动力锂离子电池正极材料锰酸锂的开发及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要工作是通过高温固相法合成改性的动力锂离子电池正极材料尖晶石型锰酸锂,并将所研制的材料进行中试研究。主要采用阴阳离子复合掺杂和碳包覆以及钴酸锂改性的方式来提高锰酸锂的性能,并采用自制材料研制了性能良好的18650S型动力电池。研究工作主要从以下几个方面展开:
     系统地研究了几种阳离子单元掺杂时,不同掺杂浓度对合成产物的物相结构和电化学性能的影响。采用离子半径比Mn~(3+)大,但有着比Mn-O键强很多的M-O键的元素Zr和稀土元素La、Ce和Nd对尖晶石锰酸锂进行单元掺杂改性,取得了很好的效果,稀土元素的掺杂可改善材料的高温(55℃)循环性能。对尖晶石锰酸锂进行了二元阳离子组合掺杂,进一步改善了材料的电化学性能。对尖晶石锰酸锂进行了阴阳离子的多元复合掺杂改性,通过筛选掺杂元素的组合方案和控制掺杂的量,制备出了既具有高的初始容量又有良好的常温和高温循环性能的尖晶石型锰酸锂正极材料LiCo_(0.02)La_(0.01)Mn_(1.97)O_(3.98)Cl_(0.02)。并初步研究了5V锰酸锂材料的性能。
     研究了锰酸锂正极材料的中试制备工艺,并研究了粒径对正极材料性能的影响,所制备的材料性能达到小试时的水平。首次利用葡萄糖和聚乙烯醇为碳源,合成了碳包覆的掺杂型锰酸锂复合材料,提高了材料的放电平台和放电容量;制备出性能优良的钴酸锂,利用直接混合和高温处理混合的方式进一步改善了锰酸锂的性能,当锰酸锂和钴酸锂以90 : 10的质量比混合时,可以发挥二者共同的优势,当二者以90 : 5的质量比混合并通过高温处理后的材料,具有较高的比容量和最佳的常温和高温循环稳定性。
     研究自制产品为正极材料的电动工具用动力18650S-1300mAh电池的制作工艺,所制作的电池具有良好的倍率性能和常温及高温循环性能,并通过了一系列的安全测试。最后探讨了动力锂离子电池中的不安全因素、爆炸机理和防爆措施,并从机理上解释了锰酸锂材料的安全性和实用性,指出研究开发性能更稳定的正极材料是解决动力电池安全性问题的重要方向。
The spinel lithium manganese oxide cathode materials for lithium-ion power batteries were synthesized by solid-state method, and the 18650S cells using the as-prepared cathode materials were prepared. The lithium manganese oxide with better electrochemical performance was prepared by multidoping. The pilot-scale production of modified LiMn_2O_4 was performed. The modification effects of coated-carbon and mixing lithium cobalt oxide on the spinel lithium manganese were studied respectively. The power batteries with good performances were developed. The main contents of this dissertation are as follows:
     The effects of doping concentration on the phase structure and electrochemical performance of the produced cathode were systematically investigated with several kinds of cations mono-doped separately. Attempts were made in choosing the doping ions Zr and rare earth elements La, Ce and Nd for the spinel lithium manganese modification, which have larger ionic radius than Mn~(3+) while have much stronger M-O bond energy. It was proved that their doping is propitious to the produced spinel cathode and rare earth elements have greatly improved the cycle performance at elevated temperatre(55℃). The binary-cation doping has much better effects on improving the electrochemical performance. The modified spinel cathode with two cations and one anion multiplex doped were synthesized. By choosing the doping ions combination scheme and controlling the doping quantum, perfect spinel lithium manganese cathode LiCo_(0.02)La_(0.01)Mn_(1.97)O_(3.98)Cl_(0.02) was produced for the first time, which has high initial capacity as well as good cycle performances at both room temperature and high temperature. The properties of 5V spinel material were also characterized.
     The pilot-scale production technics of modified LiMn_2O_4 were investigated and the role of particle size in the cathode performance was also studied. So the pilot-scale samples have nearly good performance as that made in the lab. The coated-carbon composite cathode materials were made with glucose and polyvinyl alcohol as carbon additive, which has higher dischargeplateau and higher capacity. The well performed lithium cobalt oxide cathode was synthesized to modify the as-prepared spinel by directly mixing and by solid-state reactions using the mixture as precursors. The best mixing mass proportion of the two kinds of cathode materials was got from the experiments. When the direct mixing mass proportion of LiMn_2O_4 and LiCoO_2 was 90 : 10, the sample exhibits the superiority of the both kinds of materials. The mixture of the two with the mass proportion of 90 : 5 after heat treatment shows the best cycle stability with acceptable capacity.
     18650S-1300mAh cells used for powered tools were made with the self-productive materials as cathode. The power batteries had good high-rate discharge performance and good cycleability at room and high temperature. The cells also had passed some safety tests. In the end the factors influencing the cell safety were also evaluated and methods which could improve the safety of the lithium-ion batteries were also put forward. The safety of the lithium manganese oxide cathode was explained from the energy states. It is concluded that stable electrode material is the most important essential to the cell safety.
引文
[1] Armand M. Materials for advanced batteries, New York: Plenum Press, 1980. 147~149
    [2] Scrosati B. Lithium rocking chair batteries: an old concept, J. Electrochem. Soc., 1992, 139(10): 2776~2781
    [3] 任学佑, 锂离子电池及其发展前景, 电池, 1996, 26(1): 38~40
    [4] 郭炳焜, 徐徽, 王先友等, 锂离子电池, 长沙: 中南大学出版社, 2002. 1~88
    [5] Masataka Wakihara, Recent development in lithium ion batteries, Mat. Sci. Eng. R., 2001, 33(4): 109~134
    [6] Takami N., Ohsaki T., Asami Y. Lithium ion secondary battery, J. Power Sources 1998, 70(1): 140
    [7] Ritchie B. A., Giwa C. O., Lee J. C., et al. Future cathode materials for lithium rechargeable batteries, J. Power Sources, 1999, 80(1-2): 98~102
    [8] 吴宇平, 万春荣, 姜长印. 锂离子二次电池, 北京: 化学工业出版社, 2004. 1~11
    [9] Gummow R. J., Thackery M. M., David W. I. F., et al. Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃, Mat. Res. Bull., 1992, 27(3):327~337
    [10] Gummow R. J., Liles D. C., Thackery M. M., et al. A reinvestigation of the structures of lithium-cobalt-oxides with neutron-diffraction data, Mater. Res. Bull, 1993, 28(11): 1177~1184
    [11] 薛建军, 锂离子电池正极材料制备及相关电极过程机理研究: [博士学位论文], 天津; 天津大学, 2001
    [12] Alcantara R., Lavela P., Tirado J. L., et al. Structure and electrochemical properteies of boron-doped LiCoO2, J. Solid State Chem., 1997, 134(2): 265~273
    [13] 吴宇平, 方世壁, 刘昌炎等, 锂离子电池正极材料氧化钴锂的进展, 电源技术, 1997, 21(5): 208~209, 226
    [14] Moshtev R. V., Zlatilove P., Manev V., et al. The LiNiO2 solid solution as a cathode material for rechargeable lithium batteries, J. Power Sources, 1995, 54(2): 329~333
    [15] Li Z., Wang C., Ma X., et al. Synthesis, structure and electrochemical properties of LixNiO, Mat. Chem. Phys., 2005, 91(1): 36~39
    [16] Amriou T., Sayede A., Khelifa B., et al. Effect of Al-doping on lithium nickel oxides, J. Power Sources, 2004, 130(1-2): 213~220
    [17] 何希兵, 其鲁, 王银杰等, 锂离子二次电池正极材料镍酸锂的量子化学研究, 无机化学学报, 2003, 19(8): 807~812
    [18] Kakyani P., Kakaiselvi N., Renganathan N. G., et al. Studies on LiNi0.7Al0.3-xCoxO_2 solid solutions as alternative cathode materials for lithium batteries, Mat. Res. Bull., 2004, 39(1): 41~54
    [19] 林传刚, 李晓干, 仇卫华, 锂离子电池正极材料 LiNiO_2 及其掺杂化合物, 北京科技大学学报, 2001, 23(2): 114~117
    [20] Rougier A., Gravereau P., Delmas C. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO_2 electrode material, Solid State Ionics, 1996, 90(1-4): 83~92
    [21] Ohzuku T., Ueda A., Hagayama M. Electrochemistry and structure chemistry of LiNiO_2 (R3m) for 4 volt secondary lithium cells, J. Electrochem. Soc., 1993, 140(7): 1862~1870
    [22] Sang H. P., Sun Y. K., Ki S. P., et al. Synthesis and electrochemical properties of lithium nickel oxysulfide material for lithium secondary batteries, Electrochim. Acta, 2002, 47(11): 1721~1726
    [23] Delmas C., Menetrier M., Croguennec L., et al. Lithium batteries: a new tool in solid state chemistry International, J. Inorg. Mater., 1999, 1(1): 11~19
    [24] Rossen E., Jones C. D. W., Dahn J.R. Structure and electrochemistry of Li_xMn_yNi_(1-y)O_2, Solid State Ionics, 1992, 57(3-4): 311~315
    [25] Hajime A., Masayuki T., Yoji S. Lithium nickelate electrodes with enhanced high-temperature performance and thermal stability, J. Power Sources, 2000, 90(1): 76~81
    [26] Dahn J. R., Fuller E. W., Obrovac M., et al. Thermal stability of LixCoO_2, LixNiO_2 and γ-MnO_2 and consequences for the safety of Li-ion cells, Solid State Ionics, 1994, 69(3-4): 265~270
    [27] 袁荣忠, 瞿美臻, 于作龙, 锂离子电池镍系正极材料的热稳定性研究进展, 无机材料学报, 2003, 18(9): 973~979
    [28] Matsumoto K., Kuzuo R., Takeya K., et al. Effect of CO_2 in air on Li deintercalation from LiNi_(1-x-y)Co_xAl_yO_2, J. Power Sources, 1999, 81-82: 558~561
    [29] Rougier A., Gravereau P., Delmas C. Optimization of the composition of the Li_(1-z)Ni_(1+z)O_2 electrode materials: structural, magnetic, and electrochemical studies, J. Electrochem. Soc., 1996, 143(4): 1168~1175
    [30] Arai H., Okada S., Ohtsuka H., et al. Characterization and cathode performance of Li_(1-x)Ni_(1+x)O_2 prepared with the excess lithium method, Solid State Ionics, 1995, 80(3-4): 261~269
    [31] Yang H. X., Dong Q. F., Hu X. H., et al. Preparation and characterization of LiNiO_2 synthesized from Ni(OH)_2 and LiOH·H_2O, J. Power Sources, 1999, 79(2): 256~260
    [32] Lee Y. S., Sun Y. K., Nahm K. S. Synthesis and characterization of LiNiO_2 cathode material preparation by an adiphic acid-assisted sol-gel method for lithium secondary batteries, Solid State Ionics, 1999, 118(1-2): 159~168
    [33] Hwang B. J., Santhanam R., Chen C.H. Effect of synthesis conditions on electrochemical properties of LiNi1-yCoy cathode for lithium rechargeable batteries, J. Power Sources, 2003, 114(2): 244~252
    [34] Fey G. T. K., Chen J. G., Wang Z. F., et al. Saturated linear dicarboxylic acids as agents for the sol~gel synthesis of LiNi_(0.8)Co_(0.2)O_2, Mat. Chem. Phys., 2004, 87(2-3): 246~255
    [35] Kumca, Nagesh P., Chang, et al. Cathode materials for lithium-ion secondary cells, USP, 6017654, 2000-01-25
    [36] Belharouak I., Tsukamoto H., Amine K. LiNi_(0.5)Co_(0.5)O_2 as a long-lived positive active material for lithium-ion batteries, J. Power Sources, 2003, 119-121: 175~177
    [37] Lu C. H., Lee W. C. Novel emulsion process for synthesizing submicron lithium nickel oxide power used in lithium ion batteries, Mater. Lett., 1999, 40(3): 103~108
    [38] Delmas C., Menetrier M., Croguennec L., et al. An overview of the Li(Ni,M)O_2 systems: synthesis, structures and properties, Electrochim. Acta, 1999, 45(1-2): 243~253
    [39] Buta S., Morgan D., Van der Ven A., et al. Phase separation tendencies of aluminum-doped transition-metal oxides (LiAl_(1-x)M_xO_2) in the α-NaFeO_2 crystal structure, J. Electrochem. Soc., 1999, 146(12): 4335~4338
    [40] Yuan Gao, Yakovleva M. V., Ebner W. B. Novel LiNi_(1-x)Ti_(x/2)Mg_(x/2)O_2 compounds as cathode material for safer lithium batteries, Electrochem. Solid ST., 1998, 1(3):117~119
    [41] 唐致远, 李建刚, 薛建军等. LiNiO_2 的制备与改性探讨, 电池, 2001, 31(1): 10~13
    [42] Venkatraman S., Subramanian V., Gopu Kumar S., et al. Capacity of layered cathode material for lithium-ion batteries a theoretical study and experimental evaluation, Electrochem. Commun., 2000, 2(1): 18~22
    [43] Kim J., Amine K. The effect of tetravalent titanium substitutions in LiNi_(1-x)Ti_xO_2(0.025≤x≤0.2) system, Electrochem. Commun., 2001, 3(2): 52~55
    [44] Lin S. P., Fung K. Z., Hon Y. M., et al. Effect of Al addition on formation of layered-structured LiNiO_2, J. Solid State Chem., 2002, 167(1): 96~106
    [45] Chen C. H., Liu J., Stoll M. E., et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries, J. Power Sources, 2004, 128(2): 278~285
    [46] Fey G. T. K., Chen J. G., Subramanian V. Electroanalytical and thermal stability studies of multi-doped lithium nickel cobalt oxides, J. Power Sources, 2003, 119-121: 658~663
    [47] Liu H., Zhang Z., Gong Z., et al. A comparative of LiNi_(0.8)Co_(0.2)O_2 cathode materials modified by lattice-doping and surface-coating, Solid State Ionics, 2004, 166: 317~325
    [48] 张忠如, 龚正良, 刘汉三等. TiO_2 包覆的的 LiNi_(0.8)Co_(0.2)O_2 电化学性能和谱学表征, 第 12 次全国电化学会议论文集(上集), 中国上海, 2003, C002
    [49] Zhecheva E., Stoyanova R., Tyuliev G., et al. Suface interaction of cathodes with MgO, Solid State Sci., 2003, 5(5): 711~720
    [50] 万新华, 王博, 连芳等. 包埋镍酸锂的热稳定性和耐过充性, 电池, 2004, 34(1):7~9
    [51] Armstrong A. R., Bruce P. G., Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries, Nature, 1996, 381(6582): 499~500
    [52] 卫敏, 路艳罗, 杨文胜等. 锂离子二次电池锰系正极材料, 化学通报, 2002, 65(8): 516~526
    [53] 林晓静, 李淑华, 何泽珍等. 锂离子电池正极材料层状氧化锰锂的研究进展, 化工科技, 2003, 11(6): 43~48
    [54] Paulsen J. M., Thomas C. L., Dahn J. R. Layered Li-Mn-Oxide with the O_2 structure: A cathode material for Li-ion cells which does not convert to spinel, J. Electrochem. Soc., 1999, 146(10): 3560~3565
    [55] Ogihara, Takashi, Takahashi, et al. Process for producing lithiated manganese oxide by a quenching method, USP, 6117410, 1998-09-12
    [56] Shinichi K., Myung S. T., Nacaki K. Hydrothermal synthesis of high cryatalline orthorhombic LiMnO_2 as a cathode material for Li-ion batteries, Solid State Ionics, 2002, 152-153: 311~318
    [57] 王敬欣, 锂离电池正极材料 LiMn_2O_4 的研究进展, 稀有金属, 2002, 26(6): 493~496
    [58] 雷永泉, 新能源材料, 天津: 天津大学出版社, 2000. 131~143
    [59] 慷慨, 戴受惠, 万玉华, 锂离子电池 LiMn_2O_4 薄膜电池的制备研究进展, 化学研究和应用, 2000, 12(6): 580~585。
    [60] Tarascon J. M., Wang E., Shokoohi F. K., et al. Spinel phase of LiMn2O4 as a cathode in secondary lithium cells, J.Electrochem. Soc., 1991, 138(10): 2859~2864
    [61] 李建刚, 锂离子电池用锂锰氧正极材料的应用基础研究: [博士学位论文], 天津; 天津大学, 2001
    [62] 冯季军, 尖晶石锰酸锂正极材料的离子掺杂改性研究: [博士学位论文], 天津; 天津大学, 2004
    [63] Yoshio M., Inoue S., Hyakutake M., et al. New lithium-manganese composite oxide for the cathode of rechargeable lithium batteries, J. Power Sources, 1991, 34(2): 147~152
    [64] Xia Y., Yoshio M., Investigation of lithium ion insertion into spinel structure Li-Mn-O compounds, J. Electrochem. Soc., 1996, 143(3): 825~833
    [65] Morcrette M., Barboux P., Perriere J., et al. LiMn_2O_4 thin films for lithium ion sensors, Solid State Ionics, 1998, 112(3-4): 249~254
    [66] Qiu X., Sun X., Shen W., et al. Spinel Li_(1+x)Mn_2O_4 synthesized by coprecipitation as cathodes for lithium-ion batteries, Solid State Ionics, 1997, 93(3-4): 335~339
    [67] Hernan L., Morales J., Sanchez L., et al. Use of Li-M-Mn-O [M = Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries, Solid State Ionics, 1999, 118(3-4): 179~185
    [68] Liu W., Farrington G. C. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode material prepared by the pechini process, J. Electrochem. Soc., 1996, l43(3): 879~884
    [69] Sun Y. K. Synthesis and electrochemical studies of spinel Li_(1.03)Mn_2O_4 cathode materials prepared by a sol-gel method for lithium secondary batteries, Solid State Ionics, 1997, 100(1-2): 115~125
    [70] 吴宇平, 戴晓兵, 马军旗等, 锂离子电池――实践与应用, 北京: 化学工业出版社, 2004. 185~186
    [71] Myung S. T., Chung H. T., Komaba S., et al. Capacity fading of LiMn_2O_4 electrode synthesized by the emulsion drying method, J. Power Sources, 2000, 90(1): 103~108
    [72] Myung S. T., Chung H. T. Preparation and characterization of LiMn_2O_4 powders by the emulsion drying method, J. Power Sources, 1999, 84(1): 32~38
    [73] Myung S. T., Komaba S., Kumagai N. Enhanced structural stability and cyclability of Al-doped cyclability spinel synthesized by the emulsion drying method, J. Electrochem. Soc., 2001, 148(5): A482~A489
    [74] Yan H., Huang X., Chen L. Microwave synthesis of LiMn_2O_4 cathode material, J. Power Sources, 1999, 81(81-82): 647~650
    [75] Bates J. B., Lubben D., Dudney N. J., et al. 5 volt plateau in LiMn_2O_4 thin films, J. Electrochem. Soc., 1995, 142(9): L149~L151
    [76] Bates J. B., Dudney N. J., Neudecker B., et al. Thin-film lithium and lithium-ion batteries, Solid State Ionics, 2000, 135(1-4): 33~45
    [77] Takayuki A., Kenji O., Chikara K., et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature, J. Power Sources, 2001, 97-98: 377-380
    [78] Xia Y., Zhou Y., Yoshio M. Capacity Fading on cycling of 4 V Li/LiMn_2O_4 cells, J. Electrochem. Soc., 1997,144(8): 2593~2600
    [79] Thackeray M. M., Rossouw M. H., de Kock A., et al. The versatility of MnO_2 for lithium batery applications, J. Power Sources, 1993, 43(1-3): 289~300
    [80] Thackeray M. M., Mansuetto M. F., Bates J. B. Structural Stability of LiMn_2O_4 electrodes for Lithium bateries, J. Power Sources, 1997, 68(1): 153~158
    [81] Song G. M., Wang Y. J., Zhou Y. Synthesis and electrochemical performance of LiCr_xMn_(2-x)O_4 powders by mechanical activation and rotary heating, J. Power Sources, 2004, 128(2): 270~277
    [82] 孙玉成, 卢世刚, 刘人敏, 尖晶石 LiMn_2O_4 高温电化学性能研究, 电源技术, 2000, 24(6): 333~335
    [83] Todorov Y. M., Hideshima Y., Noguchi H., et al. Determination of theoretical capacity of metal ion-doped LiMn_2O_4 as the positive electrode in Li-ion batteries, J. Power Sources, 1999, 77(2): 198~201
    [84] Whitfield P. S., Davidson I. J. Microwave Synthesis of Li1.025Mn1.975O4 and Li_(1+x)Mn_(2-x)O_(4-y)F_y (x=0.05, 0.15; y=0.05, 0.1), J. Electrochem. Soc., 2000, 147(12): 4476~4484
    [85] Prabaharan S. R. S., Saparil N. B. Soft-chemistry synthesis of electrochemically-active spinel LiMn_2O_4 for Li-ion batteries, Solid State Ionics, 1998, 112(1-2): 25~34
    [86] Tarascon J. M., Mckinnon R., Coowar F., et al. Synthesis condition and oxygen stoichiometry effects on Li insertion into the spinel LiMn_2O_4, J. Electrochem. Soc., 1994, 141(6): 1421~1431
    [87] Siapkas D. I., Mitsas C. L., Samaras I., et al. Synthesis and Characterization of LiMn_2O_4 for use in Li-ion batteries, J. Power Sources, 1998, 72(1): 22~26
    [88] Song D., Ikuta H., Uchida T., et al. The Spinel Phases LiAl_yMn_(2-y)O_4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al, M)_(1/6)Mn_(11/6)O_4(M=Cr, Co) as the cathode for rechargeable lithium bateries, Solid State Ionics, 1999, 117(1-2): 151~156
    [89] Youshiharu M., Masaaki S. Effect of organic additive in electrolyte solution on lithium electrode behavior, J. Power Sources, 1999, 81-82: 759~761
    [90] Contestabile M., Morselli M. Paraventi R., et al. A comparative study on the effect of electrolyte/additives on the performance fo ICP383562 Li-ion polymer (soft-pack) cells, J. Power Sources, 2003, 119-121: 943~947
    [91] Yair E. E. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of li-ion cells, Electrochem. Solid ST., 1999, 2(5): 212~214
    [92] Gao Y., Dahn J. R. Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li_(1+x)Mn_(2-x)O_4 materials, Solid State Ionics, 1996, 84, 33(1~2): 33~40
    [93] Dahn J. R., Fong R., Sacken U. V. Studies of lithium interclation into carbons using non-aqueous electrochemical cells, J. Electrochem. Soc., 1990, 137(7): 2009~2013
    [94] Pistoia G., Zane D., Zhang Y. Some aspects of LiMn_2O_4 electrochemistry in the 4 volt range, J. Electrochem. Soc., 1995, 142(8): 2551~2557
    [95] Hai Y. X., Hao W. , Zhi Q. S., et al. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries, Electrochim. Acta, 2004, 49(1): 349~353
    [96] Huang F., Fu Z. W., Qin Q. Z. A novel Li_2Ag_(0.5)V_2O_5 composite film cathode for all-solid-state lithium batteries, Electrochem. Commun., 2003, 5(3): 262~266
    [97] Lu C. H., Lee W. C., Liou S. J., et al. Hydrothermal synthesis of LiNiVO4 cathode material for lithium ion batteries, J. Power Sources, 1999, 81-82: 696~699
    [98] Zaghib K., Striebel K., Guerfi A., et al. LiFePO_4/polymer/natural graphite: low cost Li-ion batteries, Electrochim. Acta, 2004, 50(2-3): 262~269
    [99] Prince A. A. M., Mylswamy S., Chan T. S., et al. Investigation of Fe valence in LiFePO_4 by Massbauer and XANES spectroscopic techniques, Solid State Commun., 2004, 132(7): 455~458
    [100] Andersson A. S., Kalska B., Eyob P., et al. Lithium insertion into rhombohedral Li_3Fe_2(PO_4)_3, Solid State Ionics, 2001, 140(1-2): 63~70
    [101] Yao J., Wang G. X., Ahn J. H., et a1, Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells, J. Power Sources, 2003, 114(2): 292~297
    [102] Tsumura T., Katanosaka A., Souma I., et a1. Surface modification of natural graphite particles for lithium ion batteries, Solid State Ionics, 2000, 135(1-4): 209~2l2
    [103] 王风飞, 王新庆, 杨冰等. 锂离子电池负极材料的研究进展, 纳米技术与精密工程, 2004, 2(3): 192~195
    [104] Skowrofiski J. M., B1aJzewiez S., Knofezyfiski K. Reversible insertion of lithium ions into carbon/carbon nanocomposite, Synthetic Met., 2003, 135-136: 733~734
    [105] Pereira N., Dupont L., Tarascon J. M., et al. Electrochemistry of Cu_3N with lithium: a complex system with parallel processes, J. Electrochem. Soc., 2003, 150(9): A1273~A1280
    [106] Huang S. Y., Kavan L., Exnar I., et al. Rocking chair lithium battery based on noncrystalline TiO_2, J. Electrochem. Soc., 1995, 142(9): L142~L144
    [107] Ferg E., Gummon J., Dedock A., et al. Spinel anodes for lithium ion batteries, J. Electrochem. Soc., 1994, 141(11): L147~L150
    [108] Peramunage D., Abraham K. M. Preparation of micron-sized Li_4Ti_5O_(12) and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells, J. Electrochem. Soc., 1998, 145(8): 2609~2615
    [109] Beaulieu L. Y., Larcher D., Dunlap R. A., et al. Reaction of Li with grain-boundary atoms in nanostructured compounds, J. Electrochem. Soc., 2000, 147(9): 3206~3212
    [110] 黄文湟 , 锂离子电池非水电解质的研究 , 电池工业 , 1999, 4(6): 206~207
    [111] Naejus R., Coudert R., Willmann P., et al. Ion solvation in carbonate-based lithium battery electrolyte solutions, Electrochim. Acta, 1998, 43(3-4): 275~284
    [112] Gu G.. Y., Bouvier S., Wu C., et al. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries, Electrochim. Acta, 2000, 45(19): 3127~3139
    [113] 高阳, 谢晓华, 解晶莹等, 锂离子蓄电池电解液研究进展, 电源技术, 2003, 27(5): 479~483
    [114] Doron A., Yosef T., Boris M., et al. Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochim. Acta, 2004, 50(2-3): 247~254
    [115] Teng X. G., Li F. Q., Ma P. H., et al. Study on thermal decomposition of lithium hexafluorophosphate by TG-FT-IR coupling method, Thermochim. Acta, 2005, 436(1-2): 30-34
    [116] Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89(2): 206~218
    [117] 黄峰, 周运鸿, 锂离子电池电解质现状与发展, 电池, 2001, 31(6): 290~293
    [118] Schmidt M., Heider U., Kuehner A., et al. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high-energy lithium-ion batteries, J. Power Sources, 2001, 97-98: 557~560
    [119] 吕鸣祥, 黄长保, 宋玉谨, 化学电源, 天津: 天津大学出版社, 1992. 11~12
    [120] Otero T. F., Cantero I. Conducting polymers as positive electrodes in rechargeable lithium-ion batteries, J. Power Sources, 1999, 81-82: 838~841
    [121] Kakuda S., Momma T., Osaka T., et al., Ambient-temperature, rechargeable, all-solid lithium/polypyrrole polymer battery, J. Electrochem. Soc., 1995, 142(1): L1~L2
    [122] Morita M., Miyazaki S., Ishikawa M., et al. Layered polyaniline composites with cation-exchanging properties for positive electrodes of rechargeable lithium batteries, J. Electrochem. Soc., 1995, 142(1): L3~L5
    [123] Onishi K., Matsumoto M., Shigehara K. Lithium/polyaniline secondary battery composed of transport-number-adjuste aluminate solid polymer electrolytes, J. Electrochem. Soc., 2000, 147(6): 2039~2043
    [124] Naoi K., Kawase K. I., Inoue Y. A new energy storage material: organosulfur compounds based on multiple sulfur-sulfur bonds, J. Electrochem. Soc., 1997, 144(6): L171~L172
    [125] 王占良, 锂离子电池用聚合物电解质应用基础研究: [博士学位论文], 天津; 天津大学, 2003
    [126] Song J.Y., Wang Y. Y., Wan C. C. Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources 1999, 77(2): 183~197
    [127] 陈猛, 史鹏飞, 程新群, 塑料锂离子电池研究概况, 电池, 2000, 30(3): 129~133
    [128] Oh B., Kim Y. R. Evaluation and characteristics of a blend polymer for a solid polymer electrolyte, Solid State Ionics, 1999, 124(1): 83~89
    [129] 董晓臣, 王立, 用于锂离子电池聚合物电解质的组成、结构和性能, 化学进展, 2005, 17(2): 248~255
    [130] Deepa M., Sharma N., Agnihotry S. A., et al. Effect of mixed salts on the properties of gel polymeric electrolytes, Solid State Ionics, 2002, 148(3-4): 451~455
    [131] 刘亚飞, 白厚善, 动力电池及其材料的发展动向, 稀土信息, 2003, 7: 8~12
    [132] 刘亚飞 , 白厚善 . 动力电池及其材料最新发展动向 , 新材料产业 , 2003, 5: 23~29
    [133] Tobishima S., Yamaki J. A consideration of lithium cell safety, J. Power Sources, 1999, 81-82: 882~886
    [134] Spotnitz S., Franklin J. Abuse behavior of high-power lithium-ion cells, J. Power Sources, 2003, 113: 81~100
    [135] Lee J., Lin Y., Jan Y. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes, J. Power Sources, 2004, 132(1-2): 244~248
    [136] Kosova N. V., Uvarov N. F., Devyakina E. T., et al. Mechanochemical synthesis of LiMn_2O_4 cathode material for lithium batteries, Solid State Ionics, 2000, 135(1-4): 107~114
    [137] Gummow R. J., Kock A. D., Thackery M. M. Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cell, Solid State Ionics, 1994, 69(1): 59~67
    [138] Liu W., Kowal K., Farrington G. C. Electrochemical characteristic of spinel phase LiMn_2O_4-based cathode materials prepared by the pechini process, J. Electrochem. Soc., 1996, 143(11): 3590~3596
    [139] Palacín M. R., Le Cras F., Seguin L., et al. In situ structural study of 4V-range lithium extraction/insertion in fluorine-substituted LiMn_2O_4, J. Solid State Chem., 1999, 144(2): 361~371
    [140] Amatucci G. G., Pereira N., Zheng, T., et al. Enhancement of the electrochemical properties of Li_1Mn_2O_4 through chemical substitution, J. Power Sources, 1999, 81-82: 39~43
    [141] Sun Y. K., Jeon Y. S. Synthesis and electrochemical characteristics of oxysulfide spinel material for lithium secondary batteries, Electrochem. Commun., 1999, 12(1): 597~599
    [142] TatEada T., Hayakawa H., Enoki H., et a1. Structure and electrochemical characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications, J. E1ectrochem. Soc., 1996, 143(1): 100~114
    [143] He L. P., Tang S. Q., Chen, Z. Z., et al. An investigation of the Li_(1+δ)Mn_(2-δ)O_4 cathode material for rechargeable lithium ion batteries Part I: Composition and structure analyses, Solar Energy Mat. Sol. C., 2000, 62(1-2): 117~123
    [144] Lee J. H., Hong J. K., Jang D. H., et al. Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co and Ni) for Li secondary batteries, J. Power Soureces, 2000, 89(1): 7~14
    [145] Liu R. S., Chen C. H. Structure and electrochemical study of cobalt doped LiMn_2O_4 spinels, Solid State Ionics, 2003, 157(1-4): 95~100
    [146] Kumar G., Schlorb H., Rahner D. Synthesis and electrochemical characterization of 4V LiR_xMn_(2-x)O_4 spinels for rechargeable lithium batteries, Mat. Chem. Phy., 2001, 70(2): 117~123
    [147] Zhang D., Popov B. N., White R. E. Electrochemical investingation of CrO_(2.65) doped LiMn_2O_4 as a cathode material for Lithium-ion batteries, J. Power Sources, 1998, 76(1): 81~90
    [148] Jeong I. S., Kim J. U., Gu H. B. Electrochemical properties of LiMg_yMn_(2-y)O_4 spinel phases for rechargeable lithium batteries, J. Power Sources, 2001, 102(1-2): 55~59
    [149] Taniguchi I., Song D., Wakihara M. Electrochemical properties of LiM_(1/6)Mn_(11/6)O_4 (M = Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method, J. Power Sources, 2002, 109(2): 333~339
    [150] Hwang B. J., Santhanam R., Hu S. G. Synthesis and characterization of multidoped lithium manganese oxide spinel, Li_(1.02)Co_(0.1)Ni_(0.1)Mn_(1.8)O_4, for rechargeable lithium batteries, J. Power Sources, 2002, 108(1-2): 250~255
    [151] Li G. H., Ikuta H., Uchida T., et a1. The spinel phases LiM_yMn_(2-y)O_4(M=Co、 Cr、 Ni) as the cathode for rechargeable lithium batteries, J. E1ectrochem. Soc., 1996, 143(1): 178~182
    [152] 钱逸泰, 结晶化学, 合肥: 中国科学技术大学出版社, 1988. 314~328
    [153] 张胜涛, 胡舸, 伍明军, 尖晶石型锰酸锂的性质及改性研究进展, 重庆职业技术学院学报(综合版), 2004, 13(1): 5~9
    [154] Robertson A. D., Lu S. H., Averill W. F., et a1. M~(3+)-modified LiMn_2O_4 spinel intercalation cathodes, J. E1ectrochem. Soc., 1997, 144(11): 3500~3505
    [155] 印永嘉. 物理化学简明手册, 北京: 高等教育出版社, 1998. 382~385
    [156] Yair E. E., Vaughey J. T., Thackeray M. M., et al. LiNixCu_(0.5-x)Mn_(1.5)O_4 spinel electrodes, superior high-potential cathode materials for Li batteries. I. Electrochemical and structural studies, J. Electrochem. Soc., 1999, 146(3): 908~913
    [157] Julien C., Mangani I. R., Selladurai S., et al. Synthesis, structure and electrochemistry of LiMn_(2-y)Cr_(y/2)Cu_(y/2)O_4 (0.0≤y≤0.5) prepared by wet chemistry,. Solid State Sci., 2002, 4 (8): 1031~1038
    [158] 杭州大学化学系分析化学教研室, 分析化学手册(第一分册), 北京: 化学工业出版社, 1997. 28~30
    [159] Sun Y. K., Oh I. H. Cycling behavior of oxysulfide spinel LiCr_(0.19)Mn_(1.81)O_(3.98)S_(0.02) cathode material which shows no capacity loss in the 3-V region, J. Power Sources, 2001, 94(1): 132~136
    [160] 陈永熙, 周立娟, 郭丽萍等. 锂锰氧化物中锰的平均化合价的测定研究, 武汉理工大学学报, 2001, 23(10): 1~3
    [161] 李琪, 李飞, 乔庆东, LixMn2OyFz 中锰的平均化合价的测定, 辽宁石油化工大学学报, 2004, 24(1): 11~14
    [162] Arbizzani C., Balducci A., Mastragostino M., et al. Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries, J. Electroanal. Chem., 2003, 553 (1): 125~133
    [163] 孙玉城, 王兆翔, 陈立泉等, 5VLiMn_(2-x-y)Ni_xCr_yO_4 材料的制备与性能研究, 中国科学技术大学学报, 2002, 32(supp.): 100~106
    [164] 李运姣, 常建卫, 杨敏, 锂离子电池正极材料锂锰氧化物的固相合成研究进展, 功能材料, 2003, 3(6): 578~560
    [165] Yamada A., Miura K., Hinokuma K., et al. Synthesis and structure aspect of LiMn_2O_4±δ as a cathode for rechargeable lithium batteries, J. Electrochem. Soc., 1995, 142(7): 2149~2156
    [166] Liu Z. L., Wang H. B., Fang L., et al. Improving the high-temperature performance of LiMn_2O_4 spinel by micro-emulsion coating of LiCoO2, J. Power Sources, 2002, 104(1): 101~107
    [167] Kannan A. M., Manthiram A. Surface/chemically modified LiMn_2O_4 cathodes for lithium-ion batteries, J. Electrochem. Solid ST., 2002, 5(7): A167~A169
    [168] Hwang B. J., Santhanam R., Huang C. P., et al. LiMn_2O_4 core surrounded by LiCo_xMn_(2–x)O_4 shell material for rechargeable lithium batteries, J. Electrochem. Soc, 2002, 149(6): A694~A698
    [169] Amatucci G. G., B1yr A, Sigala C., et a1, Suface treatment of Li_(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance, Solid State Ionics, 1997, 104(1-2): 13~25
    [170] Jiang D. B., Kogo Y., Tari I., Influence of surface treatments of LiMn_2O_4 powder with Ag on charge-discharge characteristics I. Ag coating, E1ectrohemistry, 1999, 67(4): 359~363
    [171] 周振平, 赵世玺, 夏君磊等, LiMn_2O_4 正极循环性能的电池, 2001, 31(6): 268~270
    [172] Huang H., Yin S. C., Nazar L. F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates, J. Electrochem. Solid ST., 2004, 4(10): A170~A172
    [173] Pier P. P., Daniela Z., Mauro P. Improved electrochemical performance of a LiFePO_4-based composite cathode, Electrochim. Acta, 2001, 46(23): 3517~3523
    [174] 汤宏伟, 陈宗璋, 钟发平, 锂离子电池的正极材料, 化学通报, 2002, 65(1): w001~w007
    [175] Tarascon J. M., McKinnon W. R., Coowar F., et al. Synthesis conditions and oxygen stoichiometry effects on li insertion into the spinel LiMn_2O_4, J. Electrochem. Soc, 1994, 141(6): 1421~1430
    [176] Hideo T. Worldwide market update on NiMH, Li ion and polymer batteries for portable applications and HEVS, The 22nd International Battery Seminar & Exhibit, 2005
    [177] Sikha G., Ramadass P., Haran B.S., et al. Comparison of the capacity fade of Sony US 18650S cells charged with different protocols, J. Power Sources, 2003, 122(1): 67~76
    [178] Nagasubramanian G. Two- and three-electrode impedance studies on 18650S Li-ion cells, J. Power Sources, 2000, 87(1-2): 226~229
    [179] Biensan P., Simon B., Peres J. P., et al. On safety of lithium-ion cells, J. Power Sources, 1999, 81-82: 906~912
    [180] Zhang Z. Differential scanning calorimetry material studies: implication for the safety of lithium-ion cells, J. Power Sources, 1998, 70(1): 16~20
    [181] Jiang J., Dahn J. R. Effects of particle size and electrolyte salt on the thermal stability of Li_(0.5)CoO_2, Electrochim. Acta, 2004, 49(16): 2661~2666
    [182] Roth E. P , Doughty D.H, Franklin J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based bindersm, J. Power Sources, 2004, 134(2): 222~234
    [183] MacNeil D. D., Lu Z., Chen Z., et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes, J. Power Sources, 2002, 108(1-2): 8~14
    [184] Holzapfel M., Alloin F., Yazami R. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures, Electrochim. Acta, 2004, 49(4): 581~589
    [185] 庞静, 卢世刚, 锂离子电池高温反应及其影响因素, 电池工业, 2004, 9(3): 136~139
    [186] Maleki H., Howard J. N. Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge, J. Power Sources, 2004, 137(1): 117-127
    [187] Tetsuya K., Arihisa K., Minato E., et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells, J. Power Sources, 2002, 104(2): 260~264
    [188] Gnanaraj J. S., Zinigrad E., Asraf L., et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions, J. Power Sources, 2003, 119-121: 794~798
    [189] Kawamura T. Thermal stability of alkyl carbonate mixed solvent electrolytes for lithium ion cells, J. Power Sources, 2002, 104(2): 260~264
    [190] Spotnitz R., Franklin J. Abuse behaveior of high-power, lithium-ion cells, J. Power Sources, 2003, 113(1): 81~100
    [191] Leising R. A., Palazzo M. J., Takeuchi E. S., et al. A study of the overcharge reaction of lithium-ion batteries, J. Power Sources, 2001, 97-98: 681~683
    [192] Chebiam R. V., Kannan A. M., Prado F., et al. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries, Electrochem. Commun., 2001, 3(11): 624~627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700