hemmer R., et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J.Power Sources,2003 (119-121):247-251
    [154]Prosini P.P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics,2002,148:45-51
    [155]Ravet N., Chouinard Y., Magan J.F. Electroactivity of natural and synthetic triphylite. J.Power Sources,2001,97-98:503-507
    [156]Prosini P.P., Carewska M., Scaccia S., et al. Long-term cyclability of nanostrctured LiFePO4. Electrochemical and Solid-State Letters,2003,6 (12): A278-A281
    [157]Huang H., Yin S. C., Nazar L.F. Approaching theoretical capacity of LiFePO4 at room temperature at high tates. Electrochemical and Solid-State Letters,2001, 4(10):A171-A172
    [158]Chung S.C., Chiang Y.M. Microscale Measurment of the electrical conductivity of doped LiFePO4. Electrochemical and Solid-State Letters,2003,6 (12): A278-A281
    [159]Huang H., Yin S-C., Kerr T., Taylor N., Nazar L. F. Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/Carbon cathode for rechargeable lithium batteries. Adv. Mater.2002,14 (21):1525-1528
    [160]Croce F., Epifanio A.D, Hassoun J., et al. Synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid State Lett,2002,5 (3):A47-A50
    [161]Chung S.C., Bloking J.T., Chiang Y.M. Electronically conductive phospho-olvines as lithium storage electrodes. Nature materials,2002,1:123
    [162]Prosini P.P., Carewska M., Scaccia S., et al. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J. Electrochem.Soc, 2002,149(7):A886-A890
    [163]Scaccia S., Carewska M., Bartolomeo A.D, et al. Thermoanalytical inbestigation of nanocrystalline iron(II) obtained by spontaneous precipitation from aqueous solutions. Thermochimica Acta,2002,138:1-7
    [164]Iltchev N., Chen Y.K., Okada S., et al. LiFePO4 storage at room and elevated temperatures. J.Power Sources,2003,119-121:749-754
    [165]Franger S., Le Cras F., Bourbon C., et al. LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochemical and Solid-State Letters,2002,5 (10):A231-A233
    [166]Andersson A.S., Thomas J.O., Kalska B., et al. Thermal stability of LiFePO4-based cathodes. Electrochemical and Solid-State Letters,2000,3 (2):66-68
    [167]Andersson A.S., Kalska B., Haggstrom L., et al. Lithium extractin/insertion in LiFePO4:asn X-ray diffraction and mossbarer spectroscopy study [J]. Solid-State Letters,2000,130:41-52.
    [168]Takahashi M., Tobishima S., Takei K., et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J.Power Sources,2001, 97-98:508-511
    [169]Richardson T. J. Phosphate-stabilized lithium intercalation compounds. J.Power Sources,2003,119-121:262-265
    [170]Hu Q., Doeff M. M., Kostecki R., et al. Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries. J. Electrochem.Soc,2004,
    151:A1279-A1285
    [171]Mich H., Cao G.. S., Zhao X. B. Low-cost,one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials letters,2005,59:127-130
    [172]Barker J., Gover R. K. B., Burns P., et al. Structural and electrochemical properties of lithium vanadium fluorophosphates LiVPO4F. J Power Sources, 2005,146:516-520
    [173]Naniund A. S., Wamy K. S., Padhi A. K., Goodenough J. B., et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solide State Ionics,1996,92: 1-10
    [174]Gaubicher J., Wurm C., Goward G., Masquelier C., Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem. Mater.,2000,12 (11):3240-3242
    [175]Yin S. C., Grondey H., Strobel P., Anne M., Nazar L. F. Electrochemical property:Structure relationships in monoclinic Li3-yV2(PO4)3. J. Am. Chem.Soc.,2003,125 (34):10402-10411
    [176]Huang H., Yin S-C., Kerr T., Taylor N., Nazar L. F. Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/Carbon cathode for rechargeable lithium batteries. Adv. Mater.2002,14 (21):1525-1528
    [177]Crans D. C., Smee J. J., Gaidamauskas E., Yang L. The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chem. Rev.2004,104 (2):849-902
    [178]Thompson K. H., Orvig C. Desing of vanadium compounds as insulin enhancing agents. J. Chem. Soc. Dalton Transaction,2000, (17):2885-2892
    [179]Etcheverry S. B., Crans D. C., Keramidas A. D., Cortizo A. M. Insulin-Mimetic Action of Vanadium Compounds on Osteoblast-like Cells in Culture. Arch. Biochem. Biophys.,1997,338 (1):7-14
    [180]Goodenough J. B., Manivannan V., Padhi A. K. Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Subsitiution. J. Electrochem. Soc.,1998,145(5):1518-1520
    [181]Mineo S., Hirokazu O., Kenji Y, et al. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics,2000,135:137-142
    [182]Gaubicher J., Wurm C., Goward G, et al. Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries. Chem. Mater.,2000,12:3240-3242
    [183]Yin S. C., Strobel P. S., Grondey H., et al. Li2.5V2(PO4)3:A Room-temperature Analogue to the Fast-Ion Conducting High-Temperature γ-Phase of Li3V2(PO4)3. Chem. Mater.,2004,16:1456-1465
    [184]Fu P., Zhao Y., Dong Y., An X., Shen G. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. J. Power Sources,2006, 162(1):651-657
    [185]Saidi M. Y., Barker J., Huang H., Swoyer J. L., Adamson G. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. J. Power Sources,2003,119-121:266-272
    [186]Rui X.H., Li C., Chen C.H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochimica Acta,2009,54 (12):3374-3380
    [187]Saidi M. Y., Barker J., Huang H., Swoyer J. L., Adamson G. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem. Solid-State Lett.,2002,5 (7):149-151
    [188]Zhong Shengkui, Liu Letong, Jiang Jiqiong, et al. Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries. J. Rare Earths,2009,27(1):134-137
    [189]Jiang Tao, Wang Chunzhong, Chen Gang, et al. Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials. Solid State Ionics,2009,180(9-10):708-714
    [190]刘素琴,李世彩,唐联兴,黄可龙.Li3V2(PO4)3的溶胶-凝胶法合成及其性能研究.无机化学学报,2006,22(4):645-650
    [191]Li Y., Zhou Z., Ren M., Gao X., Yan J. Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochimica Acta,2006,51 (7):6498-6502
    [192]Ren M., Zhou Z., Li Y., Gao X. P., Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources,2006,162 (2):1357-1362
    [193]Barker J., Saidi M. Y., and Swoyer J. Lithium metal fluorophosphates materials and preparation thereof. USP:6387568,2002
    [194]肖劲,曾雷英,陈召勇,等.离子电池正极材料LiNio.5Mno.5O2的合成.无机化学学报,2006,22(4):685-690
    [195]Barker J., Saidi M. Y., and Swoyer J. A comparative investigate of the li insertion properties of the novel fluorophosphates phases, NaVPO4F and LiVPO4F. J of the Electrochemical Society,2004,151 (10):A1670-A1677
    [196]李宇展,任俊霞,周霞,等.锂离子二次电池正极材料LiVPO4F的制备及其电化学性能的研究.无机化学学报,2005,121:1597-1600
    [197]Tang Anping, Wang Xianyou, Yang Shunyi. A novel method to synthesize Li3V2(PO4)3/C composite and its electrochemical Li intercalation performances. Materials Letters,2008,62 (21-22):3676-3678
    [198]Zhu Xianjun, Liu Yunxia, Geng Liangmei, et al. Synthesis and characteristics of Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Solid State Ionics, 2008,179(27-32):1679-1682
    [199]Chen Yinghua, Zhao Yanming, An Xiaoning, et al. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochimica Acta,2009,54 (24): 5844-5850
    [200]Zhu X.J., Liu Y.X., Geng L.M., Chen L.B. Synthesis and performance of lithium vanadium phosphate as cathode materials for lithium ion batteries by a sol-gel method. J. Power Sources,2008,184 (2):578-582
    [201]Christopher M. Burba, Roger Frech. Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3. Solid State Ionics,2007,177 (39-40):3445-3454
    [202]Macdonald D.D. Transient techniques in electrochemistry. New York:Plenum Press,1977
    [203]Liu P., Wu H.Q. Diffusion of lithium in carbon. Solid State Ionics,1996,92: 91-97
    [204]Bohnke C., Bohnke O., Fourquet J.L. Electrochemical intercalation of lithium into LiLaNb2O7. J. Electrochem. Soc.,1997,144 (4):1151-1158
    [205]Umeda M., Dokko K., Fujita Y, et al. Elcetrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part Ⅰ. Graphitized carbon. Electrochimica Acta,2001,47:885-890
    [206]Umeda M., Dokko K., Fujita Y, et al. Elcetrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part II. Disordered carbon. Electrochimica Acta,2001,47:933-938
    [207]Deiss E. Spurious potential dependence of diffusion coefficients in Li+ insertion electrodes measured with PITT [J].Electrochimica Acta,2002,47:4027-4034.
    [208]Mcgraw J.M., BahnC.S., Parilla P.A., et al. Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes. Electrochimica Acta,1999, 45:187-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700