靶向抑制GSK-3β介导的Wnt与NF-κB信号通路在急性淋巴细胞白血病细胞凋亡中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分GSK-3β在Jurkat细胞株及儿童急性淋巴细胞白血病骨髓单个核细胞中的定位与表达
     目的
     检测GSK-3β在人急性淋巴细胞白血病细胞株Jurkat与儿童急性淋巴细胞(ALL)白血病骨髓单个核细胞(BMMNC)中的定位与表达水平。
     方法
     实验分为实验组(Jurkat细胞及ALL细胞),对照组(骨髓象正常的ITP),采用Real Time PCR技术、免疫荧光细胞化学染色及Westernblotting的方法,分别从mRNA和蛋白质水平进行检测。
     结果
     1.Real Time PCR结果显示,实验组与对照组均表达GSK-3βmRNA,Jurkat与ALL细胞中GSK-3β mRNA的表达水平分别为对照组的8.53和5.19倍,差异有统计学意义(P<0.05)。
     2.免疫荧光细胞化学染色及Western blotting结果均显示,实验组细胞中GSK-3β定位于细胞浆及胞核,呈高表达;对照组细胞中GSK-3β仅在细胞浆呈中等度表达,细胞核中不表达。
     结论
     GSK-3β在Jurkat细胞株与ALL患儿BMMNC细胞核中均呈异常
     过度表达,提示GSK-3β发生了核转位,为GSK-3β调控细胞内信号分
     子打下了理论基础。
     第二部分抑制GSK-3β活性对急性淋巴细胞白血病细胞株Jurkat细胞凋亡的机制研究
     实验一GSK-3β抑制剂诱导急性淋巴细胞白血病细胞株
     Jurkat细胞凋亡的机制研究
     目的
     以Jurkat细胞作为实验细胞,采用GSK-3β抑制剂氯化锂(LiCl)和SB216763抑制GSK-3β,探讨抑制的GSK-3β介导的Wnt/β-catenin与NF-κB信号通路诱导细胞凋亡的分子机制。
     方法
     分别应用LiCl和SB216763抑制GSK-3β,①MTT法检测Jurkat细胞增殖,并绘制细胞生长曲线;②Annexin V-PE/7-AAD双染法结合流式细胞仪检测细胞凋亡;③Western blotting方法检测Jurkat细胞中GSK-3β及其下游信号分子β-catenin和NF-κB P65定位与表达水平的变化;④RT-PCR检测Wnt/β-catenin与NF-κB信号通路下游靶基因survivin、c-myc和cyclinD1表达水平的变化。
     结果
     1.在LiCl浓度≥20mM,SB216763浓度≥15μM时,Jurkat细胞生长受到明显抑制,并呈浓度-时间依赖性。
     2.以NaCl作为对照,LiCl在20、30、40mM浓度下的凋亡率分别为(10.89±1.32)%、(23.74±1.65)%、(38.26±4.37)%;以DMSO作为对照,SB216763各浓度组的细胞凋亡率分别为(14.71±2.53)%、(24.92±4.58)%、(43.25±4.72)%,实验组的细胞凋亡与对照组比较,差异均具有统计学意义(P<0.05)。
     3.LiCl(20mM)抑制GSK-3β活性后,与对照组相比,β-catenin蛋白在胞浆和胞核中的表达分别增加了约2.15和1.63倍,差异有统计学意义(P<0.05);NF-κB P65蛋白在胞浆和胞核中的表达均无明显变化。SB216763(15μM)抑制GSK-3β活性后,与对照组相比,β-catenin蛋白在胞浆和胞核中的表达分别增加了约3.27和2.84倍,差异有统计学意义(P<0.05);NF-κB P65蛋白在胞浆和胞核中的表达也均无明显变化。
     4.下游靶基因survivin的表达明显下调,而c-myc与cyclin D1mRNA的表达水平无明显变化。
     结论
     GSK-3β抑制剂下调Jurkat细胞中GSK-3β的活性后,可减慢细胞增殖,促进细胞凋亡,推测其机制可能是GSK-3β抑制剂启动了其他的
     信号系统介导了Jurkat细胞的凋亡,而与β-catenin和NF-κB信号的关系不大。
     实验二外源性Wnt-3a对急性淋巴细胞白血病细胞株Jurkat细胞凋亡的机制研究
     目的
     以Jurkat细胞作为实验细胞,通过Wnt蛋白抑制GSK-3β活性,并激活Wnt/β-catenin信号通路,进一步探寻GSK-3β介导的Wnt/β-catenin信号通路诱导Jurkat细胞凋亡中的分子机制。
     方法
     应用基因重组技术构建的Wnt-3a重组腺病毒表达载体Ad5-Wnt-3a,采用重组腺病毒直接感染的方法对Jurkat细胞进行基因转染。实验分为三组:实验组(Jurkat/Ad5-Wnt-3a组)、空载体组(Jurkat/Ad5-GFP组)和空白对照组(Jurkat组)。①用荧光显微镜、流式细胞仪检测各组细胞转染率;②RT-PCR方法检测各组细胞内Wnt-3a mRNA的表达;③Western blotting检测细胞内β-catenin、GSK-3β蛋白的表达;④MTT法检测细胞增殖;⑤流式细胞仪法检测细胞周期;⑥Annexin V-PE/7-AAD双染法结合流式细胞仪检测细胞凋亡;⑦RT-PCR检测Wnt/β-catenin信号通路下游靶基因survivin、c-myc和cyclinD1的表达。
     结果
     1.将构建成功的重组腺病毒载体Ad5-Wnt-3a转染Jurkat细胞,筛选出最适转染滴度MOI=60,转染率为(42.54±1.63)%。
     2.Wnt-3a转染后,实验组有效表达Wnt-3a基因;GSK-3β总蛋白的表达量显著下调;β-catenin蛋白表达量明显上调,为对照组的2.38倍;细胞增殖明显,增殖率约为21.2%,细胞G0/G1期下降,S期升高,未见明显细胞凋亡。
     3.RT-PCR检测结果显示实验组细胞内c-myc和cyclin D1mRNA表达分别为(0.75±0.04)和(0.75±0.03),相比空载体组,表达水平的增高具有统计学意义。而Survivin mRNA表达水平未见明显改变。
     结论
     腺病毒介导的Wnt-3a抑制Jurkat细胞中GSK-3β蛋白的表达,同时可激活细胞内经典Wnt/β-catenin信号途径,活化的β-catenin促进Jurkat细胞增殖与细胞周期改变,未见明显细胞凋亡,可能的机制是通过上调下游靶基因c-myc和cyclin D1的表达实现。
     第三部分抑制GSK-3β活性对儿童急性淋巴细胞白血病骨髓单个核细胞凋亡的机制研究
     目的
     以ALL患儿原代细胞为实验细胞,通过抑制剂氯化锂(LiCl)和SB216763抑制GSK-3β活性后,进一步探讨GSK-3β介导的Wnt/β-catenin与NF-κB信号通路诱导ALL细胞凋亡的分子机制。
     方法
     分别应用LiCl和SB216763抑制ALL细胞内GSK-3β,经过体外短期培养,①Western blotting方法检测ALL细胞中GSK-3β及其下游信号分子β-catenin与NF-κB p65的定位和表达水平的变化;②凝胶迁移率实验(EMSA)检测核转录因子NF-κB的DNA结合活性;③AnnexinV-PE/7-AAD双染法结合流式细胞仪检测细胞凋亡;④RT-PCR检测Wnt/β-catenin与NF-κB信号通路下游靶基因survivin、c-myc和cyclinD1表达水平的变化。
     结果
     1.ALL细胞经GSK-3β抑制剂LiCl和SB216763处理后,GSK-3β在细胞浆中的蛋白水平未见明显变化,而其胞核蛋白表达量明显下降;β-catenin蛋白在细胞浆中的表达量显著增加,而转位入核的β-catenin表达略有增加;核转位蛋白NF-κB P65在胞浆/胞核中均无明显变化,但核内NF-κB P65的DNA结合活性明显降低。
     2.SB216763浓度梯度增加(5、10、15μM)的实验组细胞凋亡率随之升高,分别为(36±5)%、(52±7)%和(70±4)%,LiCl在其细胞亚毒性浓度内(5、10mM),诱导ALL细胞的凋亡呈浓度依赖性,与对照组相比均有统计学意义。
     3.对照组细胞经GSK-3β抑制剂LiCl和SB216763处理后,发现对照组细胞的凋亡率为15%~20%,未受到明显影响。但Western blotting结果显示转位入核的β-catenin蛋白表达显著增加。
     4.RT-PCR结果显示survivin mRNA的表达水平明显下降,c-myc和cyclin D1的表达水平未见明显变化。
     结论
     1.以ALL原代细胞作为实验细胞,抑制其GSK-3β活性后,并不改变核转位蛋白NF-κB P65在胞浆/胞核中的表达,却下调NF-κB P65的转录活性,并通过下调抗凋亡基因survivin的表达而促进ALL细胞的凋亡;β-catenin的表达水平增加并未明显影响细胞的凋亡与增殖,其机理有待进一步的研究。
     2.对照组细胞经GSK-3β抑制剂处理后,细胞凋亡未受明显影响,推测可能与Wnt/β-catenin信号的活化有关。
PART ONE THE LOCALIZATION AND EXPRESSIONOF GSK-3Β IN JURKAT CELL LINE AND BONEMARROW MONONUCLEAR CELLS OF CHILDHOODACUTE LYMPHOBLASTIC LEUKEMIA
     Objectives: To investigate the localization and expression of GSK-3βin Jurkat cells and bone marrow mononuclear cells (BMMNC) of childhoodacute lymphoblastic leukemia (ALL).
     Methods: The study was divided into the experimental group (Jurkatcell line and ALL cells) and the control group (ITP with normal bonemarrow). The mRNA and protein levels of GSK-3β were detected by RealTime PCR, immunofluorescence staining and Western blotting methods,respectively.
     Results:1. Real Time PCR analysis showed that both experimental andcontrol groups expressed GSK-3β mRNA. The expression levels of GSK-3βmRNA in Jurkat and ALL cells were8.53and5.19-fold compared to of the control group (P<0.05).
     2. Immunofluorescence staining and Western blotting results showedthat GSK-3β was highly expressed in the cytoplasm and the nucleus of theexperimental group cells; in the control group, GSK-3β was only expressedin the cytoplasm but not expressed in the nucleus.
     Conclusions: GSK-3β was abnormally over-expressed in the nucleusof Jurkat cells and BMMNC of children with ALL. Nuclear accumulation ofGSK-3β seems to lay a theoretical foundation to regulate the intracellularsignaling molecules.
     PART TWO THE INHIBITION OF GSK-3ΒACTIVITY INDUCEED CELL APOPTOSIS OF ACUTELYMPHOBLASTIC LEUKEMIA CELL LINE JURKAT
     EXPERIMENT A GSK-3Β INHIBITORS INDUCEDCELL APOPTOSIS IN JURKAT
     Objectives: To explore the molecular mechanisms of apoptosisinduced by GSK-3β mediated Wnt/β-catenin and NF-κB signaling pathwayin Jurkat cells treated with GSK-3β inhibitors lithium chloride (LiCl) and SB216763.
     Methods: Jurkat cells were treated with LiCl and SB216763,respectively. Cell proliferation was detected by MTT assay to make the cellgrowth curve; Cell apoptosis was detected by Annexin V-PE/7-AAD doublestaining combined with flow cytometry; The localization and expression ofGSK-3β and its downstream signaling molecules β-catenin and NF-κB P65in Jurkat cells were detected by Western blotting; The changes ofdownstream target gene (survivin, c-myc and cyclinD1) expressions inWnt/β-catenin and NF-κB signaling pathways were detected by RT-PCR.
     Results:1.In the concentration of LiCl≥20mM, SB216763≥15μM, cellgrowth was obviously inhibited in a concentration-time-dependent manner.
     2. The mean number of Jurkat cells treated with LiCl at20,30,40mMconcentrations reached (10.89±1.32)%,(23.74±1.65)%,(38.26±4.37)%(NaCl as control, P<0.05); The mean number of Jurkat cells treated withSB216763at different concentrations reached (14.71±2.53)%,(24.92±4.58)%,(43.25±4.72)%(DMSO as control, P<0.05).
     3. Jurkat cells were treated with20mM LiCl, compared with the controlgroup, the expression of β-catenin protein in the cytoplasm and nucleusincreased by2.15and1.63-fold (P<0.05); The expression of NF-κB P65protein in the cytoplasm and the nucleus had no obvious changes. WhileJurkat cells were treated with15μM SB216763, compared with the controlgroup, the expression of β-catenin protein in the cytoplasm and nucleus
     increased by3.27and2.84-fold (P<0.05); The expression of NF-κB P65protein in the cytoplasm and nuclei had no significant changes.
     4. The expression of survivin mRNA was significantly reduced(P<0.05), while the levels of c-myc and cyclin D1mRNA expression did notchange.
     Conclusions: GSK-3β inhibitors may slow down cell proliferation andpromote apoptosis of Jurkat cells. The mechanism may be GSK-3βinhibitors induced apoptosis in Jurkat cells by activated other signal systems,but not by β-catenin and NF-κB signaling pathways.
     EXPERIMENT B EXOGENOUS WNT-3A FOR CELLAPOPTOSIS IN JURKAT
     Objectives: To explore the molecular mechanisms of apoptosisinduced by GSK-3β inhibition mediated Wnt/β-catenin and NF-κB signalingpathway in Jurkat cells through recombinant adenovirus vector-mediatedWnt-3a.
     Methods: Using recombinant DNA technology to build the Wnt-3arecombinant adenovirus expression vector Ad5-Wnt-3a. Jurkat cells weretransfected by the direct infection of recombinant adenovirus. Jurkat cellswere divided into three groups: the experimental group (Jurkat/Ad5-Wnt-3a group), the empty vector group (Jurkat/Ad5-GFP group) and the blankcontrol group (untransfected Jurkat group). The transfection or infectionefficiencies of cells in every group were detected by fluorescence and flowcytometry. The expression level of Wnt-3a mRNA in every group wasdetected by RT-PCR; The protein expression of β-catenin and GSK-3β wasdetected by Western blotting; Cell proliferation and cell cycle were detectedby MTT assay and by flow cytometry, respectively; Cell apoptosis wasmeasured by Annexin V-PE/7-AAD double staining combined with flowcytometry; The changes of downstream target gene (survivin, c-myc andcyclinD1) expression in Wnt/β-catenin signaling pathway were detected byRT-PCR.
     Results:1. Jurkat cells were transfected successfully by recombinedadenovirus Ad5-Wnt-3a, with MOI=60for the optimal transfection titer,and the transfection rate was (42.54±1.63)%.
     2. The experimental group expressed Wnt-3a gene efficiently aftertransfection of Ad5-Wnt-3a. The total protein expression of GSK-3βwassignificantly reduced; β-catenin protein expression was significantlyincreased2.38times compared with the control group; Actived β-catenincould significantly promote the proliferation of Jurkat cells (proliferationrate was about21.2%), and cause G0/G1phase cells down, S phase cellsincreased, but cell apoptosis was not obvious. There was no significant cellapoptosis.
     3. RT-PCR results showed that the c-myc and cyclin D1mRNAexpression were (0.75±0.04) and (0.75±0.03) in the experimental group,significantly increased compared with empty vector group. The expressionof survivin mRNA did not change significantly.
     Conclusions: The exogenous Wnt-3a gene mediated by recombinantadenovirus vector could downregulate GSK-3β activity and activate thecanonical Wnt/β-catenin signaling pathway in Jurkat cell line. The activationof β-catenin promoted cell proliferation and cell cycle progression, but didnot affect cell apoptosis. Its mechanism may be β-catenin regulated theexpression s of downstream target genes c-myc and cyclin D1.
     PART THREE THE INHIBITION OF GSK-3ΒACTIVITY INDUCED CELLS APOPTOSIS IN CHILDRENWITH ACUTE LYMPHOBLASTIC LEUKEMIA
     Objectives: To explore the molecular mechanisms of apoptosisinduced by GSK-3β mediated Wnt/β-catenin and NF-κB signaling pathwayin ALL cells treated with GSK-3β inhibitors LiCl and SB216763.
     Methods: ALL cells were treated with LiCl and SB216763in vitroshort-term culture. The changes of GSK-3β and the localization andexpression level of the signaling molecules β-catenin and NF-κB P65were detected by Western blotting; Electrophoretic mobility shift assay (EMSA)was used to assess the binding of nuclear transcription factor NF-κB activityto the DNA; Annexin V-PE/7-AAD double staining combined with flowcytometry to detect cell apoptosis; Further, the changes of downstream targetgene (survivin, c-myc and cyclinD1) expression in Wnt/β-catenin andNF-κB signaling pathways was detected by RT-PCR.
     Results:1.ALL cells were treated with GSK-3β inhibitors LiCl andSB216763, the protein level of GSK-3β did not change in the cytoplasm, butits nuclear protein expression decreased significantly; The signaling criticaleffect molecular β-catenin protein expression in Wnt/β-catenin pathwayincreased significantly in the cytoplasm, while β-catenin expressiontranslocated into the nucleus increased slightly; The nuclear translocationprotein NF-κB P65in NF-κB signaling pathway was no significant changesin the cytoplasm/nucleus of cell, but the DNA binding activity of nuclearNF-κB P65was significantly reduced.
     2. SB216763concentration gradient increased (5,10,15μM) in theexperimental group, with an increasing apoptosis rate (36±5)%,(52±7)%and (70±4)%, respectively; LiCl in the cell sub-toxic concentrations with(5,10mM), induced apoptosis in ALL cells in a concentration dependentmanner.the control group were statistically significant.
     3. The apoptosis was not significantly affected and found to be15%to20%in the control cells with LiCl or SB216763treatment. However, Western blotting showed that expression of β-catenin protein translocatedinto the nucleus was significantly increased.
     4. RT-PCR showed that the downstream anti-apoptosis gene survivinexpression was reduced, but c-myc and cyclin D1mRNA expression levelsdid not change.
     Conclusions: The inhibition of GSK-3β activity in ALL primary cellsdid not change the cytoplasm/nucleus expression of the nuclear translocationprotein NF-κB P65, but reduced NF-κB P65transcriptional activity, whichpromoted apoptosis of ALL cells by decreasing the expression ofanti-apoptotic gene survivin. The level of β-catenin expression did notsignificantly affect cell apoptosis and proliferation, and the mechanismneeds further study. Apoptosis was not significantly affected in control cellstreated with GSK-3β inhibitors, suggesting that it may be associated withWnt/β-catenin signal activation.
引文
[1] Winick NJ, Carroll WL, Hunger SP. Childhood leukemia-new advances andchallenges. N Engl J Med,2004,351(6):601-603.
    [2] Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor ofthe BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med,2001b,344:1031-1037.
    [3] Scott AA, Thomas L. Molecular Genetics of Acute Lymphoblastic Leukemia.Journal of Clinical Oncology,2005,23(26):6306-6315.
    [4] Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3byinsulin mediated by protein kinase B. Nature,1995,378:785-789.
    [5] Yost C, Torres M, Miller JR, et al. The axis-inducing activity, stability, andsubcellular distribution of beta-catenin is regulated in Xenopus embryos byglycogen synthase kinase3. Genes Dev,1996,10:1443-1454.
    [6] Jia J, K Amanai, Wang G, et al. Shaggy/GSK3antagonizes Hedgehog signalling byregulating Cubitus interruptus. Nature,2002,416:548-552.
    [7] Foltz DR, Santiago MC, Berechid BE, et al. Glycogen synthase kinase-3βmodulates Notch signaling and stability. Curr Biol,2002,12:1006-1011.
    [8] Holmes T, O’Brien TA, Knight R, et al. The Role of Glycogen Synthase Kinase-3βin Normal Haematopoiesis, Angiogenesis and Leukaemia. Current MedicinalChemistry,2008,15:1493-1499.
    [9] Tsuchiya K, NakamuraT, OkamotoR, et al. Reciprocal targeting of Hath1andbeta-catcnin by Wnt glycogen synthase kinase3beta in human colon cancer.Gastroenterology,2007,132(1):208-220.
    [10]Thiel A, Heinonen M, Rintahaka J, et a1. Expression of cyclooxygenase-2isregulated by glycogen synthase kinase-3beta in gastric cancer cells. J Biol Chem,2006,28l(8):4564-4569.
    [11]Farago M, Dominguez I, Landesman-Bollag E, et al. Kinase-inactive glycogensynthase kinase3beta promotes Wnt signaling and mammary tumorigenesis.Cancer Res,2005,65:5792-5801.
    [12]Liao X, Zhang L, Thrasher JB, et a1. Glycogen synthase kinase-3β suppressioneliminates tumor necrosis factor-related apaptosis-inducing ligand resistance inprostate cancer. Mol Cancer Ther,2003,2(11):l2l5-1222.
    [13]Ougolkov AV, Fernandez-Zapico ME, Savoy DN, et a1. Glycogen synthasekinase-3beta participates in nuclear factor kappaB-mediated gene transcription andcell survivalin pancreatic cancer cells. Cancer Res,2005,65(6):2076-2081.
    [14]Shakoori A, Ougolkov A, YU ZW, et a1. Deregulated GSK3beta activity incolorectal cancer: its association with tumor cell survival and proliferation.Biochem Biophys Res Commun,2005,334(4):l365-l373.
    [15]Andrei VO, Nancy DB, Martin EF, et al. Inhibition of glycogen synthase kinase-3activity leads to epigenetic silencing of nuclear factor κB target genes and inductionof apoptosis in chronic lymphocytic leukemia B cells. Blood,2007,110:735-742.
    [16]Trowbridge JJ, Xenocostas A, Moon RT, et al. Glycogen synthase kinase-3is an invivo regulator of hematopoietic stem cell repopulation. Nat Med,2006,12:89-98.
    [17]Mikesch JH, Steffen B, Berdel WE, et al.The emerging role of Wnt signaling in thepathogenesis of acute myeloid leukemia. Leukemia,2007,21:1638-1647.
    [18]Naveed IK, Kenneth FB and Linda JB.Activation of Wnt/β-catenin pathwaymediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia.British Journal of Haematology,2007,138:338-348.
    [19]杨锡强,易著文.儿科学[M].第6版.北京:人民卫生出版社,2006:426.
    [20]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-timequantitative PCR and the2-ΔΔCTmethod. Methods,2001,25(4):402-408.
    [21]Pui CH and Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med,2006,354:166-178.
    [22]Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med,2004,350(15):1535-1548.
    [23]Pui CH, Sandlund JT, Pei D, et al. Improved outcome for children with acutelyrephoblastic leukemia: results of total therapy study XⅢ B at St Jude children’sResearch Hospital. Blood,2004,104(13):2690.
    [24]郑胡镛.儿童急性淋巴细胞白血病治疗进展.实用儿科临床杂志.2007,22(3}:167-169.
    [25]Oeffinger KC and Hudson MM. Long-term complications following childhood andadolescent cancer: foundations for providing risk-based health care for survivors.CA Cancer J Clin,2004,54:208-236.
    [26]Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor ofthe BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med,2001,344:1031-1037.
    [27]Armstrong SA, Look AT. Molecular Genetics of Acute Lymphoblastic Leukemia.Journal of Clinical Oncology,2005,23(26):6306-6315.
    [28]Woodgett JR. Molecular cloning and expression of glycogen synthasekinase-3/factor A. EMBO J,1990,9(8):2431-2438.
    [29]Woodgett JR. cDNA cloning and properties of glycogen synthase kinase-3.Methods Enzymol,1991,200:564-577.
    [30]Steinbrecher KA, Wilson W, Cogswel1PC, et a1. Glycogen synthase kinase3βfunctions to specify gene-specific,NF-κB-dependent transcription. Mol Cell Biol,2005,25(19):8444-8455.
    [31]Shakoori A, Ougolkov A, YU ZW, et a1. Deregulated GSK3beta activity incolorectal cancer: its association with tumor cell survival and proliferation.Biochem Biophys Res Commun,2005,334(4):l365-l373.
    [32]Kiichiro T, Tetsuyan N, Ryuichi O, et al. Reciprocal targeting of hath1andβ-catenin by wnt glycogen synthase kinase3β in human colon cancer.Gastroenterology,2007,132(1):208-220.
    [33]Klein PS, Melton DA. A molecular mechanism for the efect of lithium ondevelopment. Proc Nail Acad Sci,1996,93(16):8455-8459.
    [34]Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multipleoutcomes. Trends Pharmacol Sci,2003,24(9):441-443.
    [35]Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3bycompetition for magnesium. Biochem Biophys Res Commun,2001,280(3):720-725.
    [36]Wang Z, Smith S K, Murphy M, et al.Glycogen synthase kinase3in MLLleukaemia maintenance and targeted therapy. Nature,2008,455:1205-1210.
    [37]Coghlan MP, Culbert AA, Cross DA, et al. Selective small molecule inhibitors ofglycogen synthase kinase-3modulate glycogen metabolism and gene transcription.Chem Biol,2000,7:793-803.
    [38]Thilo H, Elena DD, Ainsley AC, et al. Expression and Characterization of GSK-3Mutants and Their Effect on β-Catenin Phosphorylation in Intact Cells. The JournalOf Biological Chemistry,2002,277(26):23330-23335.
    [39]Jope RS, Johnson GVW. The glamour and gloom of glycogen synthase kinase-3.Trends Bioc hem Sci,2004,29:95-102.
    [40]Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucosetransporter(GLUT)proteins in cancer. J Cell Physiol,2005,202:654-662.
    [41]管贤敏,徐酉华. Survivin在儿童急性白血病骨髓及外周血单个核细胞中的表达及意义.第三军医大学学报,2005,27(22):2252-2254.
    [42]刘筱梅,徐酉华,于洁等. Survivin、bcl-2在儿童急性白血病的表达及其临床意义.重医学报,2005,34(2):173-175.
    [43]Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature,2005,434(7035):843.
    [44]Karl W, Jeffrey DB, Esther D, et al. Wnt proteins are lipid-modified and can act asstem cell growth factors. Nature,2003,423(22):448-452.
    [45]Reya T, Duncan AW, Ailes L, et a1. A role for Wnt sign alling in self-renewal ofhaematopoietic stem cells. Nature,2003,423(6938):409-414.
    [46]Maria S, Vicoria LG, David CL, et al. Constitutive activation of the Wnt/β-cateninsignalling pathway in acute myeloid leukaemia. Oncogene,2005,24;2410-2420.
    [47]师伟,韩姝,李艳华等. Wnt3a转基因基质细胞的建立及其对脐血CD34+造血干/祖细胞扩增作用的研究.生物化学与生物物理进展,2005,32(9):835-841.
    [48]Nygren M, Dosen G, Hystad M, et al. Wnt3A activates canonical Wnt signalling inacute lymphoblastic leukaemia cells and inhibits the proliferation of B-ALL celllines. British Journal of Haematology,2006,136:400-413.
    [49]Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. JCell Sci,2003,116(Pt7):1l75-1186.
    [50]Eun JC, Sang-Gu H, Phuong MN, et al. Regulation of leukemic cell adhesion,proliferation, and survival by β-catenin. Blood,2002,100:982-990.
    [51]Tiffany H, Tracey AO, Robert K, et al. Glycogen Synthase Kinase-3β InhibitionPreserves Hematopoietic Stem Cell Activity and Inhibits Leukemic Cell Growth.Stem Cells,2008,26:1288-1297.
    [52]Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappa B activation. Nature,2000,406(6791):86-90.
    [53]Ougolkov AV, Fernandez-Zapico ME, Bilim VN, et al. Aberrant nuclearaccumulation of glycogen synthase kinase-3beta in human pancreatic cancer:association with kinase activity and tumor dedifferentiation. Clin Cancer Res,2006,12:5074-5081.
    [54]Ougolkov AV, Bone ND, Fernandez-Zapico ME, et al. Inhibition of glycogensynthase kinase-3activity leads to epigenetic silencing of nuclear factor κB targetgenes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood,2007,110:735-742.
    [55]Toni FD, Racaud-Sultan C, Chicanne G,et al. A crosstalk between the Wnt and theadhesion-dependent signaling pathways governs the chemosensitivity of acutemyeloid leukemia. Oncogene,2006,25:3113-3122.
    [1] Cohen P. The hormonal control of glycogen metabolism in mammalian muscle bymultivalent phosphorylation.‘The Fifteenth Colworth Medal Lecture’. Biochem.Soc. Trans.,1978,7:459–480.
    [2] T. Holmes, T.A. O’Brien, R. Knight, et al. The role of glycogen synthase kinase-3βin normal haematopoiesis, angiogenesis and leukaemia. Current MedicinalChemistry,2008,15(15):1493-1499.
    [3] Cohen P, Goedert M. GSK3inhibitors:development and therapeutic potential. NatRev Drug Discov,2004,3(6):479-487.
    [4] Terwel D, Muyllaert D, Dewaehter I, et al. Amyloid activates GSK-3β to aggravateneuronal tauopathy in bigenic mice. Am J Pathol,2008,172(3):786-798.
    [5] Jia Luo. Glycogen synthase kinase3β (GSK3β) in tumorigenesis and cancerchemotherapy. Cancer Letter,2009,273:194-200.
    [6] Bhat R V, Shanley J, Correl M P, et al. Regulation and localization of tyrosine216phosphorylation of glycogen synthase kinase-3beta in celular and animal models ofneuronal degeneration. Proc Natl Acad Sci USA,2000,97(20):11074-9.
    [7] Patapeutian A, Reichardt L. F. Roles of Wnt proteins in neural development andmaintenance. Curr Opin Neurobiol,2000,10(3):392-9.
    [8] Richard S. Jope and Gail V.W. Johnson. The glamour and gloom of glycogensynthase kinase-3. Trends in Biochemical Sciences,2004,29(2):95-102.
    [9] Bijur G. N and Jope R.S. Dynamic regulation of mitochondrial Akt and GSK3β. J.Neurochem,2003,87:1427-1435.
    [10] Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature,2005,434(7035):843.
    [11] Rex C Haydon, Andrea Deyrup, Akira Ishikawa, et al. Cytoplasmic and/or nuclearaccumulation of the β-catenin protein is a frequent in human osteosarcoma. Int JCancer,2002,102:338.
    [12] J-H Mikesch, B Steffen, WE Berdel, et al.The emerging role of Wnt signaling inthe pathogenesis of acute myeloid leukemia.Leukemia,2007,21:1638–1647.
    [13] Klaus PH, Juan L, Elizabeth AR, et al. Requirement for glycogen synthasekinase-3β in cell survival and NF-κB activation. Nature2000,406:86-90.
    [14] Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal ofhaematopoietic stem cells. Nature,2003,423(6938):409-414.
    [15] Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and canact as stem cell growth factors. Nature,2003,423(6938):448-452.
    [16] Trowbridge JJ, Xenocostas A, Moon RT, et al. Glycogen synthase kinase-3is an invivo regulator of hematopoietic stem cell repopulation. Nat Med,2006,12:89–98.
    [17] Tiffany Holmes, Tracey A. O’Brien, Robert Knight, et al. Glycogen SynthaseKinase-3β Inhibition Preserves Hematopoietic Stem Cell Activity and InhibitsLeukemic Cell Growth. Stem Cells,2008,26:1288–1297.
    [18] CC Hofmeister, J Zhang, KL Knight, et al. Ex vivo expansion of umbilical cordblood stem cells for transplantation: growing knowledge from the hematopoieticniche. Bone Marrow Transplantation,2007,39:11–23.
    [19] Druker BJ, et al. Five-year follow-up of patients receiving imatinib for chronicmyeloid leukemia. N Engl J Med,2006,355:2408–2417.
    [20] Annelie E. A., Ifat Gerona, Jason Gotlib, et al. Glycogen synthase kinase3βmissplicing contributes to leukemia stem cell generation. PNAS,2009,106(10):3925–3929.
    [21] Addolorata M. L. Coluccia, Angelo Vacca, Mireia Dunach, et al. Bcr-Ablstabilizes β-catenin in chronic myeloid leukemia through its tyrosinephosphorylation. The EMBO Journal,2007,26:1456–1466.
    [22] Toni FD, Racaud-Sultan C, Chicanne G, et al. A crosstalk between the Wnt and theadhesion-dependent signaling pathways governs the chemosensitivity of acutemyeloid leukemia. Oncogene,2006,25:3113-3122.
    [23] Andrei VO, Nancy DB, Martin EF, et al. Inhibition of glycogen synthase kinase-3activity leads to epigenetic silencing of nuclear factor κB target genes and inductionof apoptosis in chronic lymphocytic leukemia B cells. Blood,2007,110:735-742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700