海底管线腐蚀检测与腐蚀预测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容来源于国家高技术研究发展计划(863计划)——渤海大油田勘探开发关键技术重大专项“海底管道外探测装置及其检测技术”(2004AA602210)。
     海洋是一个腐蚀性极强的环境,各种钢铁设施在海洋环境中极易发生腐蚀破坏。在海洋环境下传输油气的金属管线腐蚀远比陆地上要严重,物理因素、化学因素和生物因素均可导致管线的腐蚀,而且一旦发生腐蚀破坏,维修极为困难,后果不堪设想。由于海底管线的腐蚀是一种长期缓慢的过程,随着管线服役时间的增加,管线的腐蚀状态如何?牺牲阳极能否处于正常的工作状态?能否达到设计的保护电流密度?其结果都将严重影响管线在设计年限的正常运转。因此研究海水环境中常用金属管线的腐蚀特征、实时检测管线腐蚀状态、预测管线腐蚀速度,对管线的阴极保护系统的设计、运行维护都有重要的意义。尽管目前我国还没有水深超过200米的海底石油天然气管线,随着油气开采范围的拓展,深海油气传输将成为现实问题,所以深海管线腐蚀检测方法的研究,无论技术上还是在理论上都具有具有重要意义。
     本论文首次提出一种非接触式检测阴极保护下海底管线腐蚀状态的方法和非线性预测海底管线腐蚀速度的模型。主要研究内容分为海底管线阴极保护电场仿真计算、不接触测量管线电位和海底管线腐蚀速度预测三部分。论文首先应用边界元理论仿真计算管线周围环境电场和管线表面的分布电位,建立相应的“环境电场—管线电位数据库”。然后利用虚拟仪器技术开发了海底管线环境电场分布电位实时测量系统,通过水下机器人携带该测量系统,沿管线方向现场测量海底管线周围海水的电位分布,进而通过“环境电场——管线电位数据库”反演获得海底管线表面的保护电位和保护电流密度分布,从而准确实施海底管线的涂层破损点检测。最后论文根据实海环境数据和材料腐蚀数据,利用BP人工神经网络模型建立了金属管线在海水环境中腐蚀速度与环境因素之间的神经网络预测模型,实现了非线性预测不同海水环境中金属管线的腐蚀速度。
     数值仿真计算部分以边界元方法(BEM)为基础,对腐蚀电场仿真模型进行了推导和计算,该模型可以计算阴极保护下管线的电位和电流密度分布。论文应用Matlab开发出阴极保护下腐蚀电场仿真计算软件,根据仿真计算结果建立“环境电场—管线电位数据库”,并且通过算例进行了验证,结果表明本论文所开发的仿真计算软件是有效和可行的,为实现不接触测量管线电位奠定重要基础。
     不接触测量部分根据海底管线周围海水中电场分布电位与管线腐蚀状态有显著相关性,通过海水中电场电位测量和处理可以得到管线的腐蚀状态。在深水状况下,直接测量管道的电极电位具有相当大的困难,而海底管道附近海水中电位分布有其自身的特点,在距海底管道不同位置处电位值不一样,通过测定海水中电位差,查询“环境电场—管线电位数据库”可得到海底管道的表面分布电位,从而获得管道腐蚀状态。这部分主要内容是建立以软件为中心的虚拟仪器测量系统,首先研制了深海用全固态银/氯化银电极作为参比电极,并组建成信号测量探头,对电极的性能进行了全面测试;数据采集和信号处理采用船载一体化工作站进行;最后应用Labview编制实时测量软件。测量系统和ROV系统集成后对阴极保护下海水环境电场进行自动测量,将测量结果进行反演,从而实现不接触测量阴极保护下管线表面电位。分别在青岛滨海进行了模拟实验和渤海实海检测,测试结果表明该系统在距离海底管线4米内均可以准确测量其周围的阴极保护电场,检测出管线表面涂层破损点。
     海底管线腐蚀速度预测部分是应用人工神经网络技术于腐蚀研究领域,将管线钢与海水环境因素作为共同影响腐蚀速度的因素,利用BP人工神经网络算法建立海水环境因素与管线钢腐蚀速度之间的预测模型。预测软件采用LabVIEW中调用MATLABScript节点的方式,利用MATLAB强大的神经元工具箱完成对核心程序的设计,该预测系统可用于非线性预测管线钢在不同海域的腐蚀速度,又可以不受水深的局限,因此在海洋腐蚀与防护领域的推广应用将是大势所趋,是潜水、机器人检测或自动监测等手段所无法比拟的。
     本文研究的海底管道不接触测量系统和腐蚀速度预测系统能实现对海底管线阴极保护系统的有效性进行全程实时监测和长期的腐蚀速度预测,具有很大的实用价值。这将有利于全面了解海底管道的运行状态和腐蚀情况,及时发现影响管道安全运行的隐患以便使之得到及时的修复。可为海洋油气的安全运输和科学管理,以及进一步改进和完善管线的防蚀系统设计提供基础数据和决策依据。
This research project comes from the State Hi-Tech Research and Development Plan (863) "Submarine Pipeline’s Exterior Detection Devices and Detection Technology. "(2004AA602210)
     The marine environment is an extremely corrosive environment. The oil and gas transmission pipelines’s corrosion in the marine environment are more serious than that on land. Physical, chemical and biological factors all could lead to corrosion of the submarine pipeline. Once the submarine pipeline corroded, it may be very difficult and expensive to maintain. Corrosion of the submarine pipeline is a long and slow process. With the increase of pipeline’s service time, is the pipeline corroded? Can sacrificial anode work in a normal state? Does cathodic protection current density meet the design requirements? All these results will affect the integrity of pipeline during its design life. To study on the pipeline’s corrosion features in the marine environment, real-time detect pipeline corrosion, and predict pipeline’s corrosion rate, which is important to the design, operation and maintenance of pipeline cathodic protection system.
     In this paper, a non-contact detection method was the first time put forword for the pipeline with cathodic protection and a non-linear predictive model for pipeline corrosion was established. The study is divided into three main parts, including simulation calculation of cathode protection field. non-contact measurement of pipeline potential and corrosion rate prediction of pipeline. Firstly, boundary element method was used to calculate the potential distribution of corrosion electric field according to the anodes distribution on pipelines, and a database of environmental field and pipeline potential was established. Based on the virtual instrument technology, environment potential distribution measurement system was developed, which was carried by a ROV to measure the electric filed distribution along the pipeline, then the surface protection potential and current density were inversed by the above database, and then to fulfill pipelines damage points detection. Finally, based on the BP neural network model, a neural network prediction model in the marine environment was established. This model can be used to predict the rate of corrosion of pipelines.
     Numerical calculation study was based on the boundary element method (BEM). The corrosion electric field can be calculated. Matlab was used to calculate the potential distribution of corrosion electric field, and a database of environmental field to pipeline potential was established according to the calculated results. It through some examples showed that the simulation software was effective and feasible, laid an important foundation for non-contact measurement pipelines.
     Non-contact measurement was based on the significant correlation between the surrounding potential of seabed pipelines and pipeline corrosion. Through potential measure and data processing, pipeline corrosion can be known. The all-solid-state hardware AgCl electrodes used as the reference electrode. Ship-take workstation with integrated data acquisition card was used to acquire data and process signal. Labview software was used to develop real-time measurement software. Measurement results was inversed to get the pipeline surface potential, thus non-contact measurement cathodic protection potential was realised. Simulation tests in Qingdao coastal and field tests in Bohai Sea were done and the test results showed that the system within four meters to the pipeline could accurately measure electric field around the cathodic protected pipeline and detect its surface damage.
     Submarine Pipeline corrosion rate prediction is based on artificial neural network technology. Pipeline and the marine environment as a common factor affecting the rate of corrosion, BP artificial neural network algorithms was used to establish marine environment and the pipeline steel corrosion rate prediction model. Forecast software Calling MATLABScript nodes. MATLAB toolbox neurons completed the design of the core. The forecasting system can be used to predict the corrosion rate of steel pipe in the sea. Therefore, the application in the field of marine corrosion and protection is a general trend.
     Study on non-contact measurement system and submarine pipeline corrosion rate prediction system.Real-time monitoring of the effectiveness and long-term corruption corrosion rate prediction can be realized for the pipeline cathodic protection system, which has great value to know submarine pipeline operations and corrosion, and find some hidden danger to repair in time. It will provide basic data and basis for decision-making for the safe transportation and scientific management of marine oil and gas, and improvement of the pipeline’s anti-corrosion system.
引文
[1] 曹楚南.中国材料的自然环境腐蚀.化学工业出版社. 2005:6,211-220,253-260
    [2] 化学工业部化工机械研究院.腐蚀与防护手册—腐蚀理论·试验及监测.化学工业出版社.1997:165-167,169,382,246
    [3] 张正斌.海洋物理化学.科学出版社.1999:521
    [4] 侯保荣.海洋腐蚀环境理论及其应用.科学出版社.1999:10-79
    [5] 中国工业与自然环境腐蚀调查项目组.中国工业与自然环境腐蚀问题调查与对策.2002
    [6] 黄永昌. 电化学保护技术及其应用. 腐蚀与防护.2000.4
    [7] 黄永昌.金属腐蚀与防护原理.上海上海交通大学出版社.1989:3:36
    [8] 英国标准局编.洪定海译.阴极保护实施规范.国防工业出版社.1987
    [9] 美国腐蚀工程师协会.固定式近海石油生产钢质平台腐蚀控制 NACE 标准 RP-01-76.1983
    [10] J.A.Klingent,S.Lynn,C.W.Tobias. Electrochimica Acta.Vol.9,1964:297-311
    [11] Doig.p,Flewitt.P.E.J. A Finite Difference Numerical Analysis of Galvanic Corrosion. Electroccjem Soc.Vol.126, 1979.12:2057-2063
    [12] Roe Strommen, Arild Rodland. Computerized Techniques Applied In Design Of Offshore Cathodic Protection Systems. Materials Performance., 1981 .4:15-20
    [13] 钱海军,刘小光,张树霞,陶永顺,肖世猛. 管内阴极保护的数值模拟(Ⅰ )——阴极保护下不锈钢细管内电位分布 [J]. 化工机械. 1997.4:16-20.
    [14] 钱海军,刘小光,张树霞,陶永顺,肖世猛. 管内阴极保护的数值模拟(Ⅱ )——有限差分法计算大口径管内的电位分布 [J]. 化工机械. 1997.5:36-38.
    [15] 马伟平,张国忠等.深井阳极对储罐底板阴极保护的数值模拟.油气储运,2004.23:31~35
    [16] H. P. E. Helle , G. H. M. Beek , J . TH.Ligtelijn . Corrosion . Vol. 37 ,1981.9 :522 -530
    [17] James T. Waber , Bertha , Fagan . Electrochem. Soc , 1956 :64 - 72
    [18] Raymond S.Munn.A Mathematical model for a Galvanic Anode Cathodic Protection System. Materials Performance. August 1982:29-36
    [19] De Carlo, E. A. Computer Techniques for Offshore Corrosion Protection. Lockheed Horizons.Winter 1980
    [20] E.A.Decarlo. Computer Aided Cathdic Protection Design Technique for Complex Offshore Structures. Materials Performance.1983.22: 38
    [21] Rolf G. Kasper , Martin G. April , Corrosion ,Vol. 39 ,1983 .5:181 - 188
    [22] John W. Fu, Siu-Kee Chan. A Finite Element Method for Modeling Localized CorrosionCells. Corrosion.1984.40: 540-544
    [23] Fu. J W.A Finite Element Analysis of Corrosion Cells Corrosion. Vol. 38, May 1982.5: 295-296
    [24] Chin.D.T, Sabde G.M. Current Distribution and Electrochemical Environment in a Cathodically Protected Crevice,Corrosion,2000.56
    [25] Chin.D.T, Sabde G.M. Modeling Transport Process and Current Distribution in a Cathodically Protected Crevice.Corrosion.2000.56
    [26] 杜丽惠,江春波. 海洋构造物金属腐蚀电流研究 [J]. 水利水电技术. 1999.12:53-55.
    [27] 邱枫,徐乃欣. 码头钢管桩阴极保护时的电位分布 [J]. 中国腐蚀与防护学报. 1997.1:14-20.
    [28] 邱枫,徐乃欣. 钢质贮罐底板外侧阴极保护时的电位分布 [J]. 中国腐蚀与防护学报. 1996.1:29-36
    [29] 邱枫,徐乃欣. 用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布 [J]. 中国腐蚀与防护学报. 1997.2:106-110.
    [30] Brebbia. C. A. , Dominguez.J. Boundary Element Methods versus Finite Elements. Proc. Int. Conference on Applied Numerical Modelling, Southampton University. 1977. Ed. С A. Brebbia, Pentcch Press, London, 1978.
    [31] Brebbia. C. A. , Dominguez. J. Boundary Element Methods for Potential Problems. Applied Mathematical Modelling. December 1977
    [32] Brebbia, C. A. The Boundary Element Method far Engineers. Pcnlech Press, London. 1978
    [33] Fu.J.W. and Chow.J.S. Cathodic Protection Designs Using an Integral Equation Numerical Method Corrosion,paper No.163
    [34] Danson, D. J., Warne, M. A.Current Density/Voltage Calculations using Boundary Element Techniques. NACE Conference. Los Angeles. USA.1983.
    [35] Munn RS. A Review of the development of computational corrosionanalysis for spatial modeling through its maturity in the mid 1980s. In Computer Modeling in Corrosion, STP-1154- Philadelphia, PA:American Society far Testing and Materials. 1992:215-228.
    [36] Gardand PO et al. Innovations developed through the 1980s in off-shore CP design computer modeling and CP inspection. Paper 522 presented at Corrosion 93. Conference of the National Association of Corrosion Engineers.Houston. 1993.
    [37] Adey RA, Niku SM. Computer modeling of corrosion using theboundary element method. In Computer Modeling in Corrosion.STP-1154, Philadelphia, PA: American Society for Testing and Mate-rials, 1992: 248-264.
    [38] R.A.Adey, C.A.Brebbia, S.M.Niku. Application of Boundary Elements in CorrosionEngineering in Topics in Boundary Elements Research. ed C.A.Brebbia,Vol.7,Berlin, Germany,Springer-Verlag,1990:34
    [39] Zamani NG. Boundary element simulation of the cathodic protection system in a prototype ship. Applied Mathematics and Computation 1988:26,119-134.
    [40] Huang.y.Application of BEM to Cathodic Protection Problem.Master thesis of Dalian University of Technology,Dec.1988
    [41] Huang Yi,Jin Zai-lu.Application of BEM to Galvania Corrosion Problem and the quasi-linear method for Nonlinear Boundary Problem.Proceeding of the Third Lapan-China Symposium on 4-7 april,1990:339-348
    [42] M.Iwata,Y Huang.Numerical Analysis of the Eletropotential Distribution on the Surface of Metal Structures under Cathonic Protection—Application of Semi-Infinite Field BEM,Boundary Elements XII.1990:143-154
    [43] V. G. DeGiorgi, A.Kee, E. D. Thomas. Characterization accuracy in modeling of corrosion systems from Boundary Elements XV. Fluid Flow and Computational Aspects, C. A.Brebbia, J.J.Rencis (eds.), Computational Mechanics Publications, 1993
    [44] J-F Yan, S.N.R. Pakalapati, T.V. Nguyen, R.E. White, R. Griffin.Mathematical Modeling of Cathodic Protection of a Low Carbon Steel Pipeline in Seawater Using the Boundary Element Method. J. Electrochem. Society.139, 1992:1932-1936
    [45] Nagia.K.,Iwata.M.and Ogawa.K. Numerical Analysis of Potential Distribution in Eletrolyte under Cathodic Protection(Application of 3-D FEM).J.of the West-Japan Society of Naval Architects.Mar.1987:114
    [46] J. A. F. Santiago and J. C. F.,Telles. On Boundary Elements For Simulation Of Cathodic Protection Systems With Dynamic Polarization Curves, International Journal For Numerical Methods In Engineering. Vol. 40, 1997:2611–2627
    [47] Einar Bardal , Roy Johason. Rerolay Garrland .Corrsion . Vol. 40 , 1984.12 :628 - 633
    [48] E. Chisholm, L. J. Gray and G. E. Giles.Solution of Nonlinear Polarization Boundary Conditions. E. Chisholm et al. Electronic Journal of Boundary Elements. Vol. 1,2003.3: 418-438
    [49] G. J. Van Berkel, G. E. Giles, J. S. Bullock,L. J. Gray. Computational simulation of redox reactions within a metal electrospray emitter.Analytical Chemistry. 1999: 5288–5296
    [50] Orazem M E, Esteban J M.Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays.Theoretical Development Corrosion.1997.53
    [51] Orazem M E, Esteban J M, Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays, Part2- Case Studies of Parallel AnodeCathodic Protection Systems,Corrosion,1997.53
    [52] Riemer D P, Orazem M E, Application of Boundary Element Models to Predict Effectiveness of Coupons for Accessing Cathodic Protection of Buried Structures, Corrosion, 2000.56
    [53] F.Brichau,J.Deconinck,A Numerical Model for Cathodic Protection of Buried Pipes, Corrosion.1994.1:39-49
    [54] Carvalho.s.l.d,Telles,J.C.F. On the Effect of Some Critical Parameters in Cathodic Protection System, Computer Modeling in Corrosion. ASTM STP 1154, 1992:248-264
    [55] Telles, J.C.F., Mansur, W.J., Wrobel, L.C., Marinho, M.G. Numerical Simulation of a Cathodically Protected Semi-Submersible Platform Using the PROCAT System. Corrosion Journal, 1990:513-518
    [56] Nisancioglu K. Predicting the time dependence of polarization on cathodically protected steel in seawater. Corrosion, 1987:43, 100-111
    [57] Santiago J.A.F and Telles J.C.F. On boundary elements for simulation of cathodic protection systems with dynamic polarization curves. Int. J. Num. Meth. Engng, 1997:40, 2611-2627,.
    [58] P. O. Gartland,R., Johnsen. Corrosion. 1985:319
    [59] R.Strommen,et al. Materials Performance. 1987.26
    [60] J. X. Jia, A. Atrens, G. Song,T. H. Muster, Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution.Materials and Corrosion 2005.7:56
    [61] Shigeru Aoki & Kenji Amaya, Optimization of cathodic protection system by BEM, Engineering Analysis with Boundary Elements .1997:147-156
    [62] K.Amaya,S.Aoki. Optimun Design of Cathodic Protection System by 3-D BEM in Boundary Element Technology. VII, eds. C.A.Brebbia, M.S.Ingber .London, Englang: Computational Mechanics Publications,1992:375
    [63] S.Aoki, K.Kishimoto, “Application Of BEM to Galvanic Corrosion and Cathodic Protection,” in Topics in Boundary Element Research, ed, C.A.Brebbia (Berlin, Germany : Springer-Verlag, 1990:65
    [64] P.Mitiadou & L.C. Wrobel, Optimization of Cathodic Protection Systems Using Boundary Elements and Genetic Algorithms, Corrosion 2002.11:912-921
    [65] Luiz C. Wrobel*, Panayiotis Miltiadou, Genetic algorithms for inverse cathodic protection problems, Engineering Analysis with Boundary Elements ,2004.28: 267–277
    [66] Yan JF, Pakalapati SNR, Nguyen TV, White RE. Mathematical modelling of cathodic protection using the boundary element method with a nonlinear polarisation curve. JElectrochem Soc 1992:139
    [67] 解福瑶,郑勤红,刘蔷蕊. 二维静电场分析的边界元场强计算问题[J]. 云南师范大学学报(自然科学版),1996.4
    [68] 解福瑶,郑勤红,钱双平.三维静电场分析的边界元场强计算问题.云南师范大学学报(自然科学版),1997.2
    [69] Cao Shengshan,Wang Qingzhang,Zhang manping, Numerical Modelling for Offshore Platform Cathodic Protection-Local System, Chin.J.Oceanol.Limnol., 1995:247-252
    [70] 梁旭巍,庄新国减少阴极保护系统灵敏度分析计算量的方法,天津纺织工学院学报.1999.18:70-73
    [71] 梁旭巍,孟宪级.油田区域性阴极保护计算机辅助优化设计研究,天津纺织工学院学报.1998.17:90-94
    [72] 吴中元,梁旭巍.区域性阴极保护模型寻优过程平稳性及其改进天津纺织工学院学报.1998.17:95-98
    [73] R.A.Adey,S.M.Niku,C.A.Brebbia,Computer Aided of Cathodic Protection System, Boundary Element Ⅶ , 1985:153-176
    [74] R.Strommen,W.K.Eim,j.Finnegan,P.M.Ehdizadeh,Advances in offshore Cathodic Protection Modeling Using the Boundary Element Method,Material Perfoormance, 1987:23-28
    [75] R.A.Adey,S.M.Niku,Boundary Element Simulation of Galvanic Corrosion—the Story of a Majou Success for Boundary Elements,Boundary Elements Ⅹ ,Vol.2,1990
    [76] J.C.F.Telles,W.J.Mansur,L.C.Wrober,M.G.Marinho, Numerical Simulation of a Cathodically Protected Semisubmersible platform Using the PROCAT System, Corrosion, Vol.46,1990.6:513-518
    [77] Brebbia, С A., J. Tclles and L. Wrobel, Boundary Element Techniques - Theory and Applications in engineering. Springer-Verlag, Berlin and NY, 1984.
    [78] Brebbia C.A., Dominguez J. Boundary elements, an introductory course, WIT Press, 1998
    [79] Brebbia, C.A., Dominguez, J. The Boundary Element Method for Potential Problems, Appl. Math. Modelling, 1977.1:372-378,.
    [80] R.A.Adey and S.M.Niku,Comparison between Boundary Elements and Finite Elements for CAD of Cathodic Protection Systems, Boundary Elements VII,1985:269-285
    [81] 徐乃欣, 邱枫, 张承典.腐蚀与防护.1995.6:249-252
    [82] 于寿海,数值模拟在阴极保护工程中的应用.全面腐蚀控制.Vol.46,2001.1:15
    [83] 徐玉辰,肖宏.用于边界元法的改进数值积分技术.燕山大学学报.2001.4.
    [84] 侯劲松,王泽毅.边界元计算中一种新的积分方法.数值计算与计算机应用.1999.1
    [85] 刘姜玲,王泽忠,卢斌先.二维静电场边界元法的积分精度问题.现代电力.2003.1.
    [86] 盛剑霓.电磁场数值分析.科学出版社,1984:56-70
    [87] 包德修, 罗耀煌. 静电场的分析与解法.1984:86-95
    [88] Banerjee, P.K. and Butterfield. R., Developments in Boundary Element Methods-1,Applied Science Publisher, LTD London,1979
    [89] C.A.Brebbia and S.Walker, Boundary Elements Techniques in Engineering, Newnes-Butterworths, 1980
    [90] S. Aoki , K. Kishimoto , M. Sakara , Boundary Elements VII , 1985
    [91] J . Nowak. Boundary Elements VII , 1985
    [92] J . C. Tells , L. C. Wrobel , W. J . Mansur ,J . P. S. Azevedo , Boundary Elements VII , 1985
    [93] 张永恒.关于边界元法实现中 H、G 矩阵的存储等问题的讨论.甘肃科学学报,1996.3
    [94] Brebbia.C.A. and Ferranle, A Computational Methods for the Solution of Engineering
    [95] 张鸣镝,杜元龙,殷正安.有限差分法计算海底管道阴极保护时的电位分布.中国腐蚀与防护学报.1994.14:77-81
    [96] J. R. Scully , K. J. Bundy. Electrochemical methods for measurement of steel pipe corrosion rates in soil, Materials Performance. 1985.24: 18-25
    [97] 邓春龙,孙明先,李文军.海洋环境中材料腐蚀数据采集处理网络系统的研究,装备环境工程.2006.3:58-62
    [98] 刘东辉.内嵌式数据采集器在混凝土桥梁腐蚀探测中的应用,铁道建 2006 .10:25-27
    [99] 赵易彬,王振文.基于 LabVIEW 的数据采集系统.中国计量.2006.3:75-77
    [100] 胡士信. 阴极保护工程手册. 化学工业出版社. 1999.1:66-67,295
    [101] 卢阿平,郭津年等. 海水和海泥中长效参比电极的研究. 海洋科学. 1990.4:15-22
    [102] 彭乔,殷正安,郭建伟. 高纯锌参比电极电化学行为研究. 全面腐蚀控制. 2001.9:22-25
    [103] 朱相荣,王相润等编著.金属材料的海洋腐蚀与防护.国防工业出版社.1999:145
    [104] 化工部化工机械研究所主编.腐蚀与防护手册 腐蚀理论·试验及监测.北京:化学工业出版社.1989:173
    [105] 袁嘉祖.灰色理论及其应用.北京:科学出版社.1991:120-136
    [106] 朱相荣,张启富.灰关联分析法探讨环境因素与海水腐蚀性的关系.中国腐蚀与防护学报.2000.20:29-34
    [107] 曹楚南,张鉴清.电化学阻抗谱导论. 科学技术出版社. 2002.7:21,2-10
    [108] 曹楚南.混合电位下的电极过程研究.腐蚀科学与防护技术.1997
    [109] 粟 京,向 斌. 海洋工程构筑物阴极保护电位及其分布的模拟测试装置.中国海上油气. 2005.3:52-56
    [110] Luca B, Matteo G, MariaPia P, Elena R. Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes .Corrosion Science, 2002:44,1497~1513
    [111] Luca B, Matteo G, MariaPia P, Elena R. Prevention of steel corrosion in E.Chisholm,L.J.Gray and G.E.Giles,Solution of Nonlinear Polarization Boundary Conditions,E.Chisholm et al./Electronic Journal of Boundary Elements,Vol.1,2002.3
    [112] R. E. Melchers. Mathematical modeling of the diffusion controlled phase in marine immersion corrosion of mild steel. Corrosion Science, 2003.45: 923-940.
    [113] Presuel-Moreno F J,Kranc S C,Sagues A A. Cathodic prevention distribution in partially submerged reinforces concrete. Corrosion , 2005.61:548~558
    [114] 陈念贻, 模式识别方法在化学化工中的应用. 科学出版社.2000:71-101
    [115] 张乃尧, 阎平凡. 神经网络与模糊控制. 清华大学出版社.2000:1-18
    [116] M. Penza, G. Cassano. Chemometric Characterization of Italian Wines by Thin-Film Multisensors Array and Artificial Neural Networks. Food Chemistry, Vol.86,2004: 283-296
    [117] Bo-Suk Yang, Tian Han, Yong-Su Kim. Integration of ART-Kohonen Neural Network and Case-Based Reasoning for Intelligent Fault Diagnosis. Expert Systems with Applications, Vol.26, 2004:387-395
    [118] C. W. Ng, M. A. Hussain. Hybrid Neural Network––Prior Knowledge Model in Temperature Control of a Semi-Batch Polymerization Process. ChemicalEngineering and Processing, Vol.43, 2004:559-570
    [119] Hasan B?ke, Sedat Akkurt, Serhan ?zdemir, E. Hale G?ktürk, Emine N. Caner Saltik. Quantification of CaCO3–CaSO3·0.5H2O–CaSO4·2H2O Mixtures by FTIR Analysis and Its ANN Model, Vol.58, 2004: 723-726
    [120] K. Genel, S. C. Kurnaz, M. Durman. Modeling of Tribological Properties of Alumina Fiber Reinforced Zinc–Aluminum Composites Using Artificial Neural Network. Materials Science and Engineering A, Vol.363, 2003.12: 203-210
    [121] Wei Chen, Tatsuya Hasegawa, Atsushi Tsutsumi, Kentaro Otawara, Yoshiki Shigaki. Generalized Dynamic Modeling of Local Heat Transfer in Bubble Columns. Chemical Engineering Journal, Vol.96, 2003.13: 37-44
    [122] Haejin Ha, Michael K. Stenstrom. Identification of Land Use With Water Quality Data in Stormwater Using a Neural Network. Water Research, Vol.37(17), 2003: 4222-4230
    [123] Hiroshi Ichikawa. Hierarchy Neural Networks as Applied to Pharmaceutical Problems. Advanced Drug Delivery Reviews, Vol.55, 2003.9: 1119-1147
    [124] H. Y. Lin, W. Chen, A. Tsutsumi. Long-Term Prediction of Nonlinear Hydrodynamics in Bubble Columns by Using Artificial Neural Networks. Chemical Engineering andProcessing, Vol.42, 2003.89: 611-620
    [125] K. Piotrowski, J. Piotrowski, J. Schlesinger. Modelling of Complex Liquid–Vapour Equilibria in the Urea Synthesis Process with the Use of Artificial Neural Network. Chemical Engineering and Processing, Vol.42, 2003.4:285-289
    [126] Liu Qingbin, Ji Zhong, Liu Mabao, Wu Shichun. Acquiring the Constitutive Relationship for a Thermal Viscoplastic Material Using an Artificial Neural Network. Journal of Materials Processing Technology, Vol.624, 1996.13: 206-210
    [127] H. Y. Tu, P. L. Wang, W. Y. Sun, D. S. Yan. Prediction of Glass Forming Region in the Sm---Si---Al---O---N System with an Artificial Neural Network. Materials Letters, Vol.28, 1996.46: 281-288
    [128] Sang Ki Moon, Won-Pil Baek, Soon Heung Chang. Parametric Trends Analysisof the Critical Heat Flux Based on Artificial Neural Networks. Nuclear Engineering and Design, Vol.1634, 1996.12: 29-49
    [129] S. Chang C., Wang F, C. Liew A. Simulated Hardware Design of Artificial Neural Networks for Adaptive Plant Control. Electric Power Systems Research, Vol.37, 1996.1: 231-240
    [130] M. V. Inamdar, P. P. Date, U. B. Desai. Studies on the Prediction of Springback in Air Vee Bending of Metallic Sheets Using an Artificial Neural Network. Journal of Materials Processing Technology, Vol.108, 2000.1: 45-54
    [131] K. S. Kingston, B. G. Ruessink, I. M. J. van Enckevort, M. A. Davidson. Artificial Neural Network Correction of Remotely Sensed Sandbar Location. Marine Geology, Vol.169, 2000.12: 137-160
    [132] Rupali V. Parbhane, Sanjeev S. Tambe, Bhaskar D. Kulkarni. ANN Modeling of DNA Sequences: New Strategies Using DNA Shape Code. Computers & Chemistry, Vol.24, 2000.12: 699-711
    [133] Wan-Li Xing, Xi-Wen He. Applications of Artificial Neural Networks on Signal Processing of Piezoelectric Crystal Sensors. Sensors and Actuators B: Chemical, Vol.66-, 2000.13: 272-276
    [134] L. J. Francl, S. Panigrahi. Artificial Neural Network Models of Wheat Leaf Wetness. Agricultural and Forest Meteorology, Vol.88(14): 57-65
    [135] Yu Tang. Active control of SDF Systems Using Artificial Neural Networks. Computers & Structures, Vol.60(5): 695-703
    [136] 朱相荣,张启富. 灰关联分析法探讨环境因素与海水腐蚀性的关系. 中国腐蚀与防护学报. Vol.20,2000.129-34
    [137] 朱相荣,郁春娟等. Al 合金海水腐蚀与环境因素的灰关联分析. 腐蚀科学与防护技术, Vol.13,2001.1:9,11,28
    [138] 蒋宗礼. 人工神经网络导论.高等教育出版社. 2003:39-54
    [139] 飞思科技产品研发中心. MATLAB 6.5 辅助神经网络分析与设计.电子工业出版社. 2003:64-69
    [140] 金鹰,董超芳,付冬梅,李晓刚. 神经网络技术在腐蚀研究与工程中的应用. 石油化工腐蚀与防护.2001.1:13-17
    [141] 李晓刚,付冬梅,董超芳. 神经网络分析在高温硫腐蚀中的应用. 中国腐 蚀与防护学报, 2001.2:76-81
    [142] 李晓刚,付冬梅,董超芳,金鹰. 用神经网络算法分析环烷酸的腐蚀行为. 腐蚀科学与防护技术. 2001.1:56-59
    [143] 邓春龙,李文军,孙明先,郭为民,刘伟. BP 神经网络在铜及铜合金海水腐蚀预测中的应用. 海洋科学.2006.4:16-20
    [144] 王海涛,韩恩厚,柯伟.基于人工神经网络模型的铝合金大气腐蚀的预测,中国腐蚀与防护学报. 2006.3:272-275
    [145] 杨静,马国光,张友波,杨科.气田集输管线腐蚀预测方法研究.石油与天然气化工. 2006.3:229-233
    [146] 李秀娟,梅甫定.灰色神经网络模型在油气管道腐蚀速度预测中的应用.安全与环境工程. 2006.4:77-80
    [147] 梁彩凤,侯文泰.钢的大气腐蚀预测.中国腐蚀与防护学报.2006.3:130-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700